MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  shftdm Structured version   Visualization version   GIF version

Theorem shftdm 13811
Description: Domain of a relation shifted by 𝐴. The set on the right is more commonly notated as (dom 𝐹 + 𝐴) (meaning add 𝐴 to every element of dom 𝐹). (Contributed by Mario Carneiro, 3-Nov-2013.)
Hypothesis
Ref Expression
shftfval.1 𝐹 ∈ V
Assertion
Ref Expression
shftdm (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem shftdm
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 shftfval.1 . . . 4 𝐹 ∈ V
21shftfval 13810 . . 3 (𝐴 ∈ ℂ → (𝐹 shift 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
32dmeqd 5326 . 2 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)})
4 19.42v 1918 . . . . 5 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
5 ovex 6678 . . . . . . 7 (𝑥𝐴) ∈ V
65eldm 5321 . . . . . 6 ((𝑥𝐴) ∈ dom 𝐹 ↔ ∃𝑦(𝑥𝐴)𝐹𝑦)
76anbi2i 730 . . . . 5 ((𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹) ↔ (𝑥 ∈ ℂ ∧ ∃𝑦(𝑥𝐴)𝐹𝑦))
84, 7bitr4i 267 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦) ↔ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹))
98abbii 2739 . . 3 {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
10 dmopab 5335 . . 3 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∣ ∃𝑦(𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)}
11 df-rab 2921 . . 3 {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹} = {𝑥 ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴) ∈ dom 𝐹)}
129, 10, 113eqtr4i 2654 . 2 dom {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ ℂ ∧ (𝑥𝐴)𝐹𝑦)} = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹}
133, 12syl6eq 2672 1 (𝐴 ∈ ℂ → dom (𝐹 shift 𝐴) = {𝑥 ∈ ℂ ∣ (𝑥𝐴) ∈ dom 𝐹})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  {crab 2916  Vcvv 3200   class class class wbr 4653  {copab 4712  dom cdm 5114  (class class class)co 6650  cc 9934  cmin 10266   shift cshi 13806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079  df-sub 10268  df-shft 13807
This theorem is referenced by:  shftfn  13813
  Copyright terms: Public domain W3C validator