MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psmetutop Structured version   Visualization version   GIF version

Theorem psmetutop 22372
Description: The topology induced by a uniform structure generated by a metric 𝐷 is generated by that metric's open balls. (Contributed by Thierry Arnoux, 6-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
psmetutop ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))

Proof of Theorem psmetutop
Dummy variables 𝑎 𝑏 𝑑 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metuust 22365 . . . . . . . . . . . 12 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) ∈ (UnifOn‘𝑋))
2 utopval 22036 . . . . . . . . . . . 12 ((metUnif‘𝐷) ∈ (UnifOn‘𝑋) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
31, 2syl 17 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎})
43eleq2d 2687 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎}))
5 rabid 3116 . . . . . . . . . 10 (𝑎 ∈ {𝑎 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎} ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
64, 5syl6bb 276 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)))
76biimpa 501 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
87simpld 475 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
98elpwid 4170 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎𝑋)
10 unirnblps 22224 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
1110ad2antlr 763 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ran (ball‘𝐷) = 𝑋)
129, 11sseqtr4d 3642 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ran (ball‘𝐷))
13 simpr 477 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → (𝑣 “ {𝑥}) ⊆ 𝑎)
14 simp-5r 809 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝐷 ∈ (PsMet‘𝑋))
15 simplr 792 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑣 ∈ (metUnif‘𝐷))
169ad3antrrr 766 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑎𝑋)
17 simpllr 799 . . . . . . . . . 10 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑎)
1816, 17sseldd 3604 . . . . . . . . 9 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑥𝑋)
19 metustbl 22371 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑣 ∈ (metUnif‘𝐷) ∧ 𝑥𝑋) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
2014, 15, 18, 19syl3anc 1326 . . . . . . . 8 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})))
21 sstr 3611 . . . . . . . . . . 11 ((𝑏 ⊆ (𝑣 “ {𝑥}) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → 𝑏𝑎)
2221expcom 451 . . . . . . . . . 10 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (𝑏 ⊆ (𝑣 “ {𝑥}) → 𝑏𝑎))
2322anim2d 589 . . . . . . . . 9 ((𝑣 “ {𝑥}) ⊆ 𝑎 → ((𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → (𝑥𝑏𝑏𝑎)))
2423reximdv 3016 . . . . . . . 8 ((𝑣 “ {𝑥}) ⊆ 𝑎 → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏 ⊆ (𝑣 “ {𝑥})) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
2513, 20, 24sylc 65 . . . . . . 7 ((((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) ∧ 𝑣 ∈ (metUnif‘𝐷)) ∧ (𝑣 “ {𝑥}) ⊆ 𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
267simprd 479 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2726r19.21bi 2932 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
2825, 27r19.29a 3078 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
2928ralrimiva 2966 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
3012, 29jca 554 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
31 fvex 6201 . . . . . 6 (ball‘𝐷) ∈ V
3231rnex 7100 . . . . 5 ran (ball‘𝐷) ∈ V
33 eltg2 20762 . . . . 5 (ran (ball‘𝐷) ∈ V → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3432, 33mp1i 13 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3530, 34mpbird 247 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (unifTop‘(metUnif‘𝐷))) → 𝑎 ∈ (topGen‘ran (ball‘𝐷)))
3632, 33mp1i 13 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (topGen‘ran (ball‘𝐷)) ↔ (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))))
3736biimpa 501 . . . . . . . 8 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ran (ball‘𝐷) ∧ ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎)))
3837simpld 475 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ran (ball‘𝐷))
3910ad2antlr 763 . . . . . . 7 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ran (ball‘𝐷) = 𝑋)
4038, 39sseqtrd 3641 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎𝑋)
41 elpwg 4166 . . . . . . 7 (𝑎 ∈ (topGen‘ran (ball‘𝐷)) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4241adantl 482 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋𝑎𝑋))
4340, 42mpbird 247 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ 𝒫 𝑋)
44 simpllr 799 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝐷 ∈ (PsMet‘𝑋))
4540sselda 3603 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → 𝑥𝑋)
4637simprd 479 . . . . . . . . . . 11 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
4746r19.21bi 2932 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎))
48 blssexps 22231 . . . . . . . . . . 11 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
4944, 45, 48syl2anc 693 . . . . . . . . . 10 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑏 ∈ ran (ball‘𝐷)(𝑥𝑏𝑏𝑎) ↔ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎))
5047, 49mpbid 222 . . . . . . . . 9 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎)
51 blval2 22367 . . . . . . . . . . . . 13 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
52513expa 1265 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → (𝑥(ball‘𝐷)𝑑) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
5352sseq1d 3632 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ 𝑑 ∈ ℝ+) → ((𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5453rexbidva 3049 . . . . . . . . . 10 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) → (∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
5554biimpa 501 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑥𝑋) ∧ ∃𝑑 ∈ ℝ+ (𝑥(ball‘𝐷)𝑑) ⊆ 𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
5644, 45, 50, 55syl21anc 1325 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎)
57 cnvexg 7112 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → 𝐷 ∈ V)
58 imaexg 7103 . . . . . . . . . . 11 (𝐷 ∈ V → (𝐷 “ (0[,)𝑑)) ∈ V)
5957, 58syl 17 . . . . . . . . . 10 (𝐷 ∈ (PsMet‘𝑋) → (𝐷 “ (0[,)𝑑)) ∈ V)
6059ralrimivw 2967 . . . . . . . . 9 (𝐷 ∈ (PsMet‘𝑋) → ∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V)
61 eqid 2622 . . . . . . . . . 10 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))
62 imaeq1 5461 . . . . . . . . . . 11 (𝑣 = (𝐷 “ (0[,)𝑑)) → (𝑣 “ {𝑥}) = ((𝐷 “ (0[,)𝑑)) “ {𝑥}))
6362sseq1d 3632 . . . . . . . . . 10 (𝑣 = (𝐷 “ (0[,)𝑑)) → ((𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6461, 63rexrnmpt 6369 . . . . . . . . 9 (∀𝑑 ∈ ℝ+ (𝐷 “ (0[,)𝑑)) ∈ V → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6544, 60, 643syl 18 . . . . . . . 8 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 ↔ ∃𝑑 ∈ ℝ+ ((𝐷 “ (0[,)𝑑)) “ {𝑥}) ⊆ 𝑎))
6656, 65mpbird 247 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎)
67 oveq2 6658 . . . . . . . . . . . . . . 15 (𝑑 = 𝑒 → (0[,)𝑑) = (0[,)𝑒))
6867imaeq2d 5466 . . . . . . . . . . . . . 14 (𝑑 = 𝑒 → (𝐷 “ (0[,)𝑑)) = (𝐷 “ (0[,)𝑒)))
6968cbvmptv 4750 . . . . . . . . . . . . 13 (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7069rneqi 5352 . . . . . . . . . . . 12 ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) = ran (𝑒 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑒)))
7170metustfbas 22362 . . . . . . . . . . 11 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)))
72 ssfg 21676 . . . . . . . . . . 11 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ∈ (fBas‘(𝑋 × 𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7371, 72syl 17 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
74 metuval 22354 . . . . . . . . . . 11 (𝐷 ∈ (PsMet‘𝑋) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7574adantl 482 . . . . . . . . . 10 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (metUnif‘𝐷) = ((𝑋 × 𝑋)filGenran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))))
7673, 75sseqtr4d 3642 . . . . . . . . 9 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷))
77 ssrexv 3667 . . . . . . . . 9 (ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑))) ⊆ (metUnif‘𝐷) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7876, 77syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
7978ad2antrr 762 . . . . . . 7 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → (∃𝑣 ∈ ran (𝑑 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑑)))(𝑣 “ {𝑥}) ⊆ 𝑎 → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
8066, 79mpd 15 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) ∧ 𝑥𝑎) → ∃𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8180ralrimiva 2966 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)
8243, 81jca 554 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎))
836biimpar 502 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ (𝑎 ∈ 𝒫 𝑋 ∧ ∀𝑥𝑎𝑣 ∈ (metUnif‘𝐷)(𝑣 “ {𝑥}) ⊆ 𝑎)) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8482, 83syldan 487 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑎 ∈ (topGen‘ran (ball‘𝐷))) → 𝑎 ∈ (unifTop‘(metUnif‘𝐷)))
8535, 84impbida 877 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑎 ∈ (unifTop‘(metUnif‘𝐷)) ↔ 𝑎 ∈ (topGen‘ran (ball‘𝐷))))
8685eqrdv 2620 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (unifTop‘(metUnif‘𝐷)) = (topGen‘ran (ball‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cima 5117  cfv 5888  (class class class)co 6650  0cc0 9936  +crp 11832  [,)cico 12177  topGenctg 16098  PsMetcpsmet 19730  ballcbl 19733  fBascfbas 19734  filGencfg 19735  metUnifcmetu 19737  UnifOncust 22003  unifTopcutop 22034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ico 12181  df-topgen 16104  df-psmet 19738  df-bl 19741  df-fbas 19743  df-fg 19744  df-metu 19745  df-fil 21650  df-ust 22004  df-utop 22035
This theorem is referenced by:  xmetutop  22373
  Copyright terms: Public domain W3C validator