MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdom2en01 Structured version   Visualization version   Unicode version

Theorem sdom2en01 9124
Description: A set with less than two elements has 0 or 1. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Assertion
Ref Expression
sdom2en01  |-  ( A 
~<  2o  <->  ( A  =  (/)  \/  A  ~~  1o ) )

Proof of Theorem sdom2en01
StepHypRef Expression
1 onfin2 8152 . . . . 5  |-  om  =  ( On  i^i  Fin )
2 inss2 3834 . . . . 5  |-  ( On 
i^i  Fin )  C_  Fin
31, 2eqsstri 3635 . . . 4  |-  om  C_  Fin
4 2onn 7720 . . . 4  |-  2o  e.  om
53, 4sselii 3600 . . 3  |-  2o  e.  Fin
6 sdomdom 7983 . . 3  |-  ( A 
~<  2o  ->  A  ~<_  2o )
7 domfi 8181 . . 3  |-  ( ( 2o  e.  Fin  /\  A  ~<_  2o )  ->  A  e.  Fin )
85, 6, 7sylancr 695 . 2  |-  ( A 
~<  2o  ->  A  e.  Fin )
9 id 22 . . . 4  |-  ( A  =  (/)  ->  A  =  (/) )
10 0fin 8188 . . . 4  |-  (/)  e.  Fin
119, 10syl6eqel 2709 . . 3  |-  ( A  =  (/)  ->  A  e. 
Fin )
12 1onn 7719 . . . . 5  |-  1o  e.  om
133, 12sselii 3600 . . . 4  |-  1o  e.  Fin
14 enfi 8176 . . . 4  |-  ( A 
~~  1o  ->  ( A  e.  Fin  <->  1o  e.  Fin ) )
1513, 14mpbiri 248 . . 3  |-  ( A 
~~  1o  ->  A  e. 
Fin )
1611, 15jaoi 394 . 2  |-  ( ( A  =  (/)  \/  A  ~~  1o )  ->  A  e.  Fin )
17 df2o3 7573 . . . . . 6  |-  2o  =  { (/) ,  1o }
1817eleq2i 2693 . . . . 5  |-  ( (
card `  A )  e.  2o  <->  ( card `  A
)  e.  { (/) ,  1o } )
19 fvex 6201 . . . . . 6  |-  ( card `  A )  e.  _V
2019elpr 4198 . . . . 5  |-  ( (
card `  A )  e.  { (/) ,  1o }  <->  ( ( card `  A
)  =  (/)  \/  ( card `  A )  =  1o ) )
2118, 20bitri 264 . . . 4  |-  ( (
card `  A )  e.  2o  <->  ( ( card `  A )  =  (/)  \/  ( card `  A
)  =  1o ) )
2221a1i 11 . . 3  |-  ( A  e.  Fin  ->  (
( card `  A )  e.  2o  <->  ( ( card `  A )  =  (/)  \/  ( card `  A
)  =  1o ) ) )
23 cardnn 8789 . . . . . 6  |-  ( 2o  e.  om  ->  ( card `  2o )  =  2o )
244, 23ax-mp 5 . . . . 5  |-  ( card `  2o )  =  2o
2524eleq2i 2693 . . . 4  |-  ( (
card `  A )  e.  ( card `  2o ) 
<->  ( card `  A
)  e.  2o )
26 finnum 8774 . . . . 5  |-  ( A  e.  Fin  ->  A  e.  dom  card )
27 2on 7568 . . . . . 6  |-  2o  e.  On
28 onenon 8775 . . . . . 6  |-  ( 2o  e.  On  ->  2o  e.  dom  card )
2927, 28ax-mp 5 . . . . 5  |-  2o  e.  dom  card
30 cardsdom2 8814 . . . . 5  |-  ( ( A  e.  dom  card  /\  2o  e.  dom  card )  ->  ( ( card `  A )  e.  (
card `  2o )  <->  A 
~<  2o ) )
3126, 29, 30sylancl 694 . . . 4  |-  ( A  e.  Fin  ->  (
( card `  A )  e.  ( card `  2o ) 
<->  A  ~<  2o )
)
3225, 31syl5bbr 274 . . 3  |-  ( A  e.  Fin  ->  (
( card `  A )  e.  2o  <->  A  ~<  2o ) )
33 cardnueq0 8790 . . . . 5  |-  ( A  e.  dom  card  ->  ( ( card `  A
)  =  (/)  <->  A  =  (/) ) )
3426, 33syl 17 . . . 4  |-  ( A  e.  Fin  ->  (
( card `  A )  =  (/)  <->  A  =  (/) ) )
35 cardnn 8789 . . . . . . 7  |-  ( 1o  e.  om  ->  ( card `  1o )  =  1o )
3612, 35ax-mp 5 . . . . . 6  |-  ( card `  1o )  =  1o
3736eqeq2i 2634 . . . . 5  |-  ( (
card `  A )  =  ( card `  1o ) 
<->  ( card `  A
)  =  1o )
38 finnum 8774 . . . . . . 7  |-  ( 1o  e.  Fin  ->  1o  e.  dom  card )
3913, 38ax-mp 5 . . . . . 6  |-  1o  e.  dom  card
40 carden2 8813 . . . . . 6  |-  ( ( A  e.  dom  card  /\  1o  e.  dom  card )  ->  ( ( card `  A )  =  (
card `  1o )  <->  A 
~~  1o ) )
4126, 39, 40sylancl 694 . . . . 5  |-  ( A  e.  Fin  ->  (
( card `  A )  =  ( card `  1o ) 
<->  A  ~~  1o ) )
4237, 41syl5bbr 274 . . . 4  |-  ( A  e.  Fin  ->  (
( card `  A )  =  1o  <->  A  ~~  1o ) )
4334, 42orbi12d 746 . . 3  |-  ( A  e.  Fin  ->  (
( ( card `  A
)  =  (/)  \/  ( card `  A )  =  1o )  <->  ( A  =  (/)  \/  A  ~~  1o ) ) )
4422, 32, 433bitr3d 298 . 2  |-  ( A  e.  Fin  ->  ( A  ~<  2o  <->  ( A  =  (/)  \/  A  ~~  1o ) ) )
458, 16, 44pm5.21nii 368 1  |-  ( A 
~<  2o  <->  ( A  =  (/)  \/  A  ~~  1o ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990    i^i cin 3573   (/)c0 3915   {cpr 4179   class class class wbr 4653   dom cdm 5114   Oncon0 5723   ` cfv 5888   omcom 7065   1oc1o 7553   2oc2o 7554    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954   Fincfn 7955   cardccrd 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765
This theorem is referenced by:  fin56  9215  en2top  20789
  Copyright terms: Public domain W3C validator