![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp-5r | Structured version Visualization version GIF version |
Description: Simplification of a conjunction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
simp-5r | ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp-4r 807 | . 2 ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜓) | |
2 | 1 | adantr 481 | 1 ⊢ ((((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: simp-6r 811 catcocl 16346 catass 16347 monpropd 16397 subccocl 16505 funcco 16531 funcpropd 16560 mhmmnd 17537 pm2mpmhmlem2 20624 neitr 20984 restutopopn 22042 ustuqtop4 22048 utopreg 22056 cfilucfil 22364 psmetutop 22372 dyadmax 23366 tgifscgr 25403 tgcgrxfr 25413 tgbtwnconn1lem3 25469 tgbtwnconn1 25470 legov 25480 legtrd 25484 legso 25494 miriso 25565 perpneq 25609 footex 25613 colperpex 25625 opphllem 25627 midex 25629 opphl 25646 lnopp2hpgb 25655 trgcopyeu 25698 dfcgra2 25721 inaghl 25731 f1otrg 25751 clwlksfclwwlk 26962 2sqmo 29649 omndmul2 29712 psgnfzto1stlem 29850 qtophaus 29903 locfinreflem 29907 cmpcref 29917 pstmxmet 29940 lmxrge0 29998 esumcst 30125 omssubadd 30362 signstfvneq0 30649 afsval 30749 matunitlindflem1 33405 heicant 33444 sstotbnd2 33573 eldioph2b 37326 diophren 37377 pell1234qrdich 37425 iunconnlem2 39171 limcrecl 39861 limclner 39883 icccncfext 40100 ioodvbdlimc1lem2 40147 ioodvbdlimc2lem 40149 stoweidlem60 40277 fourierdlem51 40374 fourierdlem77 40400 fourierdlem103 40426 fourierdlem104 40427 smfaddlem1 40971 smfmullem3 41000 |
Copyright terms: Public domain | W3C validator |