MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfrlem11 Structured version   Visualization version   Unicode version

Theorem tfrlem11 7484
Description: Lemma for transfinite recursion. Compute the value of  C. (Contributed by NM, 18-Aug-1994.) (Revised by Mario Carneiro, 9-May-2015.)
Hypotheses
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem.3  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
Assertion
Ref Expression
tfrlem11  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  suc  dom recs ( F
)  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
Distinct variable groups:    x, f,
y, B    C, f, x, y    f, F, x, y
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem11
StepHypRef Expression
1 elsuci 5791 . 2  |-  ( B  e.  suc  dom recs ( F )  ->  ( B  e.  dom recs ( F )  \/  B  =  dom recs ( F ) ) )
2 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
3 tfrlem.3 . . . . . . . . 9  |-  C  =  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
42, 3tfrlem10 7483 . . . . . . . 8  |-  ( dom recs
( F )  e.  On  ->  C  Fn  suc  dom recs ( F ) )
5 fnfun 5988 . . . . . . . 8  |-  ( C  Fn  suc  dom recs ( F )  ->  Fun  C )
64, 5syl 17 . . . . . . 7  |-  ( dom recs
( F )  e.  On  ->  Fun  C )
7 ssun1 3776 . . . . . . . . 9  |- recs ( F )  C_  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F ) ) >. } )
87, 3sseqtr4i 3638 . . . . . . . 8  |- recs ( F )  C_  C
92tfrlem9 7481 . . . . . . . . 9  |-  ( B  e.  dom recs ( F
)  ->  (recs ( F ) `  B
)  =  ( F `
 (recs ( F )  |`  B )
) )
10 funssfv 6209 . . . . . . . . . . . 12  |-  ( ( Fun  C  /\ recs ( F )  C_  C  /\  B  e.  dom recs ( F ) )  -> 
( C `  B
)  =  (recs ( F ) `  B
) )
11103expa 1265 . . . . . . . . . . 11  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  e.  dom recs ( F ) )  ->  ( C `  B )  =  (recs ( F ) `  B ) )
1211adantrl 752 . . . . . . . . . 10  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( C `  B )  =  (recs ( F ) `  B ) )
13 onelss 5766 . . . . . . . . . . . 12  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  B  C_  dom recs ( F ) ) )
1413imp 445 . . . . . . . . . . 11  |-  ( ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) )  ->  B  C_  dom recs ( F ) )
15 fun2ssres 5931 . . . . . . . . . . . . 13  |-  ( ( Fun  C  /\ recs ( F )  C_  C  /\  B  C_  dom recs ( F ) )  -> 
( C  |`  B )  =  (recs ( F )  |`  B )
)
16153expa 1265 . . . . . . . . . . . 12  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  C_  dom recs ( F ) )  -> 
( C  |`  B )  =  (recs ( F )  |`  B )
)
1716fveq2d 6195 . . . . . . . . . . 11  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  B  C_  dom recs ( F ) )  -> 
( F `  ( C  |`  B ) )  =  ( F `  (recs ( F )  |`  B ) ) )
1814, 17sylan2 491 . . . . . . . . . 10  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( F `  ( C  |`  B ) )  =  ( F `
 (recs ( F )  |`  B )
) )
1912, 18eqeq12d 2637 . . . . . . . . 9  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( ( C `
 B )  =  ( F `  ( C  |`  B ) )  <-> 
(recs ( F ) `
 B )  =  ( F `  (recs ( F )  |`  B ) ) ) )
209, 19syl5ibr 236 . . . . . . . 8  |-  ( ( ( Fun  C  /\ recs ( F )  C_  C
)  /\  ( dom recs ( F )  e.  On  /\  B  e.  dom recs ( F ) ) )  ->  ( B  e. 
dom recs ( F )  -> 
( C `  B
)  =  ( F `
 ( C  |`  B ) ) ) )
218, 20mpanl2 717 . . . . . . 7  |-  ( ( Fun  C  /\  ( dom recs ( F )  e.  On  /\  B  e. 
dom recs ( F ) ) )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
226, 21sylan 488 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  ( dom recs ( F )  e.  On  /\  B  e. 
dom recs ( F ) ) )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
2322exp32 631 . . . . 5  |-  ( dom recs
( F )  e.  On  ->  ( dom recs ( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) ) ) )
2423pm2.43i 52 . . . 4  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( B  e. 
dom recs ( F )  -> 
( C `  B
)  =  ( F `
 ( C  |`  B ) ) ) ) )
2524pm2.43d 53 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
26 opex 4932 . . . . . . . . 9  |-  <. B , 
( F `  ( C  |`  B ) )
>.  e.  _V
2726snid 4208 . . . . . . . 8  |-  <. B , 
( F `  ( C  |`  B ) )
>.  e.  { <. B , 
( F `  ( C  |`  B ) )
>. }
28 opeq1 4402 . . . . . . . . . . 11  |-  ( B  =  dom recs ( F
)  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.
)
2928adantl 482 . . . . . . . . . 10  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.
)
30 eqimss 3657 . . . . . . . . . . . . . 14  |-  ( B  =  dom recs ( F
)  ->  B  C_  dom recs ( F ) )
318, 15mp3an2 1412 . . . . . . . . . . . . . 14  |-  ( ( Fun  C  /\  B  C_ 
dom recs ( F ) )  ->  ( C  |`  B )  =  (recs ( F )  |`  B ) )
326, 30, 31syl2an 494 . . . . . . . . . . . . 13  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C  |`  B )  =  (recs ( F )  |`  B ) )
33 reseq2 5391 . . . . . . . . . . . . . . 15  |-  ( B  =  dom recs ( F
)  ->  (recs ( F )  |`  B )  =  (recs ( F )  |`  dom recs ( F ) ) )
342tfrlem6 7478 . . . . . . . . . . . . . . . 16  |-  Rel recs ( F )
35 resdm 5441 . . . . . . . . . . . . . . . 16  |-  ( Rel recs
( F )  -> 
(recs ( F )  |`  dom recs ( F ) )  = recs ( F ) )
3634, 35ax-mp 5 . . . . . . . . . . . . . . 15  |-  (recs ( F )  |`  dom recs ( F ) )  = recs ( F )
3733, 36syl6eq 2672 . . . . . . . . . . . . . 14  |-  ( B  =  dom recs ( F
)  ->  (recs ( F )  |`  B )  = recs ( F ) )
3837adantl 482 . . . . . . . . . . . . 13  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  (recs ( F )  |`  B )  = recs ( F ) )
3932, 38eqtrd 2656 . . . . . . . . . . . 12  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C  |`  B )  = recs ( F ) )
4039fveq2d 6195 . . . . . . . . . . 11  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( F `  ( C  |`  B ) )  =  ( F `
recs ( F ) ) )
4140opeq2d 4409 . . . . . . . . . 10  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. dom recs ( F ) ,  ( F `  ( C  |`  B ) ) >.  =  <. dom recs ( F
) ,  ( F `
recs ( F ) ) >. )
4229, 41eqtrd 2656 . . . . . . . . 9  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  =  <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. )
4342sneqd 4189 . . . . . . . 8  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  { <. B , 
( F `  ( C  |`  B ) )
>. }  =  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } )
4427, 43syl5eleq 2707 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } )
45 elun2 3781 . . . . . . 7  |-  ( <. B ,  ( F `  ( C  |`  B ) ) >.  e.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. }  ->  <. B ,  ( F `  ( C  |`  B ) ) >.  e.  (recs ( F )  u.  { <. dom recs ( F ) ,  ( F ` recs ( F
) ) >. } ) )
4644, 45syl 17 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  (recs ( F )  u.  { <. dom recs
( F ) ,  ( F ` recs ( F ) ) >. } ) )
4746, 3syl6eleqr 2712 . . . . 5  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  C )
484adantr 481 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  C  Fn  suc  dom recs ( F ) )
49 simpr 477 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  B  =  dom recs ( F ) )
50 sucidg 5803 . . . . . . . 8  |-  ( dom recs
( F )  e.  On  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
5150adantr 481 . . . . . . 7  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  dom recs ( F )  e.  suc  dom recs ( F ) )
5249, 51eqeltrd 2701 . . . . . 6  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  B  e.  suc  dom recs ( F ) )
53 fnopfvb 6237 . . . . . 6  |-  ( ( C  Fn  suc  dom recs ( F )  /\  B  e.  suc  dom recs ( F
) )  ->  (
( C `  B
)  =  ( F `
 ( C  |`  B ) )  <->  <. B , 
( F `  ( C  |`  B ) )
>.  e.  C ) )
5448, 52, 53syl2anc 693 . . . . 5  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( ( C `  B )  =  ( F `  ( C  |`  B ) )  <->  <. B ,  ( F `  ( C  |`  B ) ) >.  e.  C ) )
5547, 54mpbird 247 . . . 4  |-  ( ( dom recs ( F )  e.  On  /\  B  =  dom recs ( F ) )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) )
5655ex 450 . . 3  |-  ( dom recs
( F )  e.  On  ->  ( B  =  dom recs ( F )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
5725, 56jaod 395 . 2  |-  ( dom recs
( F )  e.  On  ->  ( ( B  e.  dom recs ( F )  \/  B  =  dom recs ( F ) )  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
581, 57syl5 34 1  |-  ( dom recs
( F )  e.  On  ->  ( B  e.  suc  dom recs ( F
)  ->  ( C `  B )  =  ( F `  ( C  |`  B ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913    u. cun 3572    C_ wss 3574   {csn 4177   <.cop 4183   dom cdm 5114    |` cres 5116   Rel wrel 5119   Oncon0 5723   suc csuc 5725   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  recscrecs 7467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-wrecs 7407  df-recs 7468
This theorem is referenced by:  tfrlem12  7485
  Copyright terms: Public domain W3C validator