MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   GIF version

Theorem sdom2en01 9124
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01 (𝐴 ≺ 2𝑜 ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜))

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 8152 . . . . 5 ω = (On ∩ Fin)
2 inss2 3834 . . . . 5 (On ∩ Fin) ⊆ Fin
31, 2eqsstri 3635 . . . 4 ω ⊆ Fin
4 2onn 7720 . . . 4 2𝑜 ∈ ω
53, 4sselii 3600 . . 3 2𝑜 ∈ Fin
6 sdomdom 7983 . . 3 (𝐴 ≺ 2𝑜𝐴 ≼ 2𝑜)
7 domfi 8181 . . 3 ((2𝑜 ∈ Fin ∧ 𝐴 ≼ 2𝑜) → 𝐴 ∈ Fin)
85, 6, 7sylancr 695 . 2 (𝐴 ≺ 2𝑜𝐴 ∈ Fin)
9 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
10 0fin 8188 . . . 4 ∅ ∈ Fin
119, 10syl6eqel 2709 . . 3 (𝐴 = ∅ → 𝐴 ∈ Fin)
12 1onn 7719 . . . . 5 1𝑜 ∈ ω
133, 12sselii 3600 . . . 4 1𝑜 ∈ Fin
14 enfi 8176 . . . 4 (𝐴 ≈ 1𝑜 → (𝐴 ∈ Fin ↔ 1𝑜 ∈ Fin))
1513, 14mpbiri 248 . . 3 (𝐴 ≈ 1𝑜𝐴 ∈ Fin)
1611, 15jaoi 394 . 2 ((𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜) → 𝐴 ∈ Fin)
17 df2o3 7573 . . . . . 6 2𝑜 = {∅, 1𝑜}
1817eleq2i 2693 . . . . 5 ((card‘𝐴) ∈ 2𝑜 ↔ (card‘𝐴) ∈ {∅, 1𝑜})
19 fvex 6201 . . . . . 6 (card‘𝐴) ∈ V
2019elpr 4198 . . . . 5 ((card‘𝐴) ∈ {∅, 1𝑜} ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1𝑜))
2118, 20bitri 264 . . . 4 ((card‘𝐴) ∈ 2𝑜 ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1𝑜))
2221a1i 11 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2𝑜 ↔ ((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1𝑜)))
23 cardnn 8789 . . . . . 6 (2𝑜 ∈ ω → (card‘2𝑜) = 2𝑜)
244, 23ax-mp 5 . . . . 5 (card‘2𝑜) = 2𝑜
2524eleq2i 2693 . . . 4 ((card‘𝐴) ∈ (card‘2𝑜) ↔ (card‘𝐴) ∈ 2𝑜)
26 finnum 8774 . . . . 5 (𝐴 ∈ Fin → 𝐴 ∈ dom card)
27 2on 7568 . . . . . 6 2𝑜 ∈ On
28 onenon 8775 . . . . . 6 (2𝑜 ∈ On → 2𝑜 ∈ dom card)
2927, 28ax-mp 5 . . . . 5 2𝑜 ∈ dom card
30 cardsdom2 8814 . . . . 5 ((𝐴 ∈ dom card ∧ 2𝑜 ∈ dom card) → ((card‘𝐴) ∈ (card‘2𝑜) ↔ 𝐴 ≺ 2𝑜))
3126, 29, 30sylancl 694 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) ∈ (card‘2𝑜) ↔ 𝐴 ≺ 2𝑜))
3225, 31syl5bbr 274 . . 3 (𝐴 ∈ Fin → ((card‘𝐴) ∈ 2𝑜𝐴 ≺ 2𝑜))
33 cardnueq0 8790 . . . . 5 (𝐴 ∈ dom card → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
3426, 33syl 17 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = ∅ ↔ 𝐴 = ∅))
35 cardnn 8789 . . . . . . 7 (1𝑜 ∈ ω → (card‘1𝑜) = 1𝑜)
3612, 35ax-mp 5 . . . . . 6 (card‘1𝑜) = 1𝑜
3736eqeq2i 2634 . . . . 5 ((card‘𝐴) = (card‘1𝑜) ↔ (card‘𝐴) = 1𝑜)
38 finnum 8774 . . . . . . 7 (1𝑜 ∈ Fin → 1𝑜 ∈ dom card)
3913, 38ax-mp 5 . . . . . 6 1𝑜 ∈ dom card
40 carden2 8813 . . . . . 6 ((𝐴 ∈ dom card ∧ 1𝑜 ∈ dom card) → ((card‘𝐴) = (card‘1𝑜) ↔ 𝐴 ≈ 1𝑜))
4126, 39, 40sylancl 694 . . . . 5 (𝐴 ∈ Fin → ((card‘𝐴) = (card‘1𝑜) ↔ 𝐴 ≈ 1𝑜))
4237, 41syl5bbr 274 . . . 4 (𝐴 ∈ Fin → ((card‘𝐴) = 1𝑜𝐴 ≈ 1𝑜))
4334, 42orbi12d 746 . . 3 (𝐴 ∈ Fin → (((card‘𝐴) = ∅ ∨ (card‘𝐴) = 1𝑜) ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜)))
4422, 32, 433bitr3d 298 . 2 (𝐴 ∈ Fin → (𝐴 ≺ 2𝑜 ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜)))
458, 16, 44pm5.21nii 368 1 (𝐴 ≺ 2𝑜 ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383   = wceq 1483  wcel 1990  cin 3573  c0 3915  {cpr 4179   class class class wbr 4653  dom cdm 5114  Oncon0 5723  cfv 5888  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952  cdom 7953  csdm 7954  Fincfn 7955  cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  fin56  9215  en2top  20789
  Copyright terms: Public domain W3C validator