MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supgtoreq Structured version   Visualization version   Unicode version

Theorem supgtoreq 8376
Description: The supremum of a finite set is greater than or equal to all the elements of the set. (Contributed by AV, 1-Oct-2019.)
Hypotheses
Ref Expression
supgtoreq.1  |-  ( ph  ->  R  Or  A )
supgtoreq.2  |-  ( ph  ->  B  C_  A )
supgtoreq.3  |-  ( ph  ->  B  e.  Fin )
supgtoreq.4  |-  ( ph  ->  C  e.  B )
supgtoreq.5  |-  ( ph  ->  S  =  sup ( B ,  A ,  R ) )
Assertion
Ref Expression
supgtoreq  |-  ( ph  ->  ( C R S  \/  C  =  S ) )

Proof of Theorem supgtoreq
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supgtoreq.4 . . . . 5  |-  ( ph  ->  C  e.  B )
2 supgtoreq.1 . . . . . 6  |-  ( ph  ->  R  Or  A )
3 supgtoreq.2 . . . . . . 7  |-  ( ph  ->  B  C_  A )
4 supgtoreq.3 . . . . . . . 8  |-  ( ph  ->  B  e.  Fin )
5 ne0i 3921 . . . . . . . . 9  |-  ( C  e.  B  ->  B  =/=  (/) )
61, 5syl 17 . . . . . . . 8  |-  ( ph  ->  B  =/=  (/) )
7 fisup2g 8374 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
82, 4, 6, 3, 7syl13anc 1328 . . . . . . 7  |-  ( ph  ->  E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
9 ssrexv 3667 . . . . . . 7  |-  ( B 
C_  A  ->  ( E. x  e.  B  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) )  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) ) )
103, 8, 9sylc 65 . . . . . 6  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x R y  /\  A. y  e.  A  ( y R x  ->  E. z  e.  B  y R z ) ) )
112, 10supub 8365 . . . . 5  |-  ( ph  ->  ( C  e.  B  ->  -.  sup ( B ,  A ,  R
) R C ) )
121, 11mpd 15 . . . 4  |-  ( ph  ->  -.  sup ( B ,  A ,  R
) R C )
13 supgtoreq.5 . . . . 5  |-  ( ph  ->  S  =  sup ( B ,  A ,  R ) )
1413breq1d 4663 . . . 4  |-  ( ph  ->  ( S R C  <->  sup ( B ,  A ,  R ) R C ) )
1512, 14mtbird 315 . . 3  |-  ( ph  ->  -.  S R C )
16 fisupcl 8375 . . . . . . . 8  |-  ( ( R  Or  A  /\  ( B  e.  Fin  /\  B  =/=  (/)  /\  B  C_  A ) )  ->  sup ( B ,  A ,  R )  e.  B
)
172, 4, 6, 3, 16syl13anc 1328 . . . . . . 7  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  B )
183, 17sseldd 3604 . . . . . 6  |-  ( ph  ->  sup ( B ,  A ,  R )  e.  A )
1913, 18eqeltrd 2701 . . . . 5  |-  ( ph  ->  S  e.  A )
203, 1sseldd 3604 . . . . 5  |-  ( ph  ->  C  e.  A )
21 sotric 5061 . . . . 5  |-  ( ( R  Or  A  /\  ( S  e.  A  /\  C  e.  A
) )  ->  ( S R C  <->  -.  ( S  =  C  \/  C R S ) ) )
222, 19, 20, 21syl12anc 1324 . . . 4  |-  ( ph  ->  ( S R C  <->  -.  ( S  =  C  \/  C R S ) ) )
23 orcom 402 . . . . . 6  |-  ( ( S  =  C  \/  C R S )  <->  ( C R S  \/  S  =  C ) )
24 eqcom 2629 . . . . . . 7  |-  ( S  =  C  <->  C  =  S )
2524orbi2i 541 . . . . . 6  |-  ( ( C R S  \/  S  =  C )  <->  ( C R S  \/  C  =  S )
)
2623, 25bitri 264 . . . . 5  |-  ( ( S  =  C  \/  C R S )  <->  ( C R S  \/  C  =  S ) )
2726notbii 310 . . . 4  |-  ( -.  ( S  =  C  \/  C R S )  <->  -.  ( C R S  \/  C  =  S ) )
2822, 27syl6rbb 277 . . 3  |-  ( ph  ->  ( -.  ( C R S  \/  C  =  S )  <->  S R C ) )
2915, 28mtbird 315 . 2  |-  ( ph  ->  -.  -.  ( C R S  \/  C  =  S ) )
3029notnotrd 128 1  |-  ( ph  ->  ( C R S  \/  C  =  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   class class class wbr 4653    Or wor 5034   Fincfn 7955   supcsup 8346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-om 7066  df-1o 7560  df-er 7742  df-en 7956  df-fin 7959  df-sup 8348
This theorem is referenced by:  infltoreq  8408  supfirege  11009
  Copyright terms: Public domain W3C validator