MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmp Structured version   Visualization version   GIF version

Theorem txcmp 21446
Description: The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.)
Assertion
Ref Expression
txcmp ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)

Proof of Theorem txcmp
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 21198 . . 3 (𝑅 ∈ Comp → 𝑅 ∈ Top)
2 cmptop 21198 . . 3 (𝑆 ∈ Comp → 𝑆 ∈ Top)
3 txtop 21372 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
41, 2, 3syl2an 494 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Top)
5 eqid 2622 . . . . . 6 𝑅 = 𝑅
6 eqid 2622 . . . . . 6 𝑆 = 𝑆
7 simpll 790 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑅 ∈ Comp)
8 simplr 792 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑆 ∈ Comp)
9 elpwi 4168 . . . . . . 7 (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) → 𝑤 ⊆ (𝑅 ×t 𝑆))
109ad2antrl 764 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → 𝑤 ⊆ (𝑅 ×t 𝑆))
115, 6txuni 21395 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
121, 2, 11syl2an 494 . . . . . . . 8 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
1312adantr 481 . . . . . . 7 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
14 simprr 796 . . . . . . 7 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (𝑅 ×t 𝑆) = 𝑤)
1513, 14eqtrd 2656 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ( 𝑅 × 𝑆) = 𝑤)
165, 6, 7, 8, 10, 15txcmplem2 21445 . . . . 5 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin)( 𝑅 × 𝑆) = 𝑣)
1713eqeq1d 2624 . . . . . 6 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (( 𝑅 × 𝑆) = 𝑣 (𝑅 ×t 𝑆) = 𝑣))
1817rexbidv 3052 . . . . 5 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → (∃𝑣 ∈ (𝒫 𝑤 ∩ Fin)( 𝑅 × 𝑆) = 𝑣 ↔ ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
1916, 18mpbid 222 . . . 4 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ (𝑤 ∈ 𝒫 (𝑅 ×t 𝑆) ∧ (𝑅 ×t 𝑆) = 𝑤)) → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣)
2019expr 643 . . 3 (((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) ∧ 𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)) → ( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
2120ralrimiva 2966 . 2 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → ∀𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣))
22 eqid 2622 . . 3 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2322iscmp 21191 . 2 ((𝑅 ×t 𝑆) ∈ Comp ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ ∀𝑤 ∈ 𝒫 (𝑅 ×t 𝑆)( (𝑅 ×t 𝑆) = 𝑤 → ∃𝑣 ∈ (𝒫 𝑤 ∩ Fin) (𝑅 ×t 𝑆) = 𝑣)))
244, 21, 23sylanbrc 698 1 ((𝑅 ∈ Comp ∧ 𝑆 ∈ Comp) → (𝑅 ×t 𝑆) ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  cin 3573  wss 3574  𝒫 cpw 4158   cuni 4436   × cxp 5112  (class class class)co 6650  Fincfn 7955  Topctop 20698  Compccmp 21189   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-fin 7959  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-tx 21365
This theorem is referenced by:  txcmpb  21447  txkgen  21455  ptcmpfi  21616  xkohmeo  21618  cnheiborlem  22753
  Copyright terms: Public domain W3C validator