MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rankwflemb Structured version   Visualization version   Unicode version

Theorem rankwflemb 8656
Description: Two ways of saying a set is well-founded. (Contributed by NM, 11-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rankwflemb  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Distinct variable group:    x, A

Proof of Theorem rankwflemb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 4439 . . 3  |-  ( A  e.  U. ( R1
" On )  <->  E. y
( A  e.  y  /\  y  e.  ( R1 " On ) ) )
2 r1funlim 8629 . . . . . . . 8  |-  ( Fun 
R1  /\  Lim  dom  R1 )
32simpli 474 . . . . . . 7  |-  Fun  R1
4 fvelima 6248 . . . . . . 7  |-  ( ( Fun  R1  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  ( R1 `  x )  =  y )
53, 4mpan 706 . . . . . 6  |-  ( y  e.  ( R1 " On )  ->  E. x  e.  On  ( R1 `  x )  =  y )
6 eleq2 2690 . . . . . . . . 9  |-  ( ( R1 `  x )  =  y  ->  ( A  e.  ( R1 `  x )  <->  A  e.  y ) )
76biimprcd 240 . . . . . . . 8  |-  ( A  e.  y  ->  (
( R1 `  x
)  =  y  ->  A  e.  ( R1 `  x ) ) )
8 r1tr 8639 . . . . . . . . . . . 12  |-  Tr  ( R1 `  x )
9 trss 4761 . . . . . . . . . . . 12  |-  ( Tr  ( R1 `  x
)  ->  ( A  e.  ( R1 `  x
)  ->  A  C_  ( R1 `  x ) ) )
108, 9ax-mp 5 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  A  C_  ( R1 `  x
) )
11 elpwg 4166 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  ( A  e.  ~P ( R1 `  x )  <->  A  C_  ( R1 `  x ) ) )
1210, 11mpbird 247 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ~P ( R1 `  x ) )
13 elfvdm 6220 . . . . . . . . . . 11  |-  ( A  e.  ( R1 `  x )  ->  x  e.  dom  R1 )
14 r1sucg 8632 . . . . . . . . . . 11  |-  ( x  e.  dom  R1  ->  ( R1 `  suc  x
)  =  ~P ( R1 `  x ) )
1513, 14syl 17 . . . . . . . . . 10  |-  ( A  e.  ( R1 `  x )  ->  ( R1 `  suc  x )  =  ~P ( R1
`  x ) )
1612, 15eleqtrrd 2704 . . . . . . . . 9  |-  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) )
1716a1i 11 . . . . . . . 8  |-  ( x  e.  On  ->  ( A  e.  ( R1 `  x )  ->  A  e.  ( R1 `  suc  x ) ) )
187, 17syl9 77 . . . . . . 7  |-  ( A  e.  y  ->  (
x  e.  On  ->  ( ( R1 `  x
)  =  y  ->  A  e.  ( R1 ` 
suc  x ) ) ) )
1918reximdvai 3015 . . . . . 6  |-  ( A  e.  y  ->  ( E. x  e.  On  ( R1 `  x )  =  y  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) ) )
205, 19syl5 34 . . . . 5  |-  ( A  e.  y  ->  (
y  e.  ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) ) )
2120imp 445 . . . 4  |-  ( ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
2221exlimiv 1858 . . 3  |-  ( E. y ( A  e.  y  /\  y  e.  ( R1 " On ) )  ->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
231, 22sylbi 207 . 2  |-  ( A  e.  U. ( R1
" On )  ->  E. x  e.  On  A  e.  ( R1 ` 
suc  x ) )
24 elfvdm 6220 . . . . . 6  |-  ( A  e.  ( R1 `  suc  x )  ->  suc  x  e.  dom  R1 )
25 fvelrn 6352 . . . . . 6  |-  ( ( Fun  R1  /\  suc  x  e.  dom  R1 )  ->  ( R1 `  suc  x )  e.  ran  R1 )
263, 24, 25sylancr 695 . . . . 5  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ran  R1 )
27 df-ima 5127 . . . . . 6  |-  ( R1
" On )  =  ran  ( R1  |`  On )
28 funrel 5905 . . . . . . . . 9  |-  ( Fun 
R1  ->  Rel  R1 )
293, 28ax-mp 5 . . . . . . . 8  |-  Rel  R1
302simpri 478 . . . . . . . . 9  |-  Lim  dom  R1
31 limord 5784 . . . . . . . . 9  |-  ( Lim 
dom  R1  ->  Ord  dom  R1 )
32 ordsson 6989 . . . . . . . . 9  |-  ( Ord 
dom  R1  ->  dom  R1  C_  On )
3330, 31, 32mp2b 10 . . . . . . . 8  |-  dom  R1  C_  On
34 relssres 5437 . . . . . . . 8  |-  ( ( Rel  R1  /\  dom  R1  C_  On )  ->  ( R1  |`  On )  =  R1 )
3529, 33, 34mp2an 708 . . . . . . 7  |-  ( R1  |`  On )  =  R1
3635rneqi 5352 . . . . . 6  |-  ran  ( R1  |`  On )  =  ran  R1
3727, 36eqtri 2644 . . . . 5  |-  ( R1
" On )  =  ran  R1
3826, 37syl6eleqr 2712 . . . 4  |-  ( A  e.  ( R1 `  suc  x )  ->  ( R1 `  suc  x )  e.  ( R1 " On ) )
39 elunii 4441 . . . 4  |-  ( ( A  e.  ( R1
`  suc  x )  /\  ( R1 `  suc  x )  e.  ( R1 " On ) )  ->  A  e.  U. ( R1 " On ) )
4038, 39mpdan 702 . . 3  |-  ( A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4140rexlimivw 3029 . 2  |-  ( E. x  e.  On  A  e.  ( R1 `  suc  x )  ->  A  e.  U. ( R1 " On ) )
4223, 41impbii 199 1  |-  ( A  e.  U. ( R1
" On )  <->  E. x  e.  On  A  e.  ( R1 `  suc  x
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   E.wrex 2913    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   Tr wtr 4752   dom cdm 5114   ran crn 5115    |` cres 5116   "cima 5117   Rel wrel 5119   Ord word 5722   Oncon0 5723   Lim wlim 5724   suc csuc 5725   Fun wfun 5882   ` cfv 5888   R1cr1 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-r1 8627
This theorem is referenced by:  rankf  8657  r1elwf  8659  rankvalb  8660  rankidb  8663  rankwflem  8678  tcrank  8747  dfac12r  8968
  Copyright terms: Public domain W3C validator