HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Visualization version   GIF version

Theorem hhssnv 28121
Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssnv.2 𝐻S
Assertion
Ref Expression
hhssnv 𝑊 ∈ NrmCVec

Proof of Theorem hhssnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5 𝐻S
21hhssabloi 28119 . . . 4 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
3 ablogrpo 27401 . . . 4 (( + ↾ (𝐻 × 𝐻)) ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp)
42, 3ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
51shssii 28070 . . . . . 6 𝐻 ⊆ ℋ
6 xpss12 5225 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
75, 5, 6mp2an 708 . . . . 5 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
8 ax-hfvadd 27857 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
98fdmi 6052 . . . . 5 dom + = ( ℋ × ℋ)
107, 9sseqtr4i 3638 . . . 4 (𝐻 × 𝐻) ⊆ dom +
11 ssdmres 5420 . . . 4 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
1210, 11mpbi 220 . . 3 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
134, 12grporn 27375 . 2 𝐻 = ran ( + ↾ (𝐻 × 𝐻))
14 sh0 28073 . . . . . 6 (𝐻S → 0𝐻)
151, 14ax-mp 5 . . . . 5 0𝐻
16 ovres 6800 . . . . 5 ((0𝐻 ∧ 0𝐻) → (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0))
1715, 15, 16mp2an 708 . . . 4 (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0)
18 ax-hv0cl 27860 . . . . 5 0 ∈ ℋ
1918hvaddid2i 27886 . . . 4 (0 + 0) = 0
2017, 19eqtri 2644 . . 3 (0( + ↾ (𝐻 × 𝐻))0) = 0
21 eqid 2622 . . . . 5 (GId‘( + ↾ (𝐻 × 𝐻))) = (GId‘( + ↾ (𝐻 × 𝐻)))
2213, 21grpoid 27374 . . . 4 ((( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ 0𝐻) → (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0))
234, 15, 22mp2an 708 . . 3 (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0)
2420, 23mpbir 221 . 2 0 = (GId‘( + ↾ (𝐻 × 𝐻)))
25 ax-hfvmul 27862 . . . . . 6 · :(ℂ × ℋ)⟶ ℋ
26 ffn 6045 . . . . . 6 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
2725, 26ax-mp 5 . . . . 5 · Fn (ℂ × ℋ)
28 ssid 3624 . . . . . 6 ℂ ⊆ ℂ
29 xpss12 5225 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ) → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
3028, 5, 29mp2an 708 . . . . 5 (ℂ × 𝐻) ⊆ (ℂ × ℋ)
31 fnssres 6004 . . . . 5 (( · Fn (ℂ × ℋ) ∧ (ℂ × 𝐻) ⊆ (ℂ × ℋ)) → ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻))
3227, 30, 31mp2an 708 . . . 4 ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻)
33 ovelrn 6810 . . . . . . 7 (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) → (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦)))
3432, 33ax-mp 5 . . . . . 6 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦))
35 ovres 6800 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) = (𝑥 · 𝑦))
36 shmulcl 28075 . . . . . . . . . 10 ((𝐻S𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
371, 36mp3an1 1411 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3835, 37eqeltrd 2701 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻)
39 eleq1 2689 . . . . . . . 8 (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → (𝑧𝐻 ↔ (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻))
4038, 39syl5ibrcom 237 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻))
4140rexlimivv 3036 . . . . . 6 (∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻)
4234, 41sylbi 207 . . . . 5 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) → 𝑧𝐻)
4342ssriv 3607 . . . 4 ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻
44 df-f 5892 . . . 4 (( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻 ↔ (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) ∧ ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻))
4532, 43, 44mpbir2an 955 . . 3 ( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻
46 ax-1cn 9994 . . . . 5 1 ∈ ℂ
47 ovres 6800 . . . . 5 ((1 ∈ ℂ ∧ 𝑥𝐻) → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
4846, 47mpan 706 . . . 4 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
491sheli 28071 . . . . 5 (𝑥𝐻𝑥 ∈ ℋ)
50 ax-hvmulid 27863 . . . . 5 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
5149, 50syl 17 . . . 4 (𝑥𝐻 → (1 · 𝑥) = 𝑥)
5248, 51eqtrd 2656 . . 3 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = 𝑥)
53 id 22 . . . . 5 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
541sheli 28071 . . . . 5 (𝑧𝐻𝑧 ∈ ℋ)
55 ax-hvdistr1 27865 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
5653, 49, 54, 55syl3an 1368 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
57 ovres 6800 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
58573adant1 1079 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
5958oveq2d 6666 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)))
60 shaddcl 28074 . . . . . . . 8 ((𝐻S𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
611, 60mp3an1 1411 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
62 ovres 6800 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑧) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6361, 62sylan2 491 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑥𝐻𝑧𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
64633impb 1260 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6559, 64eqtrd 2656 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦 · (𝑥 + 𝑧)))
66 ovres 6800 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
67663adant3 1081 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
68 ovres 6800 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
69683adant2 1080 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
7067, 69oveq12d 6668 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)))
71 shmulcl 28075 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
721, 71mp3an1 1411 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
73723adant3 1081 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
74 shmulcl 28075 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
751, 74mp3an1 1411 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
76753adant2 1080 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
7773, 76ovresd 6801 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7870, 77eqtrd 2656 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7956, 65, 783eqtr4d 2666 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)))
80 ax-hvdistr2 27866 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8149, 80syl3an3 1361 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
82 addcl 10018 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ)
83 ovres 6800 . . . . 5 (((𝑦 + 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
8482, 83stoic3 1701 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
85663adant2 1080 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
86 ovres 6800 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
87863adant1 1079 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
8885, 87oveq12d 6668 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)))
89723adant2 1080 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
90 shmulcl 28075 . . . . . . . 8 ((𝐻S𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
911, 90mp3an1 1411 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
92913adant1 1079 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
9389, 92ovresd 6801 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9488, 93eqtrd 2656 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9581, 84, 943eqtr4d 2666 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
96 ax-hvmulass 27864 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9749, 96syl3an3 1361 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
98 mulcl 10020 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ)
99 ovres 6800 . . . . 5 (((𝑦 · 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10098, 99stoic3 1701 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10187oveq2d 6666 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)))
102 ovres 6800 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑧 · 𝑥) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10391, 102sylan2 491 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑥𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
1041033impb 1260 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
105101, 104eqtrd 2656 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10697, 100, 1053eqtr4d 2666 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
107 eqid 2622 . . 3 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1082, 12, 45, 52, 79, 95, 106, 107isvciOLD 27435 . 2 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ CVecOLD
109 normf 27980 . . 3 norm: ℋ⟶ℝ
110 fssres 6070 . . 3 ((norm: ℋ⟶ℝ ∧ 𝐻 ⊆ ℋ) → (norm𝐻):𝐻⟶ℝ)
111109, 5, 110mp2an 708 . 2 (norm𝐻):𝐻⟶ℝ
112 fvres 6207 . . . . 5 (𝑥𝐻 → ((norm𝐻)‘𝑥) = (norm𝑥))
113112eqeq1d 2624 . . . 4 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ (norm𝑥) = 0))
114 norm-i 27986 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
11549, 114syl 17 . . . 4 (𝑥𝐻 → ((norm𝑥) = 0 ↔ 𝑥 = 0))
116113, 115bitrd 268 . . 3 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ 𝑥 = 0))
117116biimpa 501 . 2 ((𝑥𝐻 ∧ ((norm𝐻)‘𝑥) = 0) → 𝑥 = 0)
118 norm-iii 27997 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
11949, 118sylan2 491 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
12066fveq2d 6195 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((norm𝐻)‘(𝑦 · 𝑥)))
121 fvres 6207 . . . . 5 ((𝑦 · 𝑥) ∈ 𝐻 → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
12272, 121syl 17 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
123120, 122eqtrd 2656 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = (norm‘(𝑦 · 𝑥)))
124112adantl 482 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘𝑥) = (norm𝑥))
125124oveq2d 6666 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((abs‘𝑦) · ((norm𝐻)‘𝑥)) = ((abs‘𝑦) · (norm𝑥)))
126119, 123, 1253eqtr4d 2666 . 2 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((abs‘𝑦) · ((norm𝐻)‘𝑥)))
1271sheli 28071 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
128 norm-ii 27995 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
12949, 127, 128syl2an 494 . . 3 ((𝑥𝐻𝑦𝐻) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
130 ovres 6800 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
131130fveq2d 6195 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = ((norm𝐻)‘(𝑥 + 𝑦)))
132 shaddcl 28074 . . . . . 6 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
1331, 132mp3an1 1411 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
134 fvres 6207 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐻 → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
135133, 134syl 17 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
136131, 135eqtrd 2656 . . 3 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = (norm‘(𝑥 + 𝑦)))
137 fvres 6207 . . . 4 (𝑦𝐻 → ((norm𝐻)‘𝑦) = (norm𝑦))
138112, 137oveqan12d 6669 . . 3 ((𝑥𝐻𝑦𝐻) → (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)) = ((norm𝑥) + (norm𝑦)))
139129, 136, 1383brtr4d 4685 . 2 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) ≤ (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)))
140 hhssnvt.1 . 2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
14113, 24, 108, 111, 117, 126, 139, 140isnvi 27468 1 𝑊 ∈ NrmCVec
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wrex 2913  wss 3574  cop 4183   class class class wbr 4653   × cxp 5112  dom cdm 5114  ran crn 5115  cres 5116   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936  1c1 9937   + caddc 9939   · cmul 9941  cle 10075  abscabs 13974  GrpOpcgr 27343  GIdcgi 27344  AbelOpcablo 27398  NrmCVeccnv 27439  chil 27776   + cva 27777   · csm 27778  normcno 27780  0c0v 27781   S csh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-sh 28064
This theorem is referenced by:  hhssnvt  28122  hhssvsf  28130  hhssims  28132  hhssmet  28134  hhssmetdval  28135  hhssbn  28137
  Copyright terms: Public domain W3C validator