Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  slerec Structured version   Visualization version   GIF version

Theorem slerec 31923
Description: A comparison law for surreals considered as cuts of sets of surreals. In Conway's treatment, this is the definition of less than or equal. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
slerec (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑𝐷 𝑋 <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s 𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑑   𝐵,𝑎,𝑑   𝐶,𝑎,𝑑   𝐷,𝑎,𝑑   𝑋,𝑎,𝑑   𝑌,𝑎,𝑑

Proof of Theorem slerec
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scutcut 31912 . . . . . . . . 9 (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵))
21simp1d 1073 . . . . . . . 8 (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No )
32ad3antrrr 766 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → (𝐴 |s 𝐵) ∈ No )
4 scutcut 31912 . . . . . . . . 9 (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷))
54simp1d 1073 . . . . . . . 8 (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No )
65ad3antlr 767 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → (𝐶 |s 𝐷) ∈ No )
7 ssltss2 31904 . . . . . . . . 9 (𝐶 <<s 𝐷𝐷 No )
87ad2antlr 763 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐷 No )
98sselda 3603 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → 𝑑 No )
10 simplr 792 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))
114simp3d 1075 . . . . . . . . . . 11 (𝐶 <<s 𝐷 → {(𝐶 |s 𝐷)} <<s 𝐷)
1211ad2antlr 763 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → {(𝐶 |s 𝐷)} <<s 𝐷)
13 ssltsep 31905 . . . . . . . . . 10 ({(𝐶 |s 𝐷)} <<s 𝐷 → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑𝐷 𝑎 <s 𝑑)
1412, 13syl 17 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑𝐷 𝑎 <s 𝑑)
15 ovex 6678 . . . . . . . . . 10 (𝐶 |s 𝐷) ∈ V
16 breq1 4656 . . . . . . . . . . 11 (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑 ↔ (𝐶 |s 𝐷) <s 𝑑))
1716ralbidv 2986 . . . . . . . . . 10 (𝑎 = (𝐶 |s 𝐷) → (∀𝑑𝐷 𝑎 <s 𝑑 ↔ ∀𝑑𝐷 (𝐶 |s 𝐷) <s 𝑑))
1815, 17ralsn 4222 . . . . . . . . 9 (∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑𝐷 𝑎 <s 𝑑 ↔ ∀𝑑𝐷 (𝐶 |s 𝐷) <s 𝑑)
1914, 18sylib 208 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑𝐷 (𝐶 |s 𝐷) <s 𝑑)
2019r19.21bi 2932 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → (𝐶 |s 𝐷) <s 𝑑)
213, 6, 9, 10, 20slelttrd 31886 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑𝐷) → (𝐴 |s 𝐵) <s 𝑑)
2221ralrimiva 2966 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑)
23 ssltss1 31903 . . . . . . . . . 10 (𝐴 <<s 𝐵𝐴 No )
2423adantr 481 . . . . . . . . 9 ((𝐴 <<s 𝐵𝐶 <<s 𝐷) → 𝐴 No )
2524adantr 481 . . . . . . . 8 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 No )
2625sselda 3603 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → 𝑎 No )
272ad3antrrr 766 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → (𝐴 |s 𝐵) ∈ No )
285ad3antlr 767 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → (𝐶 |s 𝐷) ∈ No )
291simp2d 1074 . . . . . . . . . . . 12 (𝐴 <<s 𝐵𝐴 <<s {(𝐴 |s 𝐵)})
3029adantr 481 . . . . . . . . . . 11 ((𝐴 <<s 𝐵𝐶 <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)})
3130adantr 481 . . . . . . . . . 10 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 <<s {(𝐴 |s 𝐵)})
32 ssltsep 31905 . . . . . . . . . 10 (𝐴 <<s {(𝐴 |s 𝐵)} → ∀𝑎𝐴𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑)
3331, 32syl 17 . . . . . . . . 9 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎𝐴𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑)
3433r19.21bi 2932 . . . . . . . 8 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑)
35 ovex 6678 . . . . . . . . 9 (𝐴 |s 𝐵) ∈ V
36 breq2 4657 . . . . . . . . 9 (𝑑 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑𝑎 <s (𝐴 |s 𝐵)))
3735, 36ralsn 4222 . . . . . . . 8 (∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑𝑎 <s (𝐴 |s 𝐵))
3834, 37sylib 208 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → 𝑎 <s (𝐴 |s 𝐵))
39 simplr 792 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))
4026, 27, 28, 38, 39sltletrd 31885 . . . . . 6 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎𝐴) → 𝑎 <s (𝐶 |s 𝐷))
4140ralrimiva 2966 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))
4222, 41jca 554 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷)))
43 bdayelon 31892 . . . . . . 7 ( bday ‘(𝐴 |s 𝐵)) ∈ On
4443onordi 5832 . . . . . 6 Ord ( bday ‘(𝐴 |s 𝐵))
45 ordn2lp 5743 . . . . . 6 (Ord ( bday ‘(𝐴 |s 𝐵)) → ¬ (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))
4644, 45ax-mp 5 . . . . 5 ¬ (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))
475ad2antlr 763 . . . . . . 7 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No )
482adantr 481 . . . . . . . 8 ((𝐴 <<s 𝐵𝐶 <<s 𝐷) → (𝐴 |s 𝐵) ∈ No )
4948adantr 481 . . . . . . 7 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No )
50 sltnle 31878 . . . . . . 7 (((𝐶 |s 𝐷) ∈ No ∧ (𝐴 |s 𝐵) ∈ No ) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)))
5147, 49, 50syl2anc 693 . . . . . 6 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)))
525ad3antlr 767 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ∈ No )
53 ssltex1 31901 . . . . . . . . . . . 12 (𝐴 <<s 𝐵𝐴 ∈ V)
5453ad3antrrr 766 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 ∈ V)
55 snex 4908 . . . . . . . . . . 11 {(𝐶 |s 𝐷)} ∈ V
5654, 55jctir 561 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V))
5723ad3antrrr 766 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 No )
5852snssd 4340 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} ⊆ No )
59 simplrr 801 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))
60 breq2 4657 . . . . . . . . . . . . . 14 (𝑑 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑𝑎 <s (𝐶 |s 𝐷)))
6115, 60ralsn 4222 . . . . . . . . . . . . 13 (∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑𝑎 <s (𝐶 |s 𝐷))
6261ralbii 2980 . . . . . . . . . . . 12 (∀𝑎𝐴𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑 ↔ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))
6359, 62sylibr 224 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎𝐴𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑)
6457, 58, 633jca 1242 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 No ∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎𝐴𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑))
65 brsslt 31900 . . . . . . . . . 10 (𝐴 <<s {(𝐶 |s 𝐷)} ↔ ((𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V) ∧ (𝐴 No ∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎𝐴𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑)))
6656, 64, 65sylanbrc 698 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 <<s {(𝐶 |s 𝐷)})
67 ssltex2 31902 . . . . . . . . . . . 12 (𝐴 <<s 𝐵𝐵 ∈ V)
6867ad3antrrr 766 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 ∈ V)
6968, 55jctil 560 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V))
70 ssltss2 31904 . . . . . . . . . . . 12 (𝐴 <<s 𝐵𝐵 No )
7170ad3antrrr 766 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 No )
7252adantr 481 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → (𝐶 |s 𝐷) ∈ No )
7348ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → (𝐴 |s 𝐵) ∈ No )
7471sselda 3603 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → 𝑏 No )
75 simplr 792 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))
761simp3d 1075 . . . . . . . . . . . . . . . . . 18 (𝐴 <<s 𝐵 → {(𝐴 |s 𝐵)} <<s 𝐵)
7776ad3antrrr 766 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐵)
78 ssltsep 31905 . . . . . . . . . . . . . . . . 17 ({(𝐴 |s 𝐵)} <<s 𝐵 → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏𝐵 𝑎 <s 𝑏)
7977, 78syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏𝐵 𝑎 <s 𝑏)
80 breq1 4656 . . . . . . . . . . . . . . . . . 18 (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑏 ↔ (𝐴 |s 𝐵) <s 𝑏))
8180ralbidv 2986 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝐴 |s 𝐵) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵 (𝐴 |s 𝐵) <s 𝑏))
8235, 81ralsn 4222 . . . . . . . . . . . . . . . 16 (∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵 (𝐴 |s 𝐵) <s 𝑏)
8379, 82sylib 208 . . . . . . . . . . . . . . 15 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏𝐵 (𝐴 |s 𝐵) <s 𝑏)
8483r19.21bi 2932 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → (𝐴 |s 𝐵) <s 𝑏)
8572, 73, 74, 75, 84slttrd 31884 . . . . . . . . . . . . 13 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏𝐵) → (𝐶 |s 𝐷) <s 𝑏)
8685ralrimiva 2966 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏𝐵 (𝐶 |s 𝐷) <s 𝑏)
87 breq1 4656 . . . . . . . . . . . . . 14 (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑏 ↔ (𝐶 |s 𝐷) <s 𝑏))
8887ralbidv 2986 . . . . . . . . . . . . 13 (𝑎 = (𝐶 |s 𝐷) → (∀𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵 (𝐶 |s 𝐷) <s 𝑏))
8915, 88ralsn 4222 . . . . . . . . . . . 12 (∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏𝐵 𝑎 <s 𝑏 ↔ ∀𝑏𝐵 (𝐶 |s 𝐷) <s 𝑏)
9086, 89sylibr 224 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏𝐵 𝑎 <s 𝑏)
9158, 71, 903jca 1242 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ⊆ No 𝐵 No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏𝐵 𝑎 <s 𝑏))
92 brsslt 31900 . . . . . . . . . 10 ({(𝐶 |s 𝐷)} <<s 𝐵 ↔ (({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V) ∧ ({(𝐶 |s 𝐷)} ⊆ No 𝐵 No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏𝐵 𝑎 <s 𝑏)))
9369, 91, 92sylanbrc 698 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} <<s 𝐵)
94 sltirr 31871 . . . . . . . . . . . . . 14 ((𝐴 |s 𝐵) ∈ No → ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵))
9549, 94syl 17 . . . . . . . . . . . . 13 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵))
96 breq1 4656 . . . . . . . . . . . . . 14 ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ((𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)))
9796notbid 308 . . . . . . . . . . . . 13 ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → (¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)))
9895, 97syl5ibcom 235 . . . . . . . . . . . 12 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)))
9998necon2ad 2809 . . . . . . . . . . 11 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)))
10099imp 445 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷))
101100necomd 2849 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵))
102 scutbdaylt 31922 . . . . . . . . 9 (((𝐶 |s 𝐷) ∈ No ∧ (𝐴 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐵) ∧ (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)))
10352, 66, 93, 101, 102syl121anc 1331 . . . . . . . 8 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)))
1042ad3antrrr 766 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ∈ No )
105 ssltex1 31901 . . . . . . . . . . . 12 (𝐶 <<s 𝐷𝐶 ∈ V)
106105ad3antlr 767 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 ∈ V)
107 snex 4908 . . . . . . . . . . 11 {(𝐴 |s 𝐵)} ∈ V
108106, 107jctir 561 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V))
109 ssltss1 31903 . . . . . . . . . . . 12 (𝐶 <<s 𝐷𝐶 No )
110109ad3antlr 767 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 No )
111104snssd 4340 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} ⊆ No )
112110sselda 3603 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → 𝑐 No )
11352adantr 481 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → (𝐶 |s 𝐷) ∈ No )
11448ad3antrrr 766 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → (𝐴 |s 𝐵) ∈ No )
1154simp2d 1074 . . . . . . . . . . . . . . . . . 18 (𝐶 <<s 𝐷𝐶 <<s {(𝐶 |s 𝐷)})
116115ad3antlr 767 . . . . . . . . . . . . . . . . 17 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐶 |s 𝐷)})
117 ssltsep 31905 . . . . . . . . . . . . . . . . 17 (𝐶 <<s {(𝐶 |s 𝐷)} → ∀𝑐𝐶𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑)
118116, 117syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐𝐶𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑)
119118r19.21bi 2932 . . . . . . . . . . . . . . 15 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑)
120 breq2 4657 . . . . . . . . . . . . . . . 16 (𝑑 = (𝐶 |s 𝐷) → (𝑐 <s 𝑑𝑐 <s (𝐶 |s 𝐷)))
12115, 120ralsn 4222 . . . . . . . . . . . . . . 15 (∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑𝑐 <s (𝐶 |s 𝐷))
122119, 121sylib 208 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → 𝑐 <s (𝐶 |s 𝐷))
123 simplr 792 . . . . . . . . . . . . . 14 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))
124112, 113, 114, 122, 123slttrd 31884 . . . . . . . . . . . . 13 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → 𝑐 <s (𝐴 |s 𝐵))
125 breq2 4657 . . . . . . . . . . . . . 14 (𝑎 = (𝐴 |s 𝐵) → (𝑐 <s 𝑎𝑐 <s (𝐴 |s 𝐵)))
12635, 125ralsn 4222 . . . . . . . . . . . . 13 (∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎𝑐 <s (𝐴 |s 𝐵))
127124, 126sylibr 224 . . . . . . . . . . . 12 (((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐𝐶) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎)
128127ralrimiva 2966 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐𝐶𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎)
129110, 111, 1283jca 1242 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 No ∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐𝐶𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎))
130 brsslt 31900 . . . . . . . . . 10 (𝐶 <<s {(𝐴 |s 𝐵)} ↔ ((𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V) ∧ (𝐶 No ∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐𝐶𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎)))
131108, 129, 130sylanbrc 698 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐴 |s 𝐵)})
132 ssltex2 31902 . . . . . . . . . . . 12 (𝐶 <<s 𝐷𝐷 ∈ V)
133132ad3antlr 767 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 ∈ V)
134133, 107jctil 560 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V))
1357ad3antlr 767 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 No )
136 simplrl 800 . . . . . . . . . . . 12 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑)
137 breq1 4656 . . . . . . . . . . . . . 14 (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑))
138137ralbidv 2986 . . . . . . . . . . . . 13 (𝑎 = (𝐴 |s 𝐵) → (∀𝑑𝐷 𝑎 <s 𝑑 ↔ ∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑))
13935, 138ralsn 4222 . . . . . . . . . . . 12 (∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑𝐷 𝑎 <s 𝑑 ↔ ∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑)
140136, 139sylibr 224 . . . . . . . . . . 11 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑𝐷 𝑎 <s 𝑑)
141111, 135, 1403jca 1242 . . . . . . . . . 10 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ⊆ No 𝐷 No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑𝐷 𝑎 <s 𝑑))
142 brsslt 31900 . . . . . . . . . 10 ({(𝐴 |s 𝐵)} <<s 𝐷 ↔ (({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V) ∧ ({(𝐴 |s 𝐵)} ⊆ No 𝐷 No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑𝐷 𝑎 <s 𝑑)))
143134, 141, 142sylanbrc 698 . . . . . . . . 9 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐷)
144 scutbdaylt 31922 . . . . . . . . 9 (((𝐴 |s 𝐵) ∈ No ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)) → ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))
145104, 131, 143, 100, 144syl121anc 1331 . . . . . . . 8 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))
146103, 145jca 554 . . . . . . 7 ((((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))
147146ex 450 . . . . . 6 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))))
14851, 147sylbird 250 . . . . 5 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → (¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) → (( bday ‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday ‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))))
14946, 148mt3i 141 . . . 4 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))
15042, 149impbida 877 . . 3 ((𝐴 <<s 𝐵𝐶 <<s 𝐷) → ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))))
151 breq12 4658 . . . 4 ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → (𝑋 ≤s 𝑌 ↔ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)))
152 breq1 4656 . . . . . 6 (𝑋 = (𝐴 |s 𝐵) → (𝑋 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑))
153152ralbidv 2986 . . . . 5 (𝑋 = (𝐴 |s 𝐵) → (∀𝑑𝐷 𝑋 <s 𝑑 ↔ ∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑))
154 breq2 4657 . . . . . 6 (𝑌 = (𝐶 |s 𝐷) → (𝑎 <s 𝑌𝑎 <s (𝐶 |s 𝐷)))
155154ralbidv 2986 . . . . 5 (𝑌 = (𝐶 |s 𝐷) → (∀𝑎𝐴 𝑎 <s 𝑌 ↔ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷)))
156153, 155bi2anan9 917 . . . 4 ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((∀𝑑𝐷 𝑋 <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s 𝑌) ↔ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷))))
157151, 156bibi12d 335 . . 3 ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝑋 ≤s 𝑌 ↔ (∀𝑑𝐷 𝑋 <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s 𝑌)) ↔ ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s (𝐶 |s 𝐷)))))
158150, 157syl5ibr 236 . 2 ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝐴 <<s 𝐵𝐶 <<s 𝐷) → (𝑋 ≤s 𝑌 ↔ (∀𝑑𝐷 𝑋 <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s 𝑌))))
159158impcom 446 1 (((𝐴 <<s 𝐵𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑𝐷 𝑋 <s 𝑑 ∧ ∀𝑎𝐴 𝑎 <s 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  wss 3574  {csn 4177   class class class wbr 4653  Ord word 5722  cfv 5888  (class class class)co 6650   No csur 31793   <s cslt 31794   bday cbday 31795   ≤s csle 31869   <<s csslt 31896   |s cscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sle 31870  df-sslt 31897  df-scut 31899
This theorem is referenced by:  sltrec  31924
  Copyright terms: Public domain W3C validator