MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucdom2 Structured version   Visualization version   Unicode version

Theorem sucdom2 8156
Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucdom2  |-  ( A 
~<  B  ->  suc  A  ~<_  B )

Proof of Theorem sucdom2
Dummy variables  w  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 7983 . . 3  |-  ( A 
~<  B  ->  A  ~<_  B )
2 brdomi 7966 . . 3  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
31, 2syl 17 . 2  |-  ( A 
~<  B  ->  E. f 
f : A -1-1-> B
)
4 relsdom 7962 . . . . . . 7  |-  Rel  ~<
54brrelexi 5158 . . . . . 6  |-  ( A 
~<  B  ->  A  e. 
_V )
65adantr 481 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  e.  _V )
7 vex 3203 . . . . . . 7  |-  f  e. 
_V
87rnex 7100 . . . . . 6  |-  ran  f  e.  _V
98a1i 11 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  e.  _V )
10 f1f1orn 6148 . . . . . . 7  |-  ( f : A -1-1-> B  -> 
f : A -1-1-onto-> ran  f
)
1110adantl 482 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-onto-> ran  f )
12 f1of1 6136 . . . . . 6  |-  ( f : A -1-1-onto-> ran  f  ->  f : A -1-1-> ran  f )
1311, 12syl 17 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  f : A -1-1-> ran  f )
14 f1dom2g 7973 . . . . 5  |-  ( ( A  e.  _V  /\  ran  f  e.  _V  /\  f : A -1-1-> ran  f )  ->  A  ~<_  ran  f )
156, 9, 13, 14syl3anc 1326 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  A  ~<_  ran  f
)
16 sdomnen 7984 . . . . . . . 8  |-  ( A 
~<  B  ->  -.  A  ~~  B )
1716adantr 481 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  A  ~~  B )
18 ssdif0 3942 . . . . . . . 8  |-  ( B 
C_  ran  f  <->  ( B  \  ran  f )  =  (/) )
19 simplr 792 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-> B )
20 f1f 6101 . . . . . . . . . . . . . . 15  |-  ( f : A -1-1-> B  -> 
f : A --> B )
21 df-f 5892 . . . . . . . . . . . . . . 15  |-  ( f : A --> B  <->  ( f  Fn  A  /\  ran  f  C_  B ) )
2220, 21sylib 208 . . . . . . . . . . . . . 14  |-  ( f : A -1-1-> B  -> 
( f  Fn  A  /\  ran  f  C_  B
) )
2322simprd 479 . . . . . . . . . . . . 13  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
2419, 23syl 17 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  C_  B )
25 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  B  C_ 
ran  f )
2624, 25eqssd 3620 . . . . . . . . . . 11  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  ran  f  =  B )
27 dff1o5 6146 . . . . . . . . . . 11  |-  ( f : A -1-1-onto-> B  <->  ( f : A -1-1-> B  /\  ran  f  =  B ) )
2819, 26, 27sylanbrc 698 . . . . . . . . . 10  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  f : A -1-1-onto-> B )
29 f1oen3g 7971 . . . . . . . . . 10  |-  ( ( f  e.  _V  /\  f : A -1-1-onto-> B )  ->  A  ~~  B )
307, 28, 29sylancr 695 . . . . . . . . 9  |-  ( ( ( A  ~<  B  /\  f : A -1-1-> B )  /\  B  C_  ran  f )  ->  A  ~~  B )
3130ex 450 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( B  C_  ran  f  ->  A  ~~  B ) )
3218, 31syl5bir 233 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ( B 
\  ran  f )  =  (/)  ->  A  ~~  B ) )
3317, 32mtod 189 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  -.  ( B  \  ran  f )  =  (/) )
34 neq0 3930 . . . . . 6  |-  ( -.  ( B  \  ran  f )  =  (/)  <->  E. w  w  e.  ( B  \  ran  f ) )
3533, 34sylib 208 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  E. w  w  e.  ( B  \  ran  f ) )
36 snssi 4339 . . . . . . 7  |-  ( w  e.  ( B  \  ran  f )  ->  { w }  C_  ( B  \  ran  f ) )
37 vex 3203 . . . . . . . . 9  |-  w  e. 
_V
38 en2sn 8037 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  w  e.  _V )  ->  { A }  ~~  { w } )
396, 37, 38sylancl 694 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~~  { w } )
404brrelex2i 5159 . . . . . . . . . 10  |-  ( A 
~<  B  ->  B  e. 
_V )
4140adantr 481 . . . . . . . . 9  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  e.  _V )
42 difexg 4808 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  ran  f )  e.  _V )
43 ssdomg 8001 . . . . . . . . 9  |-  ( ( B  \  ran  f
)  e.  _V  ->  ( { w }  C_  ( B  \  ran  f
)  ->  { w }  ~<_  ( B  \  ran  f ) ) )
4441, 42, 433syl 18 . . . . . . . 8  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { w }  ~<_  ( B  \  ran  f ) ) )
45 endomtr 8014 . . . . . . . 8  |-  ( ( { A }  ~~  { w }  /\  {
w }  ~<_  ( B 
\  ran  f )
)  ->  { A }  ~<_  ( B  \  ran  f ) )
4639, 44, 45syl6an 568 . . . . . . 7  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( { w }  C_  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4736, 46syl5 34 . . . . . 6  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B  \  ran  f ) ) )
4847exlimdv 1861 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( E. w  w  e.  ( B  \  ran  f )  ->  { A }  ~<_  ( B 
\  ran  f )
) )
4935, 48mpd 15 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  { A }  ~<_  ( B  \  ran  f
) )
50 disjdif 4040 . . . . 5  |-  ( ran  f  i^i  ( B 
\  ran  f )
)  =  (/)
5150a1i 11 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )
52 undom 8048 . . . 4  |-  ( ( ( A  ~<_  ran  f  /\  { A }  ~<_  ( B 
\  ran  f )
)  /\  ( ran  f  i^i  ( B  \  ran  f ) )  =  (/) )  ->  ( A  u.  { A }
)  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
5315, 49, 51, 52syl21anc 1325 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( A  u.  { A } )  ~<_  ( ran  f  u.  ( B  \  ran  f ) ) )
54 df-suc 5729 . . . 4  |-  suc  A  =  ( A  u.  { A } )
5554a1i 11 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  =  ( A  u.  { A } ) )
56 undif2 4044 . . . 4  |-  ( ran  f  u.  ( B 
\  ran  f )
)  =  ( ran  f  u.  B )
5723adantl 482 . . . . 5  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ran  f  C_  B )
58 ssequn1 3783 . . . . 5  |-  ( ran  f  C_  B  <->  ( ran  f  u.  B )  =  B )
5957, 58sylib 208 . . . 4  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  ( ran  f  u.  B )  =  B )
6056, 59syl5req 2669 . . 3  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  B  =  ( ran  f  u.  ( B  \  ran  f ) ) )
6153, 55, 603brtr4d 4685 . 2  |-  ( ( A  ~<  B  /\  f : A -1-1-> B )  ->  suc  A  ~<_  B )
623, 61exlimddv 1863 1  |-  ( A 
~<  B  ->  suc  A  ~<_  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ran crn 5115   suc csuc 5725    Fn wfn 5883   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  sucdom  8157  card2inf  8460
  Copyright terms: Public domain W3C validator