MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Structured version   Visualization version   GIF version

Theorem sucxpdom 8169
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom (1𝑜𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 5729 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
2 relsdom 7962 . . . . . . . . 9 Rel ≺
32brrelex2i 5159 . . . . . . . 8 (1𝑜𝐴𝐴 ∈ V)
4 1on 7567 . . . . . . . 8 1𝑜 ∈ On
5 xpsneng 8045 . . . . . . . 8 ((𝐴 ∈ V ∧ 1𝑜 ∈ On) → (𝐴 × {1𝑜}) ≈ 𝐴)
63, 4, 5sylancl 694 . . . . . . 7 (1𝑜𝐴 → (𝐴 × {1𝑜}) ≈ 𝐴)
76ensymd 8007 . . . . . 6 (1𝑜𝐴𝐴 ≈ (𝐴 × {1𝑜}))
8 endom 7982 . . . . . 6 (𝐴 ≈ (𝐴 × {1𝑜}) → 𝐴 ≼ (𝐴 × {1𝑜}))
97, 8syl 17 . . . . 5 (1𝑜𝐴𝐴 ≼ (𝐴 × {1𝑜}))
10 ensn1g 8021 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} ≈ 1𝑜)
113, 10syl 17 . . . . . . . 8 (1𝑜𝐴 → {𝐴} ≈ 1𝑜)
12 ensdomtr 8096 . . . . . . . 8 (({𝐴} ≈ 1𝑜 ∧ 1𝑜𝐴) → {𝐴} ≺ 𝐴)
1311, 12mpancom 703 . . . . . . 7 (1𝑜𝐴 → {𝐴} ≺ 𝐴)
14 0ex 4790 . . . . . . . . 9 ∅ ∈ V
15 xpsneng 8045 . . . . . . . . 9 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 × {∅}) ≈ 𝐴)
163, 14, 15sylancl 694 . . . . . . . 8 (1𝑜𝐴 → (𝐴 × {∅}) ≈ 𝐴)
1716ensymd 8007 . . . . . . 7 (1𝑜𝐴𝐴 ≈ (𝐴 × {∅}))
18 sdomentr 8094 . . . . . . 7 (({𝐴} ≺ 𝐴𝐴 ≈ (𝐴 × {∅})) → {𝐴} ≺ (𝐴 × {∅}))
1913, 17, 18syl2anc 693 . . . . . 6 (1𝑜𝐴 → {𝐴} ≺ (𝐴 × {∅}))
20 sdomdom 7983 . . . . . 6 ({𝐴} ≺ (𝐴 × {∅}) → {𝐴} ≼ (𝐴 × {∅}))
2119, 20syl 17 . . . . 5 (1𝑜𝐴 → {𝐴} ≼ (𝐴 × {∅}))
22 1n0 7575 . . . . . 6 1𝑜 ≠ ∅
23 xpsndisj 5557 . . . . . 6 (1𝑜 ≠ ∅ → ((𝐴 × {1𝑜}) ∩ (𝐴 × {∅})) = ∅)
2422, 23mp1i 13 . . . . 5 (1𝑜𝐴 → ((𝐴 × {1𝑜}) ∩ (𝐴 × {∅})) = ∅)
25 undom 8048 . . . . 5 (((𝐴 ≼ (𝐴 × {1𝑜}) ∧ {𝐴} ≼ (𝐴 × {∅})) ∧ ((𝐴 × {1𝑜}) ∩ (𝐴 × {∅})) = ∅) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})))
269, 21, 24, 25syl21anc 1325 . . . 4 (1𝑜𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})))
27 sdomentr 8094 . . . . . 6 ((1𝑜𝐴𝐴 ≈ (𝐴 × {1𝑜})) → 1𝑜 ≺ (𝐴 × {1𝑜}))
287, 27mpdan 702 . . . . 5 (1𝑜𝐴 → 1𝑜 ≺ (𝐴 × {1𝑜}))
29 sdomentr 8094 . . . . . 6 ((1𝑜𝐴𝐴 ≈ (𝐴 × {∅})) → 1𝑜 ≺ (𝐴 × {∅}))
3017, 29mpdan 702 . . . . 5 (1𝑜𝐴 → 1𝑜 ≺ (𝐴 × {∅}))
31 unxpdom 8167 . . . . 5 ((1𝑜 ≺ (𝐴 × {1𝑜}) ∧ 1𝑜 ≺ (𝐴 × {∅})) → ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅})))
3228, 30, 31syl2anc 693 . . . 4 (1𝑜𝐴 → ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅})))
33 domtr 8009 . . . 4 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})) ∧ ((𝐴 × {1𝑜}) ∪ (𝐴 × {∅})) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅}))) → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅})))
3426, 32, 33syl2anc 693 . . 3 (1𝑜𝐴 → (𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅})))
35 xpen 8123 . . . 4 (((𝐴 × {1𝑜}) ≈ 𝐴 ∧ (𝐴 × {∅}) ≈ 𝐴) → ((𝐴 × {1𝑜}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
366, 16, 35syl2anc 693 . . 3 (1𝑜𝐴 → ((𝐴 × {1𝑜}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴))
37 domentr 8015 . . 3 (((𝐴 ∪ {𝐴}) ≼ ((𝐴 × {1𝑜}) × (𝐴 × {∅})) ∧ ((𝐴 × {1𝑜}) × (𝐴 × {∅})) ≈ (𝐴 × 𝐴)) → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
3834, 36, 37syl2anc 693 . 2 (1𝑜𝐴 → (𝐴 ∪ {𝐴}) ≼ (𝐴 × 𝐴))
391, 38syl5eqbr 4688 1 (1𝑜𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177   class class class wbr 4653   × cxp 5112  Oncon0 5723  suc csuc 5725  1𝑜c1o 7553  cen 7952  cdom 7953  csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator