| Step | Hyp | Ref
| Expression |
| 1 | | scutcut 31912 |
. . . . . . . . 9
⊢ (𝐴 <<s 𝐵 → ((𝐴 |s 𝐵) ∈ No
∧ 𝐴 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐵)) |
| 2 | 1 | simp1d 1073 |
. . . . . . . 8
⊢ (𝐴 <<s 𝐵 → (𝐴 |s 𝐵) ∈ No
) |
| 3 | 2 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) ∈ No
) |
| 4 | | scutcut 31912 |
. . . . . . . . 9
⊢ (𝐶 <<s 𝐷 → ((𝐶 |s 𝐷) ∈ No
∧ 𝐶 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐷)) |
| 5 | 4 | simp1d 1073 |
. . . . . . . 8
⊢ (𝐶 <<s 𝐷 → (𝐶 |s 𝐷) ∈ No
) |
| 6 | 5 | ad3antlr 767 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐶 |s 𝐷) ∈ No
) |
| 7 | | ssltss2 31904 |
. . . . . . . . 9
⊢ (𝐶 <<s 𝐷 → 𝐷 ⊆ No
) |
| 8 | 7 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐷 ⊆ No
) |
| 9 | 8 | sselda 3603 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → 𝑑 ∈ No
) |
| 10 | | simplr 792 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
| 11 | 4 | simp3d 1075 |
. . . . . . . . . . 11
⊢ (𝐶 <<s 𝐷 → {(𝐶 |s 𝐷)} <<s 𝐷) |
| 12 | 11 | ad2antlr 763 |
. . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → {(𝐶 |s 𝐷)} <<s 𝐷) |
| 13 | | ssltsep 31905 |
. . . . . . . . . 10
⊢ ({(𝐶 |s 𝐷)} <<s 𝐷 → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
| 14 | 12, 13 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
| 15 | | ovex 6678 |
. . . . . . . . . 10
⊢ (𝐶 |s 𝐷) ∈ V |
| 16 | | breq1 4656 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑 ↔ (𝐶 |s 𝐷) <s 𝑑)) |
| 17 | 16 | ralbidv 2986 |
. . . . . . . . . 10
⊢ (𝑎 = (𝐶 |s 𝐷) → (∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑)) |
| 18 | 15, 17 | ralsn 4222 |
. . . . . . . . 9
⊢
(∀𝑎 ∈
{(𝐶 |s 𝐷)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑) |
| 19 | 14, 18 | sylib 208 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑 ∈ 𝐷 (𝐶 |s 𝐷) <s 𝑑) |
| 20 | 19 | r19.21bi 2932 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐶 |s 𝐷) <s 𝑑) |
| 21 | 3, 6, 9, 10, 20 | slelttrd 31886 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑑 ∈ 𝐷) → (𝐴 |s 𝐵) <s 𝑑) |
| 22 | 21 | ralrimiva 2966 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
| 23 | | ssltss1 31903 |
. . . . . . . . . 10
⊢ (𝐴 <<s 𝐵 → 𝐴 ⊆ No
) |
| 24 | 23 | adantr 481 |
. . . . . . . . 9
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → 𝐴 ⊆ No
) |
| 25 | 24 | adantr 481 |
. . . . . . . 8
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 ⊆ No
) |
| 26 | 25 | sselda 3603 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 ∈ No
) |
| 27 | 2 | ad3antrrr 766 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐴 |s 𝐵) ∈ No
) |
| 28 | 5 | ad3antlr 767 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐶 |s 𝐷) ∈ No
) |
| 29 | 1 | simp2d 1074 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 30 | 29 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 31 | 30 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → 𝐴 <<s {(𝐴 |s 𝐵)}) |
| 32 | | ssltsep 31905 |
. . . . . . . . . 10
⊢ (𝐴 <<s {(𝐴 |s 𝐵)} → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
| 33 | 31, 32 | syl 17 |
. . . . . . . . 9
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
| 34 | 33 | r19.21bi 2932 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → ∀𝑑 ∈ {(𝐴 |s 𝐵)}𝑎 <s 𝑑) |
| 35 | | ovex 6678 |
. . . . . . . . 9
⊢ (𝐴 |s 𝐵) ∈ V |
| 36 | | breq2 4657 |
. . . . . . . . 9
⊢ (𝑑 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑 ↔ 𝑎 <s (𝐴 |s 𝐵))) |
| 37 | 35, 36 | ralsn 4222 |
. . . . . . . 8
⊢
(∀𝑑 ∈
{(𝐴 |s 𝐵)}𝑎 <s 𝑑 ↔ 𝑎 <s (𝐴 |s 𝐵)) |
| 38 | 34, 37 | sylib 208 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐴 |s 𝐵)) |
| 39 | | simplr 792 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
| 40 | 26, 27, 28, 38, 39 | sltletrd 31885 |
. . . . . 6
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) ∧ 𝑎 ∈ 𝐴) → 𝑎 <s (𝐶 |s 𝐷)) |
| 41 | 40 | ralrimiva 2966 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
| 42 | 22, 41 | jca 554 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) → (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) |
| 43 | | bdayelon 31892 |
. . . . . . 7
⊢ ( bday ‘(𝐴 |s 𝐵)) ∈ On |
| 44 | 43 | onordi 5832 |
. . . . . 6
⊢ Ord
( bday ‘(𝐴 |s 𝐵)) |
| 45 | | ordn2lp 5743 |
. . . . . 6
⊢ (Ord
( bday ‘(𝐴 |s 𝐵)) → ¬ ((
bday ‘(𝐴 |s
𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))) |
| 46 | 44, 45 | ax-mp 5 |
. . . . 5
⊢ ¬
(( bday ‘(𝐴 |s 𝐵)) ∈ ( bday
‘(𝐶 |s 𝐷)) ∧ (
bday ‘(𝐶 |s
𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
| 47 | 5 | ad2antlr 763 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐶 |s 𝐷) ∈ No
) |
| 48 | 2 | adantr 481 |
. . . . . . . 8
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → (𝐴 |s 𝐵) ∈ No
) |
| 49 | 48 | adantr 481 |
. . . . . . 7
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ∈ No
) |
| 50 | | sltnle 31878 |
. . . . . . 7
⊢ (((𝐶 |s 𝐷) ∈ No
∧ (𝐴 |s 𝐵) ∈
No ) → ((𝐶 |s
𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
| 51 | 47, 49, 50 | syl2anc 693 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) ↔ ¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
| 52 | 5 | ad3antlr 767 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ∈ No
) |
| 53 | | ssltex1 31901 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐴 ∈ V) |
| 54 | 53 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 ∈ V) |
| 55 | | snex 4908 |
. . . . . . . . . . 11
⊢ {(𝐶 |s 𝐷)} ∈ V |
| 56 | 54, 55 | jctir 561 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V)) |
| 57 | 23 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 ⊆ No
) |
| 58 | 52 | snssd 4340 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} ⊆ No
) |
| 59 | | simplrr 801 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
| 60 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑑 = (𝐶 |s 𝐷) → (𝑎 <s 𝑑 ↔ 𝑎 <s (𝐶 |s 𝐷))) |
| 61 | 15, 60 | ralsn 4222 |
. . . . . . . . . . . . 13
⊢
(∀𝑑 ∈
{(𝐶 |s 𝐷)}𝑎 <s 𝑑 ↔ 𝑎 <s (𝐶 |s 𝐷)) |
| 62 | 61 | ralbii 2980 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)) |
| 63 | 59, 62 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑) |
| 64 | 57, 58, 63 | 3jca 1242 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 ⊆ No
∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑)) |
| 65 | | brsslt 31900 |
. . . . . . . . . 10
⊢ (𝐴 <<s {(𝐶 |s 𝐷)} ↔ ((𝐴 ∈ V ∧ {(𝐶 |s 𝐷)} ∈ V) ∧ (𝐴 ⊆ No
∧ {(𝐶 |s 𝐷)} ⊆ No ∧ ∀𝑎 ∈ 𝐴 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑎 <s 𝑑))) |
| 66 | 56, 64, 65 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐴 <<s {(𝐶 |s 𝐷)}) |
| 67 | | ssltex2 31902 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐵 ∈ V) |
| 68 | 67 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 ∈ V) |
| 69 | 68, 55 | jctil 560 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V)) |
| 70 | | ssltss2 31904 |
. . . . . . . . . . . 12
⊢ (𝐴 <<s 𝐵 → 𝐵 ⊆ No
) |
| 71 | 70 | ad3antrrr 766 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐵 ⊆ No
) |
| 72 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) ∈ No
) |
| 73 | 48 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) ∈ No
) |
| 74 | 71 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ No
) |
| 75 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) |
| 76 | 1 | simp3d 1075 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐴 <<s 𝐵 → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 77 | 76 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐵) |
| 78 | | ssltsep 31905 |
. . . . . . . . . . . . . . . . 17
⊢ ({(𝐴 |s 𝐵)} <<s 𝐵 → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
| 79 | 77, 78 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
| 80 | | breq1 4656 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑏 ↔ (𝐴 |s 𝐵) <s 𝑏)) |
| 81 | 80 | ralbidv 2986 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 = (𝐴 |s 𝐵) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏)) |
| 82 | 35, 81 | ralsn 4222 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏) |
| 83 | 79, 82 | sylib 208 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏 ∈ 𝐵 (𝐴 |s 𝐵) <s 𝑏) |
| 84 | 83 | r19.21bi 2932 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐴 |s 𝐵) <s 𝑏) |
| 85 | 72, 73, 74, 75, 84 | slttrd 31884 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑏 ∈ 𝐵) → (𝐶 |s 𝐷) <s 𝑏) |
| 86 | 85 | ralrimiva 2966 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏) |
| 87 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐶 |s 𝐷) → (𝑎 <s 𝑏 ↔ (𝐶 |s 𝐷) <s 𝑏)) |
| 88 | 87 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐶 |s 𝐷) → (∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏)) |
| 89 | 15, 88 | ralsn 4222 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
{(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 (𝐶 |s 𝐷) <s 𝑏) |
| 90 | 86, 89 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
| 91 | 58, 71, 90 | 3jca 1242 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐶 |s 𝐷)} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏)) |
| 92 | | brsslt 31900 |
. . . . . . . . . 10
⊢ ({(𝐶 |s 𝐷)} <<s 𝐵 ↔ (({(𝐶 |s 𝐷)} ∈ V ∧ 𝐵 ∈ V) ∧ ({(𝐶 |s 𝐷)} ⊆ No
∧ 𝐵 ⊆ No ∧ ∀𝑎 ∈ {(𝐶 |s 𝐷)}∀𝑏 ∈ 𝐵 𝑎 <s 𝑏))) |
| 93 | 69, 91, 92 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐶 |s 𝐷)} <<s 𝐵) |
| 94 | | sltirr 31871 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 |s 𝐵) ∈ No
→ ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵)) |
| 95 | 49, 94 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵)) |
| 96 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ((𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
| 97 | 96 | notbid 308 |
. . . . . . . . . . . . 13
⊢ ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → (¬ (𝐴 |s 𝐵) <s (𝐴 |s 𝐵) ↔ ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
| 98 | 95, 97 | syl5ibcom 235 |
. . . . . . . . . . . 12
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐴 |s 𝐵) = (𝐶 |s 𝐷) → ¬ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵))) |
| 99 | 98 | necon2ad 2809 |
. . . . . . . . . . 11
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷))) |
| 100 | 99 | imp 445 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)) |
| 101 | 100 | necomd 2849 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵)) |
| 102 | | scutbdaylt 31922 |
. . . . . . . . 9
⊢ (((𝐶 |s 𝐷) ∈ No
∧ (𝐴 <<s {(𝐶 |s 𝐷)} ∧ {(𝐶 |s 𝐷)} <<s 𝐵) ∧ (𝐶 |s 𝐷) ≠ (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷))) |
| 103 | 52, 66, 93, 101, 102 | syl121anc 1331 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷))) |
| 104 | 2 | ad3antrrr 766 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐴 |s 𝐵) ∈ No
) |
| 105 | | ssltex1 31901 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐶 ∈ V) |
| 106 | 105 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 ∈ V) |
| 107 | | snex 4908 |
. . . . . . . . . . 11
⊢ {(𝐴 |s 𝐵)} ∈ V |
| 108 | 106, 107 | jctir 561 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V)) |
| 109 | | ssltss1 31903 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐶 ⊆ No
) |
| 110 | 109 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 ⊆ No
) |
| 111 | 104 | snssd 4340 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} ⊆ No
) |
| 112 | 110 | sselda 3603 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ No
) |
| 113 | 52 | adantr 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐶 |s 𝐷) ∈ No
) |
| 114 | 48 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐴 |s 𝐵) ∈ No
) |
| 115 | 4 | simp2d 1074 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝐶 <<s 𝐷 → 𝐶 <<s {(𝐶 |s 𝐷)}) |
| 116 | 115 | ad3antlr 767 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐶 |s 𝐷)}) |
| 117 | | ssltsep 31905 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 <<s {(𝐶 |s 𝐷)} → ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
| 118 | 116, 117 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐 ∈ 𝐶 ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
| 119 | 118 | r19.21bi 2932 |
. . . . . . . . . . . . . . 15
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → ∀𝑑 ∈ {(𝐶 |s 𝐷)}𝑐 <s 𝑑) |
| 120 | | breq2 4657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑑 = (𝐶 |s 𝐷) → (𝑐 <s 𝑑 ↔ 𝑐 <s (𝐶 |s 𝐷))) |
| 121 | 15, 120 | ralsn 4222 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑑 ∈
{(𝐶 |s 𝐷)}𝑐 <s 𝑑 ↔ 𝑐 <s (𝐶 |s 𝐷)) |
| 122 | 119, 121 | sylib 208 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 <s (𝐶 |s 𝐷)) |
| 123 | | simplr 792 |
. . . . . . . . . . . . . 14
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) |
| 124 | 112, 113,
114, 122, 123 | slttrd 31884 |
. . . . . . . . . . . . 13
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → 𝑐 <s (𝐴 |s 𝐵)) |
| 125 | | breq2 4657 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑐 <s 𝑎 ↔ 𝑐 <s (𝐴 |s 𝐵))) |
| 126 | 35, 125 | ralsn 4222 |
. . . . . . . . . . . . 13
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}𝑐 <s 𝑎 ↔ 𝑐 <s (𝐴 |s 𝐵)) |
| 127 | 124, 126 | sylibr 224 |
. . . . . . . . . . . 12
⊢
(((((𝐴 <<s
𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) ∧ 𝑐 ∈ 𝐶) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎) |
| 128 | 127 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎) |
| 129 | 110, 111,
128 | 3jca 1242 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (𝐶 ⊆ No
∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎)) |
| 130 | | brsslt 31900 |
. . . . . . . . . 10
⊢ (𝐶 <<s {(𝐴 |s 𝐵)} ↔ ((𝐶 ∈ V ∧ {(𝐴 |s 𝐵)} ∈ V) ∧ (𝐶 ⊆ No
∧ {(𝐴 |s 𝐵)} ⊆ No ∧ ∀𝑐 ∈ 𝐶 ∀𝑎 ∈ {(𝐴 |s 𝐵)}𝑐 <s 𝑎))) |
| 131 | 108, 129,
130 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐶 <<s {(𝐴 |s 𝐵)}) |
| 132 | | ssltex2 31902 |
. . . . . . . . . . . 12
⊢ (𝐶 <<s 𝐷 → 𝐷 ∈ V) |
| 133 | 132 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 ∈ V) |
| 134 | 133, 107 | jctil 560 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V)) |
| 135 | 7 | ad3antlr 767 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → 𝐷 ⊆ No
) |
| 136 | | simplrl 800 |
. . . . . . . . . . . 12
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
| 137 | | breq1 4656 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝐴 |s 𝐵) → (𝑎 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑)) |
| 138 | 137 | ralbidv 2986 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝐴 |s 𝐵) → (∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑)) |
| 139 | 35, 138 | ralsn 4222 |
. . . . . . . . . . . 12
⊢
(∀𝑎 ∈
{(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑) |
| 140 | 136, 139 | sylibr 224 |
. . . . . . . . . . 11
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑) |
| 141 | 111, 135,
140 | 3jca 1242 |
. . . . . . . . . 10
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ({(𝐴 |s 𝐵)} ⊆ No
∧ 𝐷 ⊆ No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑)) |
| 142 | | brsslt 31900 |
. . . . . . . . . 10
⊢ ({(𝐴 |s 𝐵)} <<s 𝐷 ↔ (({(𝐴 |s 𝐵)} ∈ V ∧ 𝐷 ∈ V) ∧ ({(𝐴 |s 𝐵)} ⊆ No
∧ 𝐷 ⊆ No ∧ ∀𝑎 ∈ {(𝐴 |s 𝐵)}∀𝑑 ∈ 𝐷 𝑎 <s 𝑑))) |
| 143 | 134, 141,
142 | sylanbrc 698 |
. . . . . . . . 9
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → {(𝐴 |s 𝐵)} <<s 𝐷) |
| 144 | | scutbdaylt 31922 |
. . . . . . . . 9
⊢ (((𝐴 |s 𝐵) ∈ No
∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷) ∧ (𝐴 |s 𝐵) ≠ (𝐶 |s 𝐷)) → ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
| 145 | 104, 131,
143, 100, 144 | syl121anc 1331 |
. . . . . . . 8
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))) |
| 146 | 103, 145 | jca 554 |
. . . . . . 7
⊢ ((((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) ∧ (𝐶 |s 𝐷) <s (𝐴 |s 𝐵)) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵)))) |
| 147 | 146 | ex 450 |
. . . . . 6
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → ((𝐶 |s 𝐷) <s (𝐴 |s 𝐵) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))) |
| 148 | 51, 147 | sylbird 250 |
. . . . 5
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (¬ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) → (( bday
‘(𝐴 |s 𝐵)) ∈ ( bday ‘(𝐶 |s 𝐷)) ∧ ( bday
‘(𝐶 |s 𝐷)) ∈ ( bday ‘(𝐴 |s 𝐵))))) |
| 149 | 46, 148 | mt3i 141 |
. . . 4
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) → (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷)) |
| 150 | 42, 149 | impbida 877 |
. . 3
⊢ ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)))) |
| 151 | | breq12 4658 |
. . . 4
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → (𝑋 ≤s 𝑌 ↔ (𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷))) |
| 152 | | breq1 4656 |
. . . . . 6
⊢ (𝑋 = (𝐴 |s 𝐵) → (𝑋 <s 𝑑 ↔ (𝐴 |s 𝐵) <s 𝑑)) |
| 153 | 152 | ralbidv 2986 |
. . . . 5
⊢ (𝑋 = (𝐴 |s 𝐵) → (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ↔ ∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑)) |
| 154 | | breq2 4657 |
. . . . . 6
⊢ (𝑌 = (𝐶 |s 𝐷) → (𝑎 <s 𝑌 ↔ 𝑎 <s (𝐶 |s 𝐷))) |
| 155 | 154 | ralbidv 2986 |
. . . . 5
⊢ (𝑌 = (𝐶 |s 𝐷) → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑌 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))) |
| 156 | 153, 155 | bi2anan9 917 |
. . . 4
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷)))) |
| 157 | 151, 156 | bibi12d 335 |
. . 3
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌)) ↔ ((𝐴 |s 𝐵) ≤s (𝐶 |s 𝐷) ↔ (∀𝑑 ∈ 𝐷 (𝐴 |s 𝐵) <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s (𝐶 |s 𝐷))))) |
| 158 | 150, 157 | syl5ibr 236 |
. 2
⊢ ((𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷)) → ((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌)))) |
| 159 | 158 | impcom 446 |
1
⊢ (((𝐴 <<s 𝐵 ∧ 𝐶 <<s 𝐷) ∧ (𝑋 = (𝐴 |s 𝐵) ∧ 𝑌 = (𝐶 |s 𝐷))) → (𝑋 ≤s 𝑌 ↔ (∀𝑑 ∈ 𝐷 𝑋 <s 𝑑 ∧ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑌))) |