| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supgtoreq | Structured version Visualization version Unicode version | ||
| Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.) |
| Ref | Expression |
|---|---|
| supgtoreq.1 |
|
| supgtoreq.2 |
|
| supgtoreq.3 |
|
| supgtoreq.4 |
|
| supgtoreq.5 |
|
| Ref | Expression |
|---|---|
| supgtoreq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | supgtoreq.4 |
. . . . 5
| |
| 2 | supgtoreq.1 |
. . . . . 6
| |
| 3 | supgtoreq.2 |
. . . . . . 7
| |
| 4 | supgtoreq.3 |
. . . . . . . 8
| |
| 5 | ne0i 3921 |
. . . . . . . . 9
| |
| 6 | 1, 5 | syl 17 |
. . . . . . . 8
|
| 7 | fisup2g 8374 |
. . . . . . . 8
| |
| 8 | 2, 4, 6, 3, 7 | syl13anc 1328 |
. . . . . . 7
|
| 9 | ssrexv 3667 |
. . . . . . 7
| |
| 10 | 3, 8, 9 | sylc 65 |
. . . . . 6
|
| 11 | 2, 10 | supub 8365 |
. . . . 5
|
| 12 | 1, 11 | mpd 15 |
. . . 4
|
| 13 | supgtoreq.5 |
. . . . 5
| |
| 14 | 13 | breq1d 4663 |
. . . 4
|
| 15 | 12, 14 | mtbird 315 |
. . 3
|
| 16 | fisupcl 8375 |
. . . . . . . 8
| |
| 17 | 2, 4, 6, 3, 16 | syl13anc 1328 |
. . . . . . 7
|
| 18 | 3, 17 | sseldd 3604 |
. . . . . 6
|
| 19 | 13, 18 | eqeltrd 2701 |
. . . . 5
|
| 20 | 3, 1 | sseldd 3604 |
. . . . 5
|
| 21 | sotric 5061 |
. . . . 5
| |
| 22 | 2, 19, 20, 21 | syl12anc 1324 |
. . . 4
|
| 23 | orcom 402 |
. . . . . 6
| |
| 24 | eqcom 2629 |
. . . . . . 7
| |
| 25 | 24 | orbi2i 541 |
. . . . . 6
|
| 26 | 23, 25 | bitri 264 |
. . . . 5
|
| 27 | 26 | notbii 310 |
. . . 4
|
| 28 | 22, 27 | syl6rbb 277 |
. . 3
|
| 29 | 15, 28 | mtbird 315 |
. 2
|
| 30 | 29 | notnotrd 128 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-om 7066 df-1o 7560 df-er 7742 df-en 7956 df-fin 7959 df-sup 8348 |
| This theorem is referenced by: infltoreq 8408 supfirege 11009 |
| Copyright terms: Public domain | W3C validator |