HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssabloilem Structured version   Visualization version   GIF version

Theorem hhssabloilem 28118
Description: Lemma for hhssabloi 28119. Formerly part of proof for hhssabloi 28119 which was based on the deprecated definition "SubGrpOp" for subgroups. (Contributed by NM, 9-Apr-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (Revised by AV, 27-Aug-2021.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhssabl.1 𝐻S
Assertion
Ref Expression
hhssabloilem ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )

Proof of Theorem hhssabloilem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hilablo 28017 . . 3 + ∈ AbelOp
2 ablogrpo 27401 . . 3 ( + ∈ AbelOp → + ∈ GrpOp)
31, 2ax-mp 5 . 2 + ∈ GrpOp
4 hhssabl.1 . . . 4 𝐻S
54elexi 3213 . . 3 𝐻 ∈ V
6 eqid 2622 . . . . . . . 8 ran + = ran +
76grpofo 27353 . . . . . . 7 ( + ∈ GrpOp → + :(ran + × ran + )–onto→ran + )
8 fof 6115 . . . . . . 7 ( + :(ran + × ran + )–onto→ran + → + :(ran + × ran + )⟶ran + )
93, 7, 8mp2b 10 . . . . . 6 + :(ran + × ran + )⟶ran +
104shssii 28070 . . . . . . . 8 𝐻 ⊆ ℋ
11 df-hba 27826 . . . . . . . . 9 ℋ = (BaseSet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2622 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1312hhva 28023 . . . . . . . . 9 + = ( +𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
1411, 13bafval 27459 . . . . . . . 8 ℋ = ran +
1510, 14sseqtri 3637 . . . . . . 7 𝐻 ⊆ ran +
16 xpss12 5225 . . . . . . 7 ((𝐻 ⊆ ran +𝐻 ⊆ ran + ) → (𝐻 × 𝐻) ⊆ (ran + × ran + ))
1715, 15, 16mp2an 708 . . . . . 6 (𝐻 × 𝐻) ⊆ (ran + × ran + )
18 fssres 6070 . . . . . 6 (( + :(ran + × ran + )⟶ran + ∧ (𝐻 × 𝐻) ⊆ (ran + × ran + )) → ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + )
199, 17, 18mp2an 708 . . . . 5 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran +
20 ffn 6045 . . . . 5 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶ran + → ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻))
2119, 20ax-mp 5 . . . 4 ( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻)
22 ovres 6800 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
23 shaddcl 28074 . . . . . . 7 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
244, 23mp3an1 1411 . . . . . 6 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
2522, 24eqeltrd 2701 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻)
2625rgen2a 2977 . . . 4 𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻
27 ffnov 6764 . . . 4 (( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 ↔ (( + ↾ (𝐻 × 𝐻)) Fn (𝐻 × 𝐻) ∧ ∀𝑥𝐻𝑦𝐻 (𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻))
2821, 26, 27mpbir2an 955 . . 3 ( + ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
2922oveq1d 6665 . . . . 5 ((𝑥𝐻𝑦𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
30293adant3 1081 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧) = ((𝑥 + 𝑦) + 𝑧))
31 ovres 6800 . . . . 5 (((𝑥( + ↾ (𝐻 × 𝐻))𝑦) ∈ 𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
3225, 31stoic3 1701 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = ((𝑥( + ↾ (𝐻 × 𝐻))𝑦) + 𝑧))
33 ovres 6800 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) = (𝑦 + 𝑧))
3433oveq2d 6666 . . . . . 6 ((𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
35343adant1 1079 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦 + 𝑧)))
3628fovcl 6765 . . . . . . 7 ((𝑦𝐻𝑧𝐻) → (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻)
37 ovres 6800 . . . . . . 7 ((𝑥𝐻 ∧ (𝑦( + ↾ (𝐻 × 𝐻))𝑧) ∈ 𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
3836, 37sylan2 491 . . . . . 6 ((𝑥𝐻 ∧ (𝑦𝐻𝑧𝐻)) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
39383impb 1260 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑥 + (𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
4015sseli 3599 . . . . . 6 (𝑥𝐻𝑥 ∈ ran + )
4115sseli 3599 . . . . . 6 (𝑦𝐻𝑦 ∈ ran + )
4215sseli 3599 . . . . . 6 (𝑧𝐻𝑧 ∈ ran + )
436grpoass 27357 . . . . . . 7 (( + ∈ GrpOp ∧ (𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + )) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
443, 43mpan 706 . . . . . 6 ((𝑥 ∈ ran +𝑦 ∈ ran +𝑧 ∈ ran + ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4540, 41, 42, 44syl3an 1368 . . . . 5 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
4635, 39, 453eqtr4d 2666 . . . 4 ((𝑥𝐻𝑦𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑥 + 𝑦) + 𝑧))
4730, 32, 463eqtr4d 2666 . . 3 ((𝑥𝐻𝑦𝐻𝑧𝐻) → ((𝑥( + ↾ (𝐻 × 𝐻))𝑦)( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥( + ↾ (𝐻 × 𝐻))(𝑦( + ↾ (𝐻 × 𝐻))𝑧)))
48 hilid 28018 . . . 4 (GId‘ + ) = 0
49 sh0 28073 . . . . 5 (𝐻S → 0𝐻)
504, 49ax-mp 5 . . . 4 0𝐻
5148, 50eqeltri 2697 . . 3 (GId‘ + ) ∈ 𝐻
52 ovres 6800 . . . . 5 (((GId‘ + ) ∈ 𝐻𝑥𝐻) → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
5351, 52mpan 706 . . . 4 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = ((GId‘ + ) + 𝑥))
54 eqid 2622 . . . . . 6 (GId‘ + ) = (GId‘ + )
556, 54grpolid 27370 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → ((GId‘ + ) + 𝑥) = 𝑥)
563, 40, 55sylancr 695 . . . 4 (𝑥𝐻 → ((GId‘ + ) + 𝑥) = 𝑥)
5753, 56eqtrd 2656 . . 3 (𝑥𝐻 → ((GId‘ + )( + ↾ (𝐻 × 𝐻))𝑥) = 𝑥)
5812hhnv 28022 . . . . . . 7 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
5912hhsm 28026 . . . . . . . 8 · = ( ·𝑠OLD ‘⟨⟨ + , · ⟩, norm⟩)
60 eqid 2622 . . . . . . . 8 ( ·(2nd ↾ ({-1} × V))) = ( ·(2nd ↾ ({-1} × V)))
6113, 59, 60nvinvfval 27495 . . . . . . 7 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → ( ·(2nd ↾ ({-1} × V))) = (inv‘ + ))
6258, 61ax-mp 5 . . . . . 6 ( ·(2nd ↾ ({-1} × V))) = (inv‘ + )
6362eqcomi 2631 . . . . 5 (inv‘ + ) = ( ·(2nd ↾ ({-1} × V)))
6463fveq1i 6192 . . . 4 ((inv‘ + )‘𝑥) = (( ·(2nd ↾ ({-1} × V)))‘𝑥)
65 ax-hfvmul 27862 . . . . . . 7 · :(ℂ × ℋ)⟶ ℋ
66 ffn 6045 . . . . . . 7 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
6765, 66ax-mp 5 . . . . . 6 · Fn (ℂ × ℋ)
68 neg1cn 11124 . . . . . 6 -1 ∈ ℂ
6960curry1val 7270 . . . . . 6 (( · Fn (ℂ × ℋ) ∧ -1 ∈ ℂ) → (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥))
7067, 68, 69mp2an 708 . . . . 5 (( ·(2nd ↾ ({-1} × V)))‘𝑥) = (-1 · 𝑥)
71 shmulcl 28075 . . . . . 6 ((𝐻S ∧ -1 ∈ ℂ ∧ 𝑥𝐻) → (-1 · 𝑥) ∈ 𝐻)
724, 68, 71mp3an12 1414 . . . . 5 (𝑥𝐻 → (-1 · 𝑥) ∈ 𝐻)
7370, 72syl5eqel 2705 . . . 4 (𝑥𝐻 → (( ·(2nd ↾ ({-1} × V)))‘𝑥) ∈ 𝐻)
7464, 73syl5eqel 2705 . . 3 (𝑥𝐻 → ((inv‘ + )‘𝑥) ∈ 𝐻)
75 ovres 6800 . . . . 5 ((((inv‘ + )‘𝑥) ∈ 𝐻𝑥𝐻) → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
7674, 75mpancom 703 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (((inv‘ + )‘𝑥) + 𝑥))
77 eqid 2622 . . . . . 6 (inv‘ + ) = (inv‘ + )
786, 54, 77grpolinv 27380 . . . . 5 (( + ∈ GrpOp ∧ 𝑥 ∈ ran + ) → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
793, 40, 78sylancr 695 . . . 4 (𝑥𝐻 → (((inv‘ + )‘𝑥) + 𝑥) = (GId‘ + ))
8076, 79eqtrd 2656 . . 3 (𝑥𝐻 → (((inv‘ + )‘𝑥)( + ↾ (𝐻 × 𝐻))𝑥) = (GId‘ + ))
815, 28, 47, 51, 57, 74, 80isgrpoi 27352 . 2 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
82 resss 5422 . 2 ( + ↾ (𝐻 × 𝐻)) ⊆ +
833, 81, 823pm3.2i 1239 1 ( + ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ ( + ↾ (𝐻 × 𝐻)) ⊆ + )
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  wss 3574  {csn 4177  cop 4183   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  2nd c2nd 7167  cc 9934  1c1 9937  -cneg 10267  GrpOpcgr 27343  GIdcgi 27344  invcgn 27345  AbelOpcablo 27398  NrmCVeccnv 27439  chil 27776   + cva 27777   · csm 27778  normcno 27780  0c0v 27781   S csh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-grpo 27347  df-gid 27348  df-ginv 27349  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-nmcv 27455  df-hnorm 27825  df-hba 27826  df-hvsub 27828  df-sh 28064
This theorem is referenced by:  hhssabloi  28119
  Copyright terms: Public domain W3C validator