MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supp0cosupp0 Structured version   Visualization version   GIF version

Theorem supp0cosupp0 7334
Description: The support of the composition of two functions is empty if the support of the outer function is empty. (Contributed by AV, 30-May-2019.)
Assertion
Ref Expression
supp0cosupp0 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))

Proof of Theorem supp0cosupp0
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝐹𝑉𝐺𝑊) → 𝐹𝑉)
21anim2i 593 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ 𝐹𝑉))
32ancomd 467 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹𝑉𝑍 ∈ V))
4 suppimacnv 7306 . . . . . 6 ((𝐹𝑉𝑍 ∈ V) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
53, 4syl 17 . . . . 5 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝐹 supp 𝑍) = (𝐹 “ (V ∖ {𝑍})))
65eqeq1d 2624 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) = ∅ ↔ (𝐹 “ (V ∖ {𝑍})) = ∅))
7 coexg 7117 . . . . . . . . 9 ((𝐹𝑉𝐺𝑊) → (𝐹𝐺) ∈ V)
87anim2i 593 . . . . . . . 8 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → (𝑍 ∈ V ∧ (𝐹𝐺) ∈ V))
98ancomd 467 . . . . . . 7 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
10 suppimacnv 7306 . . . . . . 7 (((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
119, 10syl 17 . . . . . 6 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹𝐺) supp 𝑍) = ((𝐹𝐺) “ (V ∖ {𝑍})))
12 cnvco 5308 . . . . . . . . 9 (𝐹𝐺) = (𝐺𝐹)
1312imaeq1i 5463 . . . . . . . 8 ((𝐹𝐺) “ (V ∖ {𝑍})) = ((𝐺𝐹) “ (V ∖ {𝑍}))
14 imaco 5640 . . . . . . . 8 ((𝐺𝐹) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
1513, 14eqtri 2644 . . . . . . 7 ((𝐹𝐺) “ (V ∖ {𝑍})) = (𝐺 “ (𝐹 “ (V ∖ {𝑍})))
16 imaeq2 5462 . . . . . . . 8 ((𝐹 “ (V ∖ {𝑍})) = ∅ → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) = (𝐺 “ ∅))
17 ima0 5481 . . . . . . . 8 (𝐺 “ ∅) = ∅
1816, 17syl6eq 2672 . . . . . . 7 ((𝐹 “ (V ∖ {𝑍})) = ∅ → (𝐺 “ (𝐹 “ (V ∖ {𝑍}))) = ∅)
1915, 18syl5eq 2668 . . . . . 6 ((𝐹 “ (V ∖ {𝑍})) = ∅ → ((𝐹𝐺) “ (V ∖ {𝑍})) = ∅)
2011, 19sylan9eq 2676 . . . . 5 (((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) ∧ (𝐹 “ (V ∖ {𝑍})) = ∅) → ((𝐹𝐺) supp 𝑍) = ∅)
2120ex 450 . . . 4 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 “ (V ∖ {𝑍})) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
226, 21sylbid 230 . . 3 ((𝑍 ∈ V ∧ (𝐹𝑉𝐺𝑊)) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
2322ex 450 . 2 (𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅)))
24 id 22 . . . . 5 𝑍 ∈ V → ¬ 𝑍 ∈ V)
2524intnand 962 . . . 4 𝑍 ∈ V → ¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V))
26 supp0prc 7298 . . . 4 (¬ ((𝐹𝐺) ∈ V ∧ 𝑍 ∈ V) → ((𝐹𝐺) supp 𝑍) = ∅)
2725, 26syl 17 . . 3 𝑍 ∈ V → ((𝐹𝐺) supp 𝑍) = ∅)
28272a1d 26 . 2 𝑍 ∈ V → ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅)))
2923, 28pm2.61i 176 1 ((𝐹𝑉𝐺𝑊) → ((𝐹 supp 𝑍) = ∅ → ((𝐹𝐺) supp 𝑍) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cdif 3571  c0 3915  {csn 4177  ccnv 5113  cima 5117  ccom 5118  (class class class)co 6650   supp csupp 7295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-supp 7296
This theorem is referenced by:  gsumval3lem2  18307
  Copyright terms: Public domain W3C validator