HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  spanuni Structured version   Visualization version   GIF version

Theorem spanuni 28403
Description: The span of a union is the subspace sum of spans. (Contributed by NM, 2-Jun-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
spanun.1 𝐴 ⊆ ℋ
spanun.2 𝐵 ⊆ ℋ
Assertion
Ref Expression
spanuni (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))

Proof of Theorem spanuni
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 spanun.1 . . . . . . 7 𝐴 ⊆ ℋ
2 spancl 28195 . . . . . . 7 (𝐴 ⊆ ℋ → (span‘𝐴) ∈ S )
31, 2ax-mp 5 . . . . . 6 (span‘𝐴) ∈ S
4 spanun.2 . . . . . . 7 𝐵 ⊆ ℋ
5 spancl 28195 . . . . . . 7 (𝐵 ⊆ ℋ → (span‘𝐵) ∈ S )
64, 5ax-mp 5 . . . . . 6 (span‘𝐵) ∈ S
73, 6shscli 28176 . . . . 5 ((span‘𝐴) + (span‘𝐵)) ∈ S
87shssii 28070 . . . 4 ((span‘𝐴) + (span‘𝐵)) ⊆ ℋ
9 spanss2 28204 . . . . . . 7 (𝐴 ⊆ ℋ → 𝐴 ⊆ (span‘𝐴))
101, 9ax-mp 5 . . . . . 6 𝐴 ⊆ (span‘𝐴)
11 spanss2 28204 . . . . . . 7 (𝐵 ⊆ ℋ → 𝐵 ⊆ (span‘𝐵))
124, 11ax-mp 5 . . . . . 6 𝐵 ⊆ (span‘𝐵)
13 unss12 3785 . . . . . 6 ((𝐴 ⊆ (span‘𝐴) ∧ 𝐵 ⊆ (span‘𝐵)) → (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵)))
1410, 12, 13mp2an 708 . . . . 5 (𝐴𝐵) ⊆ ((span‘𝐴) ∪ (span‘𝐵))
153, 6shunssi 28227 . . . . 5 ((span‘𝐴) ∪ (span‘𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
1614, 15sstri 3612 . . . 4 (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))
17 spanss 28207 . . . 4 ((((span‘𝐴) + (span‘𝐵)) ⊆ ℋ ∧ (𝐴𝐵) ⊆ ((span‘𝐴) + (span‘𝐵))) → (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵))))
188, 16, 17mp2an 708 . . 3 (span‘(𝐴𝐵)) ⊆ (span‘((span‘𝐴) + (span‘𝐵)))
19 spanid 28206 . . . 4 (((span‘𝐴) + (span‘𝐵)) ∈ S → (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵)))
207, 19ax-mp 5 . . 3 (span‘((span‘𝐴) + (span‘𝐵))) = ((span‘𝐴) + (span‘𝐵))
2118, 20sseqtri 3637 . 2 (span‘(𝐴𝐵)) ⊆ ((span‘𝐴) + (span‘𝐵))
223, 6shseli 28175 . . . . 5 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤))
23 r2ex 3061 . . . . 5 (∃𝑧 ∈ (span‘𝐴)∃𝑤 ∈ (span‘𝐵)𝑥 = (𝑧 + 𝑤) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
2422, 23bitri 264 . . . 4 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) ↔ ∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)))
25 vex 3203 . . . . . . . . . . 11 𝑧 ∈ V
2625elspani 28402 . . . . . . . . . 10 (𝐴 ⊆ ℋ → (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦)))
271, 26ax-mp 5 . . . . . . . . 9 (𝑧 ∈ (span‘𝐴) ↔ ∀𝑦S (𝐴𝑦𝑧𝑦))
28 vex 3203 . . . . . . . . . . 11 𝑤 ∈ V
2928elspani 28402 . . . . . . . . . 10 (𝐵 ⊆ ℋ → (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦)))
304, 29ax-mp 5 . . . . . . . . 9 (𝑤 ∈ (span‘𝐵) ↔ ∀𝑦S (𝐵𝑦𝑤𝑦))
3127, 30anbi12i 733 . . . . . . . 8 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
32 r19.26 3064 . . . . . . . 8 (∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ↔ (∀𝑦S (𝐴𝑦𝑧𝑦) ∧ ∀𝑦S (𝐵𝑦𝑤𝑦)))
3331, 32bitr4i 267 . . . . . . 7 ((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ↔ ∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)))
34 r19.27v 3070 . . . . . . 7 ((∀𝑦S ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
3533, 34sylanb 489 . . . . . 6 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)))
36 unss 3787 . . . . . . . . . . . 12 ((𝐴𝑦𝐵𝑦) ↔ (𝐴𝐵) ⊆ 𝑦)
37 prth 595 . . . . . . . . . . . 12 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝑦𝐵𝑦) → (𝑧𝑦𝑤𝑦)))
3836, 37syl5bir 233 . . . . . . . . . . 11 (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧𝑦𝑤𝑦)))
39 shaddcl 28074 . . . . . . . . . . . 12 ((𝑦S𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦)
40393expib 1268 . . . . . . . . . . 11 (𝑦S → ((𝑧𝑦𝑤𝑦) → (𝑧 + 𝑤) ∈ 𝑦))
4138, 40sylan9r 690 . . . . . . . . . 10 ((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) → ((𝐴𝐵) ⊆ 𝑦 → (𝑧 + 𝑤) ∈ 𝑦))
42 eleq1 2689 . . . . . . . . . . 11 (𝑥 = (𝑧 + 𝑤) → (𝑥𝑦 ↔ (𝑧 + 𝑤) ∈ 𝑦))
4342biimprd 238 . . . . . . . . . 10 (𝑥 = (𝑧 + 𝑤) → ((𝑧 + 𝑤) ∈ 𝑦𝑥𝑦))
4441, 43sylan9 689 . . . . . . . . 9 (((𝑦S ∧ ((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦))) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
4544expl 648 . . . . . . . 8 (𝑦S → ((((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
4645ralimia 2950 . . . . . . 7 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
471, 4unssi 3788 . . . . . . . 8 (𝐴𝐵) ⊆ ℋ
48 vex 3203 . . . . . . . . 9 𝑥 ∈ V
4948elspani 28402 . . . . . . . 8 ((𝐴𝐵) ⊆ ℋ → (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦)))
5047, 49ax-mp 5 . . . . . . 7 (𝑥 ∈ (span‘(𝐴𝐵)) ↔ ∀𝑦S ((𝐴𝐵) ⊆ 𝑦𝑥𝑦))
5146, 50sylibr 224 . . . . . 6 (∀𝑦S (((𝐴𝑦𝑧𝑦) ∧ (𝐵𝑦𝑤𝑦)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5235, 51syl 17 . . . . 5 (((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5352exlimivv 1860 . . . 4 (∃𝑧𝑤((𝑧 ∈ (span‘𝐴) ∧ 𝑤 ∈ (span‘𝐵)) ∧ 𝑥 = (𝑧 + 𝑤)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5424, 53sylbi 207 . . 3 (𝑥 ∈ ((span‘𝐴) + (span‘𝐵)) → 𝑥 ∈ (span‘(𝐴𝐵)))
5554ssriv 3607 . 2 ((span‘𝐴) + (span‘𝐵)) ⊆ (span‘(𝐴𝐵))
5621, 55eqssi 3619 1 (span‘(𝐴𝐵)) = ((span‘𝐴) + (span‘𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wex 1704  wcel 1990  wral 2912  wrex 2913  cun 3572  wss 3574  cfv 5888  (class class class)co 6650  chil 27776   + cva 27777   S csh 27785   + cph 27788  spancspn 27789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016  ax-hilex 27856  ax-hfvadd 27857  ax-hvcom 27858  ax-hvass 27859  ax-hv0cl 27860  ax-hvaddid 27861  ax-hfvmul 27862  ax-hvmulid 27863  ax-hvmulass 27864  ax-hvdistr1 27865  ax-hvdistr2 27866  ax-hvmul0 27867  ax-hfi 27936  ax-his1 27939  ax-his2 27940  ax-his3 27941  ax-his4 27942
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-lm 21033  df-haus 21119  df-grpo 27347  df-gid 27348  df-ginv 27349  df-gdiv 27350  df-ablo 27399  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-0v 27453  df-vs 27454  df-nmcv 27455  df-ims 27456  df-hnorm 27825  df-hvsub 27828  df-hlim 27829  df-sh 28064  df-ch 28078  df-ch0 28110  df-shs 28167  df-span 28168
This theorem is referenced by:  spanun  28404  spanunsni  28438  spansnji  28505
  Copyright terms: Public domain W3C validator