MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sucxpdom Structured version   Visualization version   Unicode version

Theorem sucxpdom 8169
Description: Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.)
Assertion
Ref Expression
sucxpdom  |-  ( 1o 
~<  A  ->  suc  A  ~<_  ( A  X.  A
) )

Proof of Theorem sucxpdom
StepHypRef Expression
1 df-suc 5729 . 2  |-  suc  A  =  ( A  u.  { A } )
2 relsdom 7962 . . . . . . . . 9  |-  Rel  ~<
32brrelex2i 5159 . . . . . . . 8  |-  ( 1o 
~<  A  ->  A  e. 
_V )
4 1on 7567 . . . . . . . 8  |-  1o  e.  On
5 xpsneng 8045 . . . . . . . 8  |-  ( ( A  e.  _V  /\  1o  e.  On )  -> 
( A  X.  { 1o } )  ~~  A
)
63, 4, 5sylancl 694 . . . . . . 7  |-  ( 1o 
~<  A  ->  ( A  X.  { 1o }
)  ~~  A )
76ensymd 8007 . . . . . 6  |-  ( 1o 
~<  A  ->  A  ~~  ( A  X.  { 1o } ) )
8 endom 7982 . . . . . 6  |-  ( A 
~~  ( A  X.  { 1o } )  ->  A  ~<_  ( A  X.  { 1o } ) )
97, 8syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  A  ~<_  ( A  X.  { 1o } ) )
10 ensn1g 8021 . . . . . . . . 9  |-  ( A  e.  _V  ->  { A }  ~~  1o )
113, 10syl 17 . . . . . . . 8  |-  ( 1o 
~<  A  ->  { A }  ~~  1o )
12 ensdomtr 8096 . . . . . . . 8  |-  ( ( { A }  ~~  1o  /\  1o  ~<  A )  ->  { A }  ~<  A )
1311, 12mpancom 703 . . . . . . 7  |-  ( 1o 
~<  A  ->  { A }  ~<  A )
14 0ex 4790 . . . . . . . . 9  |-  (/)  e.  _V
15 xpsneng 8045 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
163, 14, 15sylancl 694 . . . . . . . 8  |-  ( 1o 
~<  A  ->  ( A  X.  { (/) } ) 
~~  A )
1716ensymd 8007 . . . . . . 7  |-  ( 1o 
~<  A  ->  A  ~~  ( A  X.  { (/) } ) )
18 sdomentr 8094 . . . . . . 7  |-  ( ( { A }  ~<  A  /\  A  ~~  ( A  X.  { (/) } ) )  ->  { A }  ~<  ( A  X.  { (/) } ) )
1913, 17, 18syl2anc 693 . . . . . 6  |-  ( 1o 
~<  A  ->  { A }  ~<  ( A  X.  { (/) } ) )
20 sdomdom 7983 . . . . . 6  |-  ( { A }  ~<  ( A  X.  { (/) } )  ->  { A }  ~<_  ( A  X.  { (/) } ) )
2119, 20syl 17 . . . . 5  |-  ( 1o 
~<  A  ->  { A }  ~<_  ( A  X.  { (/) } ) )
22 1n0 7575 . . . . . 6  |-  1o  =/=  (/)
23 xpsndisj 5557 . . . . . 6  |-  ( 1o  =/=  (/)  ->  ( ( A  X.  { 1o }
)  i^i  ( A  X.  { (/) } ) )  =  (/) )
2422, 23mp1i 13 . . . . 5  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  i^i  ( A  X.  { (/) } ) )  =  (/) )
25 undom 8048 . . . . 5  |-  ( ( ( A  ~<_  ( A  X.  { 1o }
)  /\  { A }  ~<_  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o }
)  i^i  ( A  X.  { (/) } ) )  =  (/) )  ->  ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) ) )
269, 21, 24, 25syl21anc 1325 . . . 4  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) ) )
27 sdomentr 8094 . . . . . 6  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { 1o } ) )  ->  1o  ~<  ( A  X.  { 1o }
) )
287, 27mpdan 702 . . . . 5  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { 1o } ) )
29 sdomentr 8094 . . . . . 6  |-  ( ( 1o  ~<  A  /\  A  ~~  ( A  X.  { (/) } ) )  ->  1o  ~<  ( A  X.  { (/) } ) )
3017, 29mpdan 702 . . . . 5  |-  ( 1o 
~<  A  ->  1o  ~<  ( A  X.  { (/) } ) )
31 unxpdom 8167 . . . . 5  |-  ( ( 1o  ~<  ( A  X.  { 1o } )  /\  1o  ~<  ( A  X.  { (/) } ) )  ->  ( ( A  X.  { 1o }
)  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
3228, 30, 31syl2anc 693 . . . 4  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
33 domtr 8009 . . . 4  |-  ( ( ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  u.  ( A  X.  { (/) } ) )  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )  ->  ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) ) )
3426, 32, 33syl2anc 693 . . 3  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) ) )
35 xpen 8123 . . . 4  |-  ( ( ( A  X.  { 1o } )  ~~  A  /\  ( A  X.  { (/)
} )  ~~  A
)  ->  ( ( A  X.  { 1o }
)  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )
366, 16, 35syl2anc 693 . . 3  |-  ( 1o 
~<  A  ->  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )
37 domentr 8015 . . 3  |-  ( ( ( A  u.  { A } )  ~<_  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  /\  ( ( A  X.  { 1o } )  X.  ( A  X.  { (/) } ) )  ~~  ( A  X.  A ) )  ->  ( A  u.  { A } )  ~<_  ( A  X.  A ) )
3834, 36, 37syl2anc 693 . 2  |-  ( 1o 
~<  A  ->  ( A  u.  { A }
)  ~<_  ( A  X.  A ) )
391, 38syl5eqbr 4688 1  |-  ( 1o 
~<  A  ->  suc  A  ~<_  ( A  X.  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573   (/)c0 3915   {csn 4177   class class class wbr 4653    X. cxp 5112   Oncon0 5723   suc csuc 5725   1oc1o 7553    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-1st 7168  df-2nd 7169  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator