HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  shscli Structured version   Visualization version   GIF version

Theorem shscli 28176
Description: Closure of subspace sum. (Contributed by NM, 15-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
shscl.1 𝐴S
shscl.2 𝐵S
Assertion
Ref Expression
shscli (𝐴 + 𝐵) ∈ S

Proof of Theorem shscli
Dummy variables 𝑥 𝑓 𝑦 𝑧 𝑤 𝑔 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 shscl.1 . . . 4 𝐴S
2 shscl.2 . . . 4 𝐵S
3 shsss 28172 . . . 4 ((𝐴S𝐵S ) → (𝐴 + 𝐵) ⊆ ℋ)
41, 2, 3mp2an 708 . . 3 (𝐴 + 𝐵) ⊆ ℋ
5 sh0 28073 . . . . . 6 (𝐴S → 0𝐴)
61, 5ax-mp 5 . . . . 5 0𝐴
7 sh0 28073 . . . . . 6 (𝐵S → 0𝐵)
82, 7ax-mp 5 . . . . 5 0𝐵
9 ax-hv0cl 27860 . . . . . . 7 0 ∈ ℋ
109hvaddid2i 27886 . . . . . 6 (0 + 0) = 0
1110eqcomi 2631 . . . . 5 0 = (0 + 0)
12 rspceov 6692 . . . . 5 ((0𝐴 ∧ 0𝐵 ∧ 0 = (0 + 0)) → ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
136, 8, 11, 12mp3an 1424 . . . 4 𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦)
141, 2shseli 28175 . . . 4 (0 ∈ (𝐴 + 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 0 = (𝑥 + 𝑦))
1513, 14mpbir 221 . . 3 0 ∈ (𝐴 + 𝐵)
164, 15pm3.2i 471 . 2 ((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵))
171, 2shseli 28175 . . . . . 6 (𝑥 ∈ (𝐴 + 𝐵) ↔ ∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤))
181, 2shseli 28175 . . . . . 6 (𝑦 ∈ (𝐴 + 𝐵) ↔ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢))
19 shaddcl 28074 . . . . . . . . . . . . . . . 16 ((𝐴S𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
201, 19mp3an1 1411 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑣𝐴) → (𝑧 + 𝑣) ∈ 𝐴)
2120ad2ant2r 783 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑧 + 𝑣) ∈ 𝐴)
2221ad2ant2r 783 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑧 + 𝑣) ∈ 𝐴)
23 shaddcl 28074 . . . . . . . . . . . . . . . 16 ((𝐵S𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
242, 23mp3an1 1411 . . . . . . . . . . . . . . 15 ((𝑤𝐵𝑢𝐵) → (𝑤 + 𝑢) ∈ 𝐵)
2524ad2ant2l 782 . . . . . . . . . . . . . 14 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → (𝑤 + 𝑢) ∈ 𝐵)
2625ad2ant2r 783 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑤 + 𝑢) ∈ 𝐵)
27 oveq12 6659 . . . . . . . . . . . . . . 15 ((𝑥 = (𝑧 + 𝑤) ∧ 𝑦 = (𝑣 + 𝑢)) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
2827ad2ant2l 782 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
291sheli 28071 . . . . . . . . . . . . . . . . . 18 (𝑧𝐴𝑧 ∈ ℋ)
301sheli 28071 . . . . . . . . . . . . . . . . . 18 (𝑣𝐴𝑣 ∈ ℋ)
3129, 30anim12i 590 . . . . . . . . . . . . . . . . 17 ((𝑧𝐴𝑣𝐴) → (𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ))
322sheli 28071 . . . . . . . . . . . . . . . . . 18 (𝑤𝐵𝑤 ∈ ℋ)
332sheli 28071 . . . . . . . . . . . . . . . . . 18 (𝑢𝐵𝑢 ∈ ℋ)
3432, 33anim12i 590 . . . . . . . . . . . . . . . . 17 ((𝑤𝐵𝑢𝐵) → (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ))
35 hvadd4 27893 . . . . . . . . . . . . . . . . 17 (((𝑧 ∈ ℋ ∧ 𝑣 ∈ ℋ) ∧ (𝑤 ∈ ℋ ∧ 𝑢 ∈ ℋ)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3631, 34, 35syl2an 494 . . . . . . . . . . . . . . . 16 (((𝑧𝐴𝑣𝐴) ∧ (𝑤𝐵𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3736an4s 869 . . . . . . . . . . . . . . 15 (((𝑧𝐴𝑤𝐵) ∧ (𝑣𝐴𝑢𝐵)) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3837ad2ant2r 783 . . . . . . . . . . . . . 14 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ((𝑧 + 𝑣) + (𝑤 + 𝑢)) = ((𝑧 + 𝑤) + (𝑣 + 𝑢)))
3928, 38eqtr4d 2659 . . . . . . . . . . . . 13 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢)))
40 rspceov 6692 . . . . . . . . . . . . 13 (((𝑧 + 𝑣) ∈ 𝐴 ∧ (𝑤 + 𝑢) ∈ 𝐵 ∧ (𝑥 + 𝑦) = ((𝑧 + 𝑣) + (𝑤 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4122, 26, 39, 40syl3anc 1326 . . . . . . . . . . . 12 ((((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤)) ∧ ((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4241ancoms 469 . . . . . . . . . . 11 ((((𝑣𝐴𝑢𝐵) ∧ 𝑦 = (𝑣 + 𝑢)) ∧ ((𝑧𝐴𝑤𝐵) ∧ 𝑥 = (𝑧 + 𝑤))) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4342exp43 640 . . . . . . . . . 10 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))))
4443rexlimivv 3036 . . . . . . . . 9 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4544com3l 89 . . . . . . . 8 ((𝑧𝐴𝑤𝐵) → (𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))))
4645rexlimivv 3036 . . . . . . 7 (∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) → (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔)))
4746imp 445 . . . . . 6 ((∃𝑧𝐴𝑤𝐵 𝑥 = (𝑧 + 𝑤) ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
4817, 18, 47syl2anb 496 . . . . 5 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
491, 2shseli 28175 . . . . 5 ((𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 + 𝑦) = (𝑓 + 𝑔))
5048, 49sylibr 224 . . . 4 ((𝑥 ∈ (𝐴 + 𝐵) ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 + 𝑦) ∈ (𝐴 + 𝐵))
5150rgen2a 2977 . . 3 𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵)
52 shmulcl 28075 . . . . . . . . . . . . . 14 ((𝐴S𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
531, 52mp3an1 1411 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ 𝑣𝐴) → (𝑥 · 𝑣) ∈ 𝐴)
5453adantrr 753 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑣) ∈ 𝐴)
55 shmulcl 28075 . . . . . . . . . . . . . . 15 ((𝐵S𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
562, 55mp3an1 1411 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ 𝑢𝐵) → (𝑥 · 𝑢) ∈ 𝐵)
5756adantrr 753 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) → (𝑥 · 𝑢) ∈ 𝐵)
5857adantrl 752 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑢) ∈ 𝐵)
59 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑦 = (𝑣 + 𝑢) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6059adantl 482 . . . . . . . . . . . . . 14 ((𝑢𝐵𝑦 = (𝑣 + 𝑢)) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
6160ad2antll 765 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = (𝑥 · (𝑣 + 𝑢)))
62 id 22 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
63 ax-hvdistr1 27865 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℂ ∧ 𝑣 ∈ ℋ ∧ 𝑢 ∈ ℋ) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6462, 30, 33, 63syl3an 1368 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℂ ∧ 𝑣𝐴𝑢𝐵) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
65643expb 1266 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℂ ∧ (𝑣𝐴𝑢𝐵)) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6665adantrrr 761 . . . . . . . . . . . . 13 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · (𝑣 + 𝑢)) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
6761, 66eqtrd 2656 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢)))
68 rspceov 6692 . . . . . . . . . . . 12 (((𝑥 · 𝑣) ∈ 𝐴 ∧ (𝑥 · 𝑢) ∈ 𝐵 ∧ (𝑥 · 𝑦) = ((𝑥 · 𝑣) + (𝑥 · 𝑢))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
6954, 58, 67, 68syl3anc 1326 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢)))) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7069ancoms 469 . . . . . . . . . 10 (((𝑣𝐴 ∧ (𝑢𝐵𝑦 = (𝑣 + 𝑢))) ∧ 𝑥 ∈ ℂ) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7170exp42 639 . . . . . . . . 9 (𝑣𝐴 → (𝑢𝐵 → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))))
7271imp 445 . . . . . . . 8 ((𝑣𝐴𝑢𝐵) → (𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))))
7372rexlimivv 3036 . . . . . . 7 (∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢) → (𝑥 ∈ ℂ → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔)))
7473impcom 446 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑣𝐴𝑢𝐵 𝑦 = (𝑣 + 𝑢)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7518, 74sylan2b 492 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
761, 2shseli 28175 . . . . 5 ((𝑥 · 𝑦) ∈ (𝐴 + 𝐵) ↔ ∃𝑓𝐴𝑔𝐵 (𝑥 · 𝑦) = (𝑓 + 𝑔))
7775, 76sylibr 224 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ (𝐴 + 𝐵)) → (𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
7877rgen2 2975 . . 3 𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵)
7951, 78pm3.2i 471 . 2 (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))
80 issh2 28066 . 2 ((𝐴 + 𝐵) ∈ S ↔ (((𝐴 + 𝐵) ⊆ ℋ ∧ 0 ∈ (𝐴 + 𝐵)) ∧ (∀𝑥 ∈ (𝐴 + 𝐵)∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 + 𝑦) ∈ (𝐴 + 𝐵) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ (𝐴 + 𝐵)(𝑥 · 𝑦) ∈ (𝐴 + 𝐵))))
8116, 79, 80mpbir2an 955 1 (𝐴 + 𝐵) ∈ S
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  wss 3574  (class class class)co 6650  cc 9934  chil 27776   + cva 27777   · csm 27778  0c0v 27781   S csh 27785   + cph 27788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-neg 10269  df-grpo 27347  df-ablo 27399  df-hvsub 27828  df-sh 28064  df-shs 28167
This theorem is referenced by:  shscl  28177  shsval2i  28246  shjshsi  28351  spanuni  28403  5oalem1  28513  5oalem3  28515  5oalem5  28517  5oalem6  28518  5oai  28520  3oalem2  28522  3oalem6  28526  mayete3i  28587  sumdmdlem  29277
  Copyright terms: Public domain W3C validator