MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnelfm Structured version   Visualization version   Unicode version

Theorem rnelfm 21757
Description: A condition for a filter to be an image filter for a given function. (Contributed by Jeff Hankins, 14-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
rnelfm  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( L  e.  ran  ( X  FilMap  F )  <->  ran  F  e.  L ) )

Proof of Theorem rnelfm
Dummy variables  b 
s  t  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filtop 21659 . . . . . . 7  |-  ( L  e.  ( Fil `  X
)  ->  X  e.  L )
213ad2ant2 1083 . . . . . 6  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  ->  X  e.  L )
3 simp1 1061 . . . . . 6  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  ->  Y  e.  A )
4 simp3 1063 . . . . . 6  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  ->  F : Y --> X )
5 fmf 21749 . . . . . 6  |-  ( ( X  e.  L  /\  Y  e.  A  /\  F : Y --> X )  ->  ( X  FilMap  F ) : ( fBas `  Y ) --> ( Fil `  X ) )
62, 3, 4, 5syl3anc 1326 . . . . 5  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( X  FilMap  F ) : ( fBas `  Y
) --> ( Fil `  X
) )
7 ffn 6045 . . . . 5  |-  ( ( X  FilMap  F ) : ( fBas `  Y
) --> ( Fil `  X
)  ->  ( X  FilMap  F )  Fn  ( fBas `  Y ) )
86, 7syl 17 . . . 4  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( X  FilMap  F )  Fn  ( fBas `  Y
) )
9 fvelrnb 6243 . . . 4  |-  ( ( X  FilMap  F )  Fn  ( fBas `  Y
)  ->  ( L  e.  ran  ( X  FilMap  F )  <->  E. b  e.  (
fBas `  Y )
( ( X  FilMap  F ) `  b )  =  L ) )
108, 9syl 17 . . 3  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( L  e.  ran  ( X  FilMap  F )  <->  E. b  e.  ( fBas `  Y ) ( ( X  FilMap  F ) `
 b )  =  L ) )
11 ffn 6045 . . . . . . . . . . . 12  |-  ( F : Y --> X  ->  F  Fn  Y )
12 dffn4 6121 . . . . . . . . . . . 12  |-  ( F  Fn  Y  <->  F : Y -onto-> ran  F )
1311, 12sylib 208 . . . . . . . . . . 11  |-  ( F : Y --> X  ->  F : Y -onto-> ran  F
)
14 foima 6120 . . . . . . . . . . 11  |-  ( F : Y -onto-> ran  F  ->  ( F " Y
)  =  ran  F
)
1513, 14syl 17 . . . . . . . . . 10  |-  ( F : Y --> X  -> 
( F " Y
)  =  ran  F
)
1615ad2antlr 763 . . . . . . . . 9  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  ( F " Y )  =  ran  F )
17 simpll 790 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  X  e.  L )
18 simpr 477 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  b  e.  ( fBas `  Y )
)
19 simplr 792 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  F : Y
--> X )
20 fgcl 21682 . . . . . . . . . . . 12  |-  ( b  e.  ( fBas `  Y
)  ->  ( Y filGen b )  e.  ( Fil `  Y ) )
21 filtop 21659 . . . . . . . . . . . 12  |-  ( ( Y filGen b )  e.  ( Fil `  Y
)  ->  Y  e.  ( Y filGen b ) )
2220, 21syl 17 . . . . . . . . . . 11  |-  ( b  e.  ( fBas `  Y
)  ->  Y  e.  ( Y filGen b ) )
2322adantl 482 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  Y  e.  ( Y filGen b ) )
24 eqid 2622 . . . . . . . . . . 11  |-  ( Y
filGen b )  =  ( Y filGen b )
2524imaelfm 21755 . . . . . . . . . 10  |-  ( ( ( X  e.  L  /\  b  e.  ( fBas `  Y )  /\  F : Y --> X )  /\  Y  e.  ( Y filGen b ) )  ->  ( F " Y )  e.  ( ( X  FilMap  F ) `
 b ) )
2617, 18, 19, 23, 25syl31anc 1329 . . . . . . . . 9  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  ( F " Y )  e.  ( ( X  FilMap  F ) `
 b ) )
2716, 26eqeltrrd 2702 . . . . . . . 8  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  ran  F  e.  ( ( X  FilMap  F ) `  b ) )
28 eleq2 2690 . . . . . . . 8  |-  ( ( ( X  FilMap  F ) `
 b )  =  L  ->  ( ran  F  e.  ( ( X 
FilMap  F ) `  b
)  <->  ran  F  e.  L
) )
2927, 28syl5ibcom 235 . . . . . . 7  |-  ( ( ( X  e.  L  /\  F : Y --> X )  /\  b  e.  (
fBas `  Y )
)  ->  ( (
( X  FilMap  F ) `
 b )  =  L  ->  ran  F  e.  L ) )
3029ex 450 . . . . . 6  |-  ( ( X  e.  L  /\  F : Y --> X )  ->  ( b  e.  ( fBas `  Y
)  ->  ( (
( X  FilMap  F ) `
 b )  =  L  ->  ran  F  e.  L ) ) )
311, 30sylan 488 . . . . 5  |-  ( ( L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( b  e.  (
fBas `  Y )  ->  ( ( ( X 
FilMap  F ) `  b
)  =  L  ->  ran  F  e.  L ) ) )
32313adant1 1079 . . . 4  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( b  e.  (
fBas `  Y )  ->  ( ( ( X 
FilMap  F ) `  b
)  =  L  ->  ran  F  e.  L ) ) )
3332rexlimdv 3030 . . 3  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( E. b  e.  ( fBas `  Y
) ( ( X 
FilMap  F ) `  b
)  =  L  ->  ran  F  e.  L ) )
3410, 33sylbid 230 . 2  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( L  e.  ran  ( X  FilMap  F )  ->  ran  F  e.  L ) )
35 simpl2 1065 . . . . . . . . 9  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  L  e.  ( Fil `  X
) )
36 filelss 21656 . . . . . . . . . 10  |-  ( ( L  e.  ( Fil `  X )  /\  t  e.  L )  ->  t  C_  X )
3736ex 450 . . . . . . . . 9  |-  ( L  e.  ( Fil `  X
)  ->  ( t  e.  L  ->  t  C_  X ) )
3835, 37syl 17 . . . . . . . 8  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  L  -> 
t  C_  X )
)
39 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  t  e.  L )
40 eqidd 2623 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  ( `' F "
t )  =  ( `' F " t ) )
41 imaeq2 5462 . . . . . . . . . . . . . 14  |-  ( x  =  t  ->  ( `' F " x )  =  ( `' F " t ) )
4241eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( x  =  t  ->  (
( `' F "
t )  =  ( `' F " x )  <-> 
( `' F "
t )  =  ( `' F " t ) ) )
4342rspcev 3309 . . . . . . . . . . . 12  |-  ( ( t  e.  L  /\  ( `' F " t )  =  ( `' F " t ) )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F " x ) )
4439, 40, 43syl2anc 693 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  E. x  e.  L  ( `' F " t )  =  ( `' F " x ) )
45 simpl1 1064 . . . . . . . . . . . . . 14  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  Y  e.  A )
46 cnvimass 5485 . . . . . . . . . . . . . . . . 17  |-  ( `' F " t ) 
C_  dom  F
47 fdm 6051 . . . . . . . . . . . . . . . . 17  |-  ( F : Y --> X  ->  dom  F  =  Y )
4846, 47syl5sseq 3653 . . . . . . . . . . . . . . . 16  |-  ( F : Y --> X  -> 
( `' F "
t )  C_  Y
)
49483ad2ant3 1084 . . . . . . . . . . . . . . 15  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( `' F "
t )  C_  Y
)
5049adantr 481 . . . . . . . . . . . . . 14  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ( `' F " t ) 
C_  Y )
5145, 50ssexd 4805 . . . . . . . . . . . . 13  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ( `' F " t )  e.  _V )
52 eqid 2622 . . . . . . . . . . . . . 14  |-  ( x  e.  L  |->  ( `' F " x ) )  =  ( x  e.  L  |->  ( `' F " x ) )
5352elrnmpt 5372 . . . . . . . . . . . . 13  |-  ( ( `' F " t )  e.  _V  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
5451, 53syl 17 . . . . . . . . . . . 12  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
5554adantr 481 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  ( ( `' F " t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  <->  E. x  e.  L  ( `' F " t )  =  ( `' F "
x ) ) )
5644, 55mpbird 247 . . . . . . . . . 10  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  ( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) )
57 ssid 3624 . . . . . . . . . . 11  |-  ( `' F " t ) 
C_  ( `' F " t )
58 ffun 6048 . . . . . . . . . . . . . 14  |-  ( F : Y --> X  ->  Fun  F )
59583ad2ant3 1084 . . . . . . . . . . . . 13  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  ->  Fun  F )
6059ad2antrr 762 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  Fun  F )
61 funimass3 6333 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  ( `' F " t ) 
C_  dom  F )  ->  ( ( F "
( `' F "
t ) )  C_  t 
<->  ( `' F "
t )  C_  ( `' F " t ) ) )
6260, 46, 61sylancl 694 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  ( ( F "
( `' F "
t ) )  C_  t 
<->  ( `' F "
t )  C_  ( `' F " t ) ) )
6357, 62mpbiri 248 . . . . . . . . . 10  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  ( F " ( `' F " t ) )  C_  t )
64 imaeq2 5462 . . . . . . . . . . . 12  |-  ( s  =  ( `' F " t )  ->  ( F " s )  =  ( F " ( `' F " t ) ) )
6564sseq1d 3632 . . . . . . . . . . 11  |-  ( s  =  ( `' F " t )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
t ) )  C_  t ) )
6665rspcev 3309 . . . . . . . . . 10  |-  ( ( ( `' F "
t )  e.  ran  ( x  e.  L  |->  ( `' F "
x ) )  /\  ( F " ( `' F " t ) )  C_  t )  ->  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t )
6756, 63, 66syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  t  e.  L )  ->  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t )
6867ex 450 . . . . . . . 8  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  L  ->  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t ) )
6938, 68jcad 555 . . . . . . 7  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  L  -> 
( t  C_  X  /\  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t ) ) )
7035adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  ( F " s ) 
C_  t )  /\  t  C_  X ) )  ->  L  e.  ( Fil `  X ) )
71 vex 3203 . . . . . . . . . . . . . . 15  |-  s  e. 
_V
7252elrnmpt 5372 . . . . . . . . . . . . . . 15  |-  ( s  e.  _V  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) ) )
7371, 72ax-mp 5 . . . . . . . . . . . . . 14  |-  ( s  e.  ran  ( x  e.  L  |->  ( `' F " x ) )  <->  E. x  e.  L  s  =  ( `' F " x ) )
74 ssid 3624 . . . . . . . . . . . . . . . . . . . . 21  |-  ( `' F " x ) 
C_  ( `' F " x )
7559ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  Fun  F )
76 cnvimass 5485 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( `' F " x ) 
C_  dom  F
77 funimass3 6333 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Fun  F  /\  ( `' F " x ) 
C_  dom  F )  ->  ( ( F "
( `' F "
x ) )  C_  x 
<->  ( `' F "
x )  C_  ( `' F " x ) ) )
7875, 76, 77sylancl 694 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
( F " ( `' F " x ) )  C_  x  <->  ( `' F " x )  C_  ( `' F " x ) ) )
7974, 78mpbiri 248 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  ( F " ( `' F " x ) )  C_  x )
80 imassrn 5477 . . . . . . . . . . . . . . . . . . . 20  |-  ( F
" ( `' F " x ) )  C_  ran  F
81 ssin 3835 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( F " ( `' F " x ) )  C_  x  /\  ( F " ( `' F " x ) )  C_  ran  F )  <-> 
( F " ( `' F " x ) )  C_  ( x  i^i  ran  F ) )
8279, 80, 81sylanblc 696 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  ( F " ( `' F " x ) )  C_  ( x  i^i  ran  F
) )
83 elin 3796 . . . . . . . . . . . . . . . . . . . . 21  |-  ( z  e.  ( x  i^i 
ran  F )  <->  ( z  e.  x  /\  z  e.  ran  F ) )
84 fvelrnb 6243 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( F  Fn  Y  ->  (
z  e.  ran  F  <->  E. y  e.  Y  ( F `  y )  =  z ) )
8511, 84syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( F : Y --> X  -> 
( z  e.  ran  F  <->  E. y  e.  Y  ( F `  y )  =  z ) )
86853ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( z  e.  ran  F  <->  E. y  e.  Y  ( F `  y )  =  z ) )
8786ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
z  e.  ran  F  <->  E. y  e.  Y  ( F `  y )  =  z ) )
8875ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  /\  y  e.  Y
)  /\  ( F `  y )  e.  x
)  ->  Fun  F )
8988, 76jctir 561 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  /\  y  e.  Y
)  /\  ( F `  y )  e.  x
)  ->  ( Fun  F  /\  ( `' F " x )  C_  dom  F ) )
9059ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  ->  Fun  F )
9190ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L
)  /\  ( ( F " ( `' F " x ) )  C_  t  /\  t  C_  X
) )  /\  y  e.  Y )  ->  Fun  F )
92473ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  ->  dom  F  =  Y )
9392ad3antrrr 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  dom  F  =  Y )
9493eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
y  e.  dom  F  <->  y  e.  Y ) )
9594biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L
)  /\  ( ( F " ( `' F " x ) )  C_  t  /\  t  C_  X
) )  /\  y  e.  Y )  ->  y  e.  dom  F )
96 fvimacnv 6332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( ( F `  y )  e.  x  <->  y  e.  ( `' F " x ) ) )
9791, 95, 96syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L
)  /\  ( ( F " ( `' F " x ) )  C_  t  /\  t  C_  X
) )  /\  y  e.  Y )  ->  (
( F `  y
)  e.  x  <->  y  e.  ( `' F " x ) ) )
9897biimpa 501 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  /\  y  e.  Y
)  /\  ( F `  y )  e.  x
)  ->  y  e.  ( `' F " x ) )
99 funfvima2 6493 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Fun  F  /\  ( `' F " x ) 
C_  dom  F )  ->  ( y  e.  ( `' F " x )  ->  ( F `  y )  e.  ( F " ( `' F " x ) ) ) )
10089, 98, 99sylc 65 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  (
( F " ( `' F " x ) )  C_  t  /\  t  C_  X ) )  /\  y  e.  Y
)  /\  ( F `  y )  e.  x
)  ->  ( F `  y )  e.  ( F " ( `' F " x ) ) )
101100ex 450 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L
)  /\  ( ( F " ( `' F " x ) )  C_  t  /\  t  C_  X
) )  /\  y  e.  Y )  ->  (
( F `  y
)  e.  x  -> 
( F `  y
)  e.  ( F
" ( `' F " x ) ) ) )
102 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  y )  =  z  ->  (
( F `  y
)  e.  x  <->  z  e.  x ) )
103 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( F `  y )  =  z  ->  (
( F `  y
)  e.  ( F
" ( `' F " x ) )  <->  z  e.  ( F " ( `' F " x ) ) ) )
104102, 103imbi12d 334 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( F `  y )  =  z  ->  (
( ( F `  y )  e.  x  ->  ( F `  y
)  e.  ( F
" ( `' F " x ) ) )  <-> 
( z  e.  x  ->  z  e.  ( F
" ( `' F " x ) ) ) ) )
105101, 104syl5ibcom 235 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  /\  x  e.  L
)  /\  ( ( F " ( `' F " x ) )  C_  t  /\  t  C_  X
) )  /\  y  e.  Y )  ->  (
( F `  y
)  =  z  -> 
( z  e.  x  ->  z  e.  ( F
" ( `' F " x ) ) ) ) )
106105rexlimdva 3031 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  ( E. y  e.  Y  ( F `  y )  =  z  ->  (
z  e.  x  -> 
z  e.  ( F
" ( `' F " x ) ) ) ) )
10787, 106sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
z  e.  ran  F  ->  ( z  e.  x  ->  z  e.  ( F
" ( `' F " x ) ) ) ) )
108107com23 86 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
z  e.  x  -> 
( z  e.  ran  F  ->  z  e.  ( F " ( `' F " x ) ) ) ) )
109108impd 447 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
( z  e.  x  /\  z  e.  ran  F )  ->  z  e.  ( F " ( `' F " x ) ) ) )
11083, 109syl5bi 232 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
z  e.  ( x  i^i  ran  F )  ->  z  e.  ( F
" ( `' F " x ) ) ) )
111110ssrdv 3609 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
x  i^i  ran  F ) 
C_  ( F "
( `' F "
x ) ) )
11282, 111eqssd 3620 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  ( F " ( `' F " x ) )  =  ( x  i^i  ran  F ) )
113 filin 21658 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( L  e.  ( Fil `  X )  /\  x  e.  L  /\  ran  F  e.  L )  ->  (
x  i^i  ran  F )  e.  L )
1141133exp 1264 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( L  e.  ( Fil `  X
)  ->  ( x  e.  L  ->  ( ran 
F  e.  L  -> 
( x  i^i  ran  F )  e.  L ) ) )
115114com23 86 . . . . . . . . . . . . . . . . . . . . 21  |-  ( L  e.  ( Fil `  X
)  ->  ( ran  F  e.  L  ->  (
x  e.  L  -> 
( x  i^i  ran  F )  e.  L ) ) )
1161153ad2ant2 1083 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( ran  F  e.  L  ->  ( x  e.  L  ->  ( x  i^i  ran  F )  e.  L ) ) )
117116imp31 448 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  ->  ( x  i^i  ran  F )  e.  L )
118117adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  (
x  i^i  ran  F )  e.  L )
119112, 118eqeltrd 2701 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  /\  ( ( F "
( `' F "
x ) )  C_  t  /\  t  C_  X
) )  ->  ( F " ( `' F " x ) )  e.  L )
120119exp32 631 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  ->  ( ( F "
( `' F "
x ) )  C_  t  ->  ( t  C_  X  ->  ( F "
( `' F "
x ) )  e.  L ) ) )
121 imaeq2 5462 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  ( `' F " x )  ->  ( F " s )  =  ( F " ( `' F " x ) ) )
122121sseq1d 3632 . . . . . . . . . . . . . . . . 17  |-  ( s  =  ( `' F " x )  ->  (
( F " s
)  C_  t  <->  ( F " ( `' F "
x ) )  C_  t ) )
123121eleq1d 2686 . . . . . . . . . . . . . . . . . 18  |-  ( s  =  ( `' F " x )  ->  (
( F " s
)  e.  L  <->  ( F " ( `' F "
x ) )  e.  L ) )
124123imbi2d 330 . . . . . . . . . . . . . . . . 17  |-  ( s  =  ( `' F " x )  ->  (
( t  C_  X  ->  ( F " s
)  e.  L )  <-> 
( t  C_  X  ->  ( F " ( `' F " x ) )  e.  L ) ) )
125122, 124imbi12d 334 . . . . . . . . . . . . . . . 16  |-  ( s  =  ( `' F " x )  ->  (
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  ( F " s
)  e.  L ) )  <->  ( ( F
" ( `' F " x ) )  C_  t  ->  ( t  C_  X  ->  ( F "
( `' F "
x ) )  e.  L ) ) ) )
126120, 125syl5ibrcom 237 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  x  e.  L )  ->  ( s  =  ( `' F " x )  ->  ( ( F
" s )  C_  t  ->  ( t  C_  X  ->  ( F "
s )  e.  L
) ) ) )
127126rexlimdva 3031 . . . . . . . . . . . . . 14  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ( E. x  e.  L  s  =  ( `' F " x )  -> 
( ( F "
s )  C_  t  ->  ( t  C_  X  ->  ( F " s
)  e.  L ) ) ) )
12873, 127syl5bi 232 . . . . . . . . . . . . 13  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  ->  ( ( F " s )  C_  t  ->  ( t  C_  X  ->  ( F "
s )  e.  L
) ) ) )
129128imp44 622 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  ( F " s ) 
C_  t )  /\  t  C_  X ) )  ->  ( F "
s )  e.  L
)
130 simprr 796 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  ( F " s ) 
C_  t )  /\  t  C_  X ) )  ->  t  C_  X
)
131 simprlr 803 . . . . . . . . . . . 12  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  ( F " s ) 
C_  t )  /\  t  C_  X ) )  ->  ( F "
s )  C_  t
)
132 filss 21657 . . . . . . . . . . . 12  |-  ( ( L  e.  ( Fil `  X )  /\  (
( F " s
)  e.  L  /\  t  C_  X  /\  ( F " s )  C_  t ) )  -> 
t  e.  L )
13370, 129, 130, 131, 132syl13anc 1328 . . . . . . . . . . 11  |-  ( ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X
)  /\  F : Y
--> X )  /\  ran  F  e.  L )  /\  ( ( s  e. 
ran  ( x  e.  L  |->  ( `' F " x ) )  /\  ( F " s ) 
C_  t )  /\  t  C_  X ) )  ->  t  e.  L
)
134133exp44 641 . . . . . . . . . 10  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
s  e.  ran  (
x  e.  L  |->  ( `' F " x ) )  ->  ( ( F " s )  C_  t  ->  ( t  C_  X  ->  t  e.  L
) ) ) )
135134rexlimdv 3030 . . . . . . . . 9  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ( E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t  ->  (
t  C_  X  ->  t  e.  L ) ) )
136135com23 86 . . . . . . . 8  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  C_  X  ->  ( E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t  ->  t  e.  L ) ) )
137136impd 447 . . . . . . 7  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
( t  C_  X  /\  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t )  -> 
t  e.  L ) )
13869, 137impbid 202 . . . . . 6  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  L  <->  ( t  C_  X  /\  E. s  e.  ran  ( x  e.  L  |->  ( `' F " x ) ) ( F " s ) 
C_  t ) ) )
1392adantr 481 . . . . . . 7  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  X  e.  L )
140 rnelfmlem 21756 . . . . . . 7  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
) )
141 simpl3 1066 . . . . . . 7  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  F : Y --> X )
142 elfm 21751 . . . . . . 7  |-  ( ( X  e.  L  /\  ran  ( x  e.  L  |->  ( `' F "
x ) )  e.  ( fBas `  Y
)  /\  F : Y
--> X )  ->  (
t  e.  ( ( X  FilMap  F ) `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  <-> 
( t  C_  X  /\  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t ) ) )
143139, 140, 141, 142syl3anc 1326 . . . . . 6  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  ( ( X  FilMap  F ) `  ran  ( x  e.  L  |->  ( `' F "
x ) ) )  <-> 
( t  C_  X  /\  E. s  e.  ran  ( x  e.  L  |->  ( `' F "
x ) ) ( F " s ) 
C_  t ) ) )
144138, 143bitr4d 271 . . . . 5  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
t  e.  L  <->  t  e.  ( ( X  FilMap  F ) `  ran  (
x  e.  L  |->  ( `' F " x ) ) ) ) )
145144eqrdv 2620 . . . 4  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  L  =  ( ( X 
FilMap  F ) `  ran  ( x  e.  L  |->  ( `' F "
x ) ) ) )
1468adantr 481 . . . . 5  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  ( X  FilMap  F )  Fn  ( fBas `  Y
) )
147 fnfvelrn 6356 . . . . 5  |-  ( ( ( X  FilMap  F )  Fn  ( fBas `  Y
)  /\  ran  ( x  e.  L  |->  ( `' F " x ) )  e.  ( fBas `  Y ) )  -> 
( ( X  FilMap  F ) `  ran  (
x  e.  L  |->  ( `' F " x ) ) )  e.  ran  ( X  FilMap  F ) )
148146, 140, 147syl2anc 693 . . . 4  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  (
( X  FilMap  F ) `
 ran  ( x  e.  L  |->  ( `' F " x ) ) )  e.  ran  ( X  FilMap  F ) )
149145, 148eqeltrd 2701 . . 3  |-  ( ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  /\  ran  F  e.  L )  ->  L  e.  ran  ( X  FilMap  F ) )
150149ex 450 . 2  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( ran  F  e.  L  ->  L  e.  ran  ( X  FilMap  F ) ) )
15134, 150impbid 202 1  |-  ( ( Y  e.  A  /\  L  e.  ( Fil `  X )  /\  F : Y --> X )  -> 
( L  e.  ran  ( X  FilMap  F )  <->  ran  F  e.  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574    |-> cmpt 4729   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   -onto->wfo 5886   ` cfv 5888  (class class class)co 6650   fBascfbas 19734   filGencfg 19735   Filcfil 21649    FilMap cfm 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-fbas 19743  df-fg 19744  df-fil 21650  df-fm 21742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator