| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sucdom2 | Structured version Visualization version Unicode version | ||
| Description: Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| Ref | Expression |
|---|---|
| sucdom2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 7983 |
. . 3
| |
| 2 | brdomi 7966 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | relsdom 7962 |
. . . . . . 7
| |
| 5 | 4 | brrelexi 5158 |
. . . . . 6
|
| 6 | 5 | adantr 481 |
. . . . 5
|
| 7 | vex 3203 |
. . . . . . 7
| |
| 8 | 7 | rnex 7100 |
. . . . . 6
|
| 9 | 8 | a1i 11 |
. . . . 5
|
| 10 | f1f1orn 6148 |
. . . . . . 7
| |
| 11 | 10 | adantl 482 |
. . . . . 6
|
| 12 | f1of1 6136 |
. . . . . 6
| |
| 13 | 11, 12 | syl 17 |
. . . . 5
|
| 14 | f1dom2g 7973 |
. . . . 5
| |
| 15 | 6, 9, 13, 14 | syl3anc 1326 |
. . . 4
|
| 16 | sdomnen 7984 |
. . . . . . . 8
| |
| 17 | 16 | adantr 481 |
. . . . . . 7
|
| 18 | ssdif0 3942 |
. . . . . . . 8
| |
| 19 | simplr 792 |
. . . . . . . . . . 11
| |
| 20 | f1f 6101 |
. . . . . . . . . . . . . . 15
| |
| 21 | df-f 5892 |
. . . . . . . . . . . . . . 15
| |
| 22 | 20, 21 | sylib 208 |
. . . . . . . . . . . . . 14
|
| 23 | 22 | simprd 479 |
. . . . . . . . . . . . 13
|
| 24 | 19, 23 | syl 17 |
. . . . . . . . . . . 12
|
| 25 | simpr 477 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | eqssd 3620 |
. . . . . . . . . . 11
|
| 27 | dff1o5 6146 |
. . . . . . . . . . 11
| |
| 28 | 19, 26, 27 | sylanbrc 698 |
. . . . . . . . . 10
|
| 29 | f1oen3g 7971 |
. . . . . . . . . 10
| |
| 30 | 7, 28, 29 | sylancr 695 |
. . . . . . . . 9
|
| 31 | 30 | ex 450 |
. . . . . . . 8
|
| 32 | 18, 31 | syl5bir 233 |
. . . . . . 7
|
| 33 | 17, 32 | mtod 189 |
. . . . . 6
|
| 34 | neq0 3930 |
. . . . . 6
| |
| 35 | 33, 34 | sylib 208 |
. . . . 5
|
| 36 | snssi 4339 |
. . . . . . 7
| |
| 37 | vex 3203 |
. . . . . . . . 9
| |
| 38 | en2sn 8037 |
. . . . . . . . 9
| |
| 39 | 6, 37, 38 | sylancl 694 |
. . . . . . . 8
|
| 40 | 4 | brrelex2i 5159 |
. . . . . . . . . 10
|
| 41 | 40 | adantr 481 |
. . . . . . . . 9
|
| 42 | difexg 4808 |
. . . . . . . . 9
| |
| 43 | ssdomg 8001 |
. . . . . . . . 9
| |
| 44 | 41, 42, 43 | 3syl 18 |
. . . . . . . 8
|
| 45 | endomtr 8014 |
. . . . . . . 8
| |
| 46 | 39, 44, 45 | syl6an 568 |
. . . . . . 7
|
| 47 | 36, 46 | syl5 34 |
. . . . . 6
|
| 48 | 47 | exlimdv 1861 |
. . . . 5
|
| 49 | 35, 48 | mpd 15 |
. . . 4
|
| 50 | disjdif 4040 |
. . . . 5
| |
| 51 | 50 | a1i 11 |
. . . 4
|
| 52 | undom 8048 |
. . . 4
| |
| 53 | 15, 49, 51, 52 | syl21anc 1325 |
. . 3
|
| 54 | df-suc 5729 |
. . . 4
| |
| 55 | 54 | a1i 11 |
. . 3
|
| 56 | undif2 4044 |
. . . 4
| |
| 57 | 23 | adantl 482 |
. . . . 5
|
| 58 | ssequn1 3783 |
. . . . 5
| |
| 59 | 57, 58 | sylib 208 |
. . . 4
|
| 60 | 56, 59 | syl5req 2669 |
. . 3
|
| 61 | 53, 55, 60 | 3brtr4d 4685 |
. 2
|
| 62 | 3, 61 | exlimddv 1863 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: sucdom 8157 card2inf 8460 |
| Copyright terms: Public domain | W3C validator |