Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sltrec Structured version   Visualization version   Unicode version

Theorem sltrec 31924
Description: A comparison law for surreals considered as cuts of sets of surreals. (Contributed by Scott Fenton, 11-Dec-2021.)
Assertion
Ref Expression
sltrec  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( X <s Y  <->  ( E. c  e.  C  X ≤s c  \/  E. b  e.  B  b
≤s Y ) ) )
Distinct variable groups:    A, b,
c    B, b, c    C, b, c    D, b, c    X, b, c    Y, b, c

Proof of Theorem sltrec
StepHypRef Expression
1 simplr 792 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  C < <s D )
2 simpll 790 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  A < <s B )
3 simprr 796 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  Y  =  ( C |s D ) )
4 simprl 794 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  X  =  ( A |s B ) )
5 slerec 31923 . . . . 5  |-  ( ( ( C < <s D  /\  A <
<s B )  /\  ( Y  =  ( C |s D )  /\  X  =  ( A |s B ) ) )  ->  ( Y ≤s X  <->  ( A. b  e.  B  Y <s b  /\  A. c  e.  C  c
<s X ) ) )
61, 2, 3, 4, 5syl22anc 1327 . . . 4  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( Y ≤s X  <->  ( A. b  e.  B  Y <s b  /\  A. c  e.  C  c
<s X ) ) )
7 ancom 466 . . . 4  |-  ( ( A. b  e.  B  Y <s b  /\  A. c  e.  C  c <s X )  <-> 
( A. c  e.  C  c <s
X  /\  A. b  e.  B  Y <s b ) )
86, 7syl6bb 276 . . 3  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( Y ≤s X  <->  ( A. c  e.  C  c
<s X  /\  A. b  e.  B  Y <s b ) ) )
9 scutcut 31912 . . . . . . 7  |-  ( C < <s D  ->  ( ( C |s D )  e.  No  /\  C < <s { ( C |s D ) }  /\  {
( C |s D ) } < <s D ) )
109simp1d 1073 . . . . . 6  |-  ( C < <s D  ->  ( C |s D )  e.  No )
1110ad2antlr 763 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( C |s D )  e.  No )
123, 11eqeltrd 2701 . . . 4  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  Y  e.  No )
13 scutcut 31912 . . . . . . 7  |-  ( A < <s B  ->  ( ( A |s B )  e.  No  /\  A < <s { ( A |s B ) }  /\  {
( A |s B ) } < <s B ) )
1413simp1d 1073 . . . . . 6  |-  ( A < <s B  ->  ( A |s B )  e.  No )
1514ad2antrr 762 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( A |s B )  e.  No )
164, 15eqeltrd 2701 . . . 4  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  X  e.  No )
17 slenlt 31877 . . . 4  |-  ( ( Y  e.  No  /\  X  e.  No )  ->  ( Y ≤s
X  <->  -.  X <s Y ) )
1812, 16, 17syl2anc 693 . . 3  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( Y ≤s X  <->  -.  X <s Y ) )
19 ssltss1 31903 . . . . . . . . 9  |-  ( C < <s D  ->  C  C_  No )
2019ad2antlr 763 . . . . . . . 8  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  C  C_  No )
2120sselda 3603 . . . . . . 7  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  c  e.  C )  ->  c  e.  No )
2216adantr 481 . . . . . . 7  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  c  e.  C )  ->  X  e.  No )
23 sltnle 31878 . . . . . . 7  |-  ( ( c  e.  No  /\  X  e.  No )  ->  ( c <s
X  <->  -.  X ≤s c ) )
2421, 22, 23syl2anc 693 . . . . . 6  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  c  e.  C )  ->  (
c <s X  <->  -.  X ≤s c ) )
2524ralbidva 2985 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( A. c  e.  C  c
<s X  <->  A. c  e.  C  -.  X ≤s c ) )
2612adantr 481 . . . . . . 7  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  b  e.  B )  ->  Y  e.  No )
27 ssltss2 31904 . . . . . . . . 9  |-  ( A < <s B  ->  B  C_  No )
2827ad2antrr 762 . . . . . . . 8  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  B  C_  No )
2928sselda 3603 . . . . . . 7  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  b  e.  B )  ->  b  e.  No )
30 sltnle 31878 . . . . . . 7  |-  ( ( Y  e.  No  /\  b  e.  No )  ->  ( Y <s
b  <->  -.  b ≤s Y ) )
3126, 29, 30syl2anc 693 . . . . . 6  |-  ( ( ( ( A <
<s B  /\  C < <s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  /\  b  e.  B )  ->  ( Y <s b  <->  -.  b
≤s Y ) )
3231ralbidva 2985 . . . . 5  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( A. b  e.  B  Y <s b  <->  A. b  e.  B  -.  b
≤s Y ) )
3325, 32anbi12d 747 . . . 4  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( ( A. c  e.  C  c <s X  /\  A. b  e.  B  Y <s b )  <->  ( A. c  e.  C  -.  X ≤s c  /\  A. b  e.  B  -.  b ≤s Y ) ) )
34 ralnex 2992 . . . . . 6  |-  ( A. c  e.  C  -.  X ≤s c  <->  -.  E. c  e.  C  X ≤s c )
35 ralnex 2992 . . . . . 6  |-  ( A. b  e.  B  -.  b ≤s Y  <->  -.  E. b  e.  B  b ≤s Y )
3634, 35anbi12i 733 . . . . 5  |-  ( ( A. c  e.  C  -.  X ≤s c  /\  A. b  e.  B  -.  b ≤s Y )  <->  ( -.  E. c  e.  C  X ≤s c  /\  -.  E. b  e.  B  b ≤s Y ) )
37 ioran 511 . . . . 5  |-  ( -.  ( E. c  e.  C  X ≤s
c  \/  E. b  e.  B  b ≤s Y )  <->  ( -.  E. c  e.  C  X ≤s c  /\  -.  E. b  e.  B  b ≤s Y ) )
3836, 37bitr4i 267 . . . 4  |-  ( ( A. c  e.  C  -.  X ≤s c  /\  A. b  e.  B  -.  b ≤s Y )  <->  -.  ( E. c  e.  C  X ≤s c  \/ 
E. b  e.  B  b ≤s Y ) )
3933, 38syl6bb 276 . . 3  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( ( A. c  e.  C  c <s X  /\  A. b  e.  B  Y <s b )  <->  -.  ( E. c  e.  C  X ≤s c  \/ 
E. b  e.  B  b ≤s Y ) ) )
408, 18, 393bitr3d 298 . 2  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( -.  X <s Y  <->  -.  ( E. c  e.  C  X ≤s c  \/ 
E. b  e.  B  b ≤s Y ) ) )
4140con4bid 307 1  |-  ( ( ( A < <s B  /\  C <
<s D )  /\  ( X  =  ( A |s B )  /\  Y  =  ( C |s D ) ) )  ->  ( X <s Y  <->  ( E. c  e.  C  X ≤s c  \/  E. b  e.  B  b
≤s Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177   class class class wbr 4653  (class class class)co 6650   Nocsur 31793   <scslt 31794   ≤scsle 31869   < <scsslt 31896   |scscut 31898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798  df-sle 31870  df-sslt 31897  df-scut 31899
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator