MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  midex Structured version   Visualization version   GIF version

Theorem midex 25629
Description: Existence of the midpoint, part Theorem 8.22 of [Schwabhauser] p. 64. Note that this proof requires a construction in 2 dimensions or more, i.e. it does not prove the existence of a midpoint in dimension 1, for a geometry restricted to a line. (Contributed by Thierry Arnoux, 25-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
mideu.s 𝑆 = (pInvG‘𝐺)
mideu.1 (𝜑𝐴𝑃)
mideu.2 (𝜑𝐵𝑃)
mideu.3 (𝜑𝐺DimTarskiG≥2)
Assertion
Ref Expression
midex (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Distinct variable groups:   𝑥,   𝑥,𝐴   𝑥,𝐵   𝑥,𝐺   𝑥,𝐼   𝑥,𝐿   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥

Proof of Theorem midex
Dummy variables 𝑝 𝑞 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mideu.1 . . . 4 (𝜑𝐴𝑃)
21adantr 481 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
3 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
4 colperpex.d . . . . 5 = (dist‘𝐺)
5 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
6 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
7 mideu.s . . . . 5 𝑆 = (pInvG‘𝐺)
8 colperpex.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
98adantr 481 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
10 eqid 2622 . . . . 5 (𝑆𝐴) = (𝑆𝐴)
113, 4, 5, 6, 7, 9, 2, 10mircinv 25563 . . . 4 ((𝜑𝐴 = 𝐵) → ((𝑆𝐴)‘𝐴) = 𝐴)
12 simpr 477 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
1311, 12eqtr2d 2657 . . 3 ((𝜑𝐴 = 𝐵) → 𝐵 = ((𝑆𝐴)‘𝐴))
14 fveq2 6191 . . . . . 6 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
1514fveq1d 6193 . . . . 5 (𝑥 = 𝐴 → ((𝑆𝑥)‘𝐴) = ((𝑆𝐴)‘𝐴))
1615eqeq2d 2632 . . . 4 (𝑥 = 𝐴 → (𝐵 = ((𝑆𝑥)‘𝐴) ↔ 𝐵 = ((𝑆𝐴)‘𝐴)))
1716rspcev 3309 . . 3 ((𝐴𝑃𝐵 = ((𝑆𝐴)‘𝐴)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
182, 13, 17syl2anc 693 . 2 ((𝜑𝐴 = 𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
198adantr 481 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
2019ad2antrr 762 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺 ∈ TarskiG)
2120ad4antr 768 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐺 ∈ TarskiG)
221adantr 481 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴𝑃)
2322ad2antrr 762 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝑃)
2423ad4antr 768 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝑃)
25 mideu.2 . . . . . . . . 9 (𝜑𝐵𝑃)
2625adantr 481 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐵𝑃)
2726ad2antrr 762 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐵𝑃)
2827ad4antr 768 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑃)
29 simpr 477 . . . . . . . 8 ((𝜑𝐴𝐵) → 𝐴𝐵)
3029ad2antrr 762 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐴𝐵)
3130ad4antr 768 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐴𝐵)
32 simplr 792 . . . . . . 7 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝑞𝑃)
3332ad4antr 768 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑞𝑃)
34 simp-4r 807 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑝𝑃)
35 simpllr 799 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡𝑃)
36 simp-5r 809 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
376, 21, 36perpln1 25605 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
383, 5, 6, 21, 24, 28, 31tgelrnln 25525 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵) ∈ ran 𝐿)
393, 4, 5, 6, 21, 37, 38, 36perpcom 25608 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝑞))
403, 5, 6, 21, 28, 33, 37tglnne 25523 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝐵𝑞)
413, 5, 6, 21, 28, 33, 40tglinecom 25530 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐵𝐿𝑞) = (𝑞𝐿𝐵))
4239, 41breqtrd 4679 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝑞𝐿𝐵))
43 simplr 792 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
4443simpld 475 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
456, 21, 44perpln1 25605 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
463, 4, 5, 6, 21, 45, 38, 44perpcom 25608 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐴𝐿𝑝))
4731neneqd 2799 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ¬ 𝐴 = 𝐵)
4843simprd 479 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
4948simpld 475 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
5049orcomd 403 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
5150ord 392 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
5247, 51mpd 15 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝐴𝐿𝐵))
5348simprd 479 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → 𝑡 ∈ (𝑞𝐼𝑝))
54 simpr 477 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞))
553, 4, 5, 6, 21, 7, 24, 28, 31, 33, 34, 35, 42, 46, 52, 53, 54mideulem 25628 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
5620ad4antr 768 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐺 ∈ TarskiG)
5756adantr 481 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐺 ∈ TarskiG)
58 simprl 794 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝑥𝑃)
59 eqid 2622 . . . . . . . 8 (𝑆𝑥) = (𝑆𝑥)
6027ad4antr 768 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝑃)
6160adantr 481 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵𝑃)
62 simprr 796 . . . . . . . . 9 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐴 = ((𝑆𝑥)‘𝐵))
6362eqcomd 2628 . . . . . . . 8 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐵) = 𝐴)
643, 4, 5, 6, 7, 57, 58, 59, 61, 63mircom 25558 . . . . . . 7 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → ((𝑆𝑥)‘𝐴) = 𝐵)
6564eqcomd 2628 . . . . . 6 (((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) ∧ (𝑥𝑃𝐴 = ((𝑆𝑥)‘𝐵))) → 𝐵 = ((𝑆𝑥)‘𝐴))
6623ad4antr 768 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑃)
6730ad4antr 768 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝐵)
6867necomd 2849 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐵𝐴)
69 simp-4r 807 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑝𝑃)
7032ad4antr 768 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑞𝑃)
71 simpllr 799 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡𝑃)
72 simplr 792 . . . . . . . . . . . . . 14 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
7372simpld 475 . . . . . . . . . . . . 13 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵))
746, 56, 73perpln1 25605 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) ∈ ran 𝐿)
753, 5, 6, 56, 66, 69, 74tglnne 25523 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝐴𝑝)
763, 5, 6, 56, 66, 69, 75tglinecom 25530 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝑝) = (𝑝𝐿𝐴))
7776eqcomd 2628 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) = (𝐴𝐿𝑝))
7877, 74eqeltrd 2701 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴) ∈ ran 𝐿)
793, 5, 6, 56, 60, 66, 68tgelrnln 25525 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴) ∈ ran 𝐿)
803, 5, 6, 56, 66, 60, 67tglinecom 25530 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
8173, 76, 803brtr3d 4684 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑝𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝐴))
823, 4, 5, 6, 56, 78, 79, 81perpcom 25608 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝑝𝐿𝐴))
83 simp-5r 809 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
846, 56, 83perpln1 25605 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞) ∈ ran 𝐿)
8583, 80breqtrd 4679 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
863, 4, 5, 6, 56, 84, 79, 85perpcom 25608 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵𝐿𝐴)(⟂G‘𝐺)(𝐵𝐿𝑞))
8767neneqd 2799 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ¬ 𝐴 = 𝐵)
8872simprd 479 . . . . . . . . . . . 12 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))
8988simpld 475 . . . . . . . . . . 11 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵))
9089orcomd 403 . . . . . . . . . 10 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
9190ord 392 . . . . . . . . 9 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (¬ 𝐴 = 𝐵𝑡 ∈ (𝐴𝐿𝐵)))
9287, 91mpd 15 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐴𝐿𝐵))
9392, 80eleqtrd 2703 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝐵𝐿𝐴))
9488simprd 479 . . . . . . . 8 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑞𝐼𝑝))
953, 4, 5, 56, 70, 71, 69, 94tgbtwncom 25383 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → 𝑡 ∈ (𝑝𝐼𝑞))
96 simpr 477 . . . . . . 7 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝))
973, 4, 5, 6, 56, 7, 60, 66, 68, 69, 70, 71, 82, 86, 93, 95, 96mideulem 25628 . . . . . 6 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐴 = ((𝑆𝑥)‘𝐵))
9865, 97reximddv 3018 . . . . 5 ((((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) ∧ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
99 eqid 2622 . . . . . 6 (≤G‘𝐺) = (≤G‘𝐺)
10020ad3antrrr 766 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐺 ∈ TarskiG)
10123ad3antrrr 766 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐴𝑃)
102 simpllr 799 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑝𝑃)
10327ad3antrrr 766 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝐵𝑃)
10432ad3antrrr 766 . . . . . 6 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → 𝑞𝑃)
1053, 4, 5, 99, 100, 101, 102, 103, 104legtrid 25486 . . . . 5 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ((𝐴 𝑝)(≤G‘𝐺)(𝐵 𝑞) ∨ (𝐵 𝑞)(≤G‘𝐺)(𝐴 𝑝)))
10655, 98, 105mpjaodan 827 . . . 4 (((((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) ∧ 𝑝𝑃) ∧ 𝑡𝑃) ∧ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝)))) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
107 mideu.3 . . . . . . . 8 (𝜑𝐺DimTarskiG≥2)
108107adantr 481 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐺DimTarskiG≥2)
109108ad2antrr 762 . . . . . 6 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → 𝐺DimTarskiG≥2)
1103, 4, 5, 6, 20, 23, 27, 32, 30, 109colperpex 25625 . . . . 5 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
111 r19.42v 3092 . . . . . 6 (∃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
112111rexbii 3041 . . . . 5 (∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))) ↔ ∃𝑝𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ∃𝑡𝑃 ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
113110, 112sylibr 224 . . . 4 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑝𝑃𝑡𝑃 ((𝐴𝐿𝑝)(⟂G‘𝐺)(𝐴𝐿𝐵) ∧ ((𝑡 ∈ (𝐴𝐿𝐵) ∨ 𝐴 = 𝐵) ∧ 𝑡 ∈ (𝑞𝐼𝑝))))
114106, 113r19.29vva 3081 . . 3 ((((𝜑𝐴𝐵) ∧ 𝑞𝑃) ∧ (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
11529necomd 2849 . . . . 5 ((𝜑𝐴𝐵) → 𝐵𝐴)
1163, 4, 5, 6, 19, 26, 22, 22, 115, 108colperpex 25625 . . . 4 ((𝜑𝐴𝐵) → ∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))))
117 simprl 794 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴))
1183, 5, 6, 19, 22, 26, 29tglinecom 25530 . . . . . . . 8 ((𝜑𝐴𝐵) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
119118adantr 481 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐴𝐿𝐵) = (𝐵𝐿𝐴))
120117, 119breqtrrd 4681 . . . . . 6 (((𝜑𝐴𝐵) ∧ ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞)))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
121120ex 450 . . . . 5 ((𝜑𝐴𝐵) → (((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
122121reximdv 3016 . . . 4 ((𝜑𝐴𝐵) → (∃𝑞𝑃 ((𝐵𝐿𝑞)(⟂G‘𝐺)(𝐵𝐿𝐴) ∧ ∃𝑠𝑃 ((𝑠 ∈ (𝐵𝐿𝐴) ∨ 𝐵 = 𝐴) ∧ 𝑠 ∈ (𝐴𝐼𝑞))) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵)))
123116, 122mpd 15 . . 3 ((𝜑𝐴𝐵) → ∃𝑞𝑃 (𝐵𝐿𝑞)(⟂G‘𝐺)(𝐴𝐿𝐵))
124114, 123r19.29a 3078 . 2 ((𝜑𝐴𝐵) → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
12518, 124pm2.61dane 2881 1 (𝜑 → ∃𝑥𝑃 𝐵 = ((𝑆𝑥)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wrex 2913   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  2c2 11070  Basecbs 15857  distcds 15950  TarskiGcstrkg 25329  DimTarskiGcstrkgld 25333  Itvcitv 25335  LineGclng 25336  ≤Gcleg 25477  pInvGcmir 25547  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkgld 25351  df-trkg 25352  df-cgrg 25406  df-leg 25478  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  mideu  25630  opphllem5  25643  opphl  25646
  Copyright terms: Public domain W3C validator