MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txkgen Structured version   Visualization version   GIF version

Theorem txkgen 21455
Description: The topological product of a locally compact space and a compactly generated Hausdorff space is compactly generated. (The condition on 𝑆 can also be replaced with either "compactly generated weak Hausdorff (CGWH)" or "compact Hausdorff-ly generated (CHG)", where WH means that all images of compact Hausdorff spaces are closed and CHG means that a set is open iff it is open in all compact Hausdorff spaces.) (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
txkgen ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)

Proof of Theorem txkgen
Dummy variables 𝑎 𝑏 𝑘 𝑠 𝑡 𝑢 𝑥 𝑦 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 21276 . . 3 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ Top)
2 elinel1 3799 . . . 4 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ ran 𝑘Gen)
3 kgentop 21345 . . . 4 (𝑆 ∈ ran 𝑘Gen → 𝑆 ∈ Top)
42, 3syl 17 . . 3 (𝑆 ∈ (ran 𝑘Gen ∩ Haus) → 𝑆 ∈ Top)
5 txtop 21372 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top)
61, 4, 5syl2an 494 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ Top)
7 simplll 798 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ 𝑛-Locally Comp)
8 eqid 2622 . . . . . . . . . 10 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
98mptpreima 5628 . . . . . . . . 9 ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) = {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}
101ad3antrrr 766 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ Top)
11 eqid 2622 . . . . . . . . . . . . . . 15 𝑅 = 𝑅
1211toptopon 20722 . . . . . . . . . . . . . 14 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘ 𝑅))
1310, 12sylib 208 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ (TopOn‘ 𝑅))
14 idcn 21061 . . . . . . . . . . . . 13 (𝑅 ∈ (TopOn‘ 𝑅) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
1513, 14syl 17 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅))
16 simpllr 799 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
1716, 4syl 17 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ Top)
18 eqid 2622 . . . . . . . . . . . . . . 15 𝑆 = 𝑆
1918toptopon 20722 . . . . . . . . . . . . . 14 (𝑆 ∈ Top ↔ 𝑆 ∈ (TopOn‘ 𝑆))
2017, 19sylib 208 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑆 ∈ (TopOn‘ 𝑆))
21 simpr 477 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦𝑥)
22 simplr 792 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
23 elunii 4441 . . . . . . . . . . . . . . . 16 ((𝑦𝑥𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2421, 22, 23syl2anc 693 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 (𝑘Gen‘(𝑅 ×t 𝑆)))
2511, 18txuni 21395 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2610, 17, 25syl2anc 693 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
2710, 17, 5syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
28 eqid 2622 . . . . . . . . . . . . . . . . . 18 (𝑅 ×t 𝑆) = (𝑅 ×t 𝑆)
2928kgenuni 21342 . . . . . . . . . . . . . . . . 17 ((𝑅 ×t 𝑆) ∈ Top → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3126, 30eqtrd 2656 . . . . . . . . . . . . . . 15 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × 𝑆) = (𝑘Gen‘(𝑅 ×t 𝑆)))
3224, 31eleqtrrd 2704 . . . . . . . . . . . . . 14 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 ∈ ( 𝑅 × 𝑆))
33 xp2nd 7199 . . . . . . . . . . . . . 14 (𝑦 ∈ ( 𝑅 × 𝑆) → (2nd𝑦) ∈ 𝑆)
3432, 33syl 17 . . . . . . . . . . . . 13 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (2nd𝑦) ∈ 𝑆)
35 cnconst2 21087 . . . . . . . . . . . . 13 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆) ∧ (2nd𝑦) ∈ 𝑆) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
3613, 20, 34, 35syl3anc 1326 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆))
37 fvresi 6439 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( I ↾ 𝑅)‘𝑡) = 𝑡)
38 fvex 6201 . . . . . . . . . . . . . . . . 17 (2nd𝑦) ∈ V
3938fvconst2 6469 . . . . . . . . . . . . . . . 16 (𝑡 𝑅 → (( 𝑅 × {(2nd𝑦)})‘𝑡) = (2nd𝑦))
4037, 39opeq12d 4410 . . . . . . . . . . . . . . 15 (𝑡 𝑅 → ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩ = ⟨𝑡, (2nd𝑦)⟩)
4140mpteq2ia 4740 . . . . . . . . . . . . . 14 (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩) = (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩)
4241eqcomi 2631 . . . . . . . . . . . . 13 (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) = (𝑡 𝑅 ↦ ⟨(( I ↾ 𝑅)‘𝑡), (( 𝑅 × {(2nd𝑦)})‘𝑡)⟩)
4311, 42txcnmpt 21427 . . . . . . . . . . . 12 ((( I ↾ 𝑅) ∈ (𝑅 Cn 𝑅) ∧ ( 𝑅 × {(2nd𝑦)}) ∈ (𝑅 Cn 𝑆)) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
4415, 36, 43syl2anc 693 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑅 ×t 𝑆)))
45 llycmpkgen 21355 . . . . . . . . . . . . 13 (𝑅 ∈ 𝑛-Locally Comp → 𝑅 ∈ ran 𝑘Gen)
4645ad3antrrr 766 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑅 ∈ ran 𝑘Gen)
476ad2antrr 762 . . . . . . . . . . . 12 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 ×t 𝑆) ∈ Top)
48 kgencn3 21361 . . . . . . . . . . . 12 ((𝑅 ∈ ran 𝑘Gen ∧ (𝑅 ×t 𝑆) ∈ Top) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
4946, 47, 48syl2anc 693 . . . . . . . . . . 11 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑅 Cn (𝑅 ×t 𝑆)) = (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
5044, 49eleqtrd 2703 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))))
51 cnima 21069 . . . . . . . . . 10 (((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) ∈ (𝑅 Cn (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
5250, 22, 51syl2anc 693 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ((𝑡 𝑅 ↦ ⟨𝑡, (2nd𝑦)⟩) “ 𝑥) ∈ 𝑅)
539, 52syl5eqelr 2706 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅)
54 xp1st 7198 . . . . . . . . . 10 (𝑦 ∈ ( 𝑅 × 𝑆) → (1st𝑦) ∈ 𝑅)
5532, 54syl 17 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ 𝑅)
56 1st2nd2 7205 . . . . . . . . . . 11 (𝑦 ∈ ( 𝑅 × 𝑆) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5732, 56syl 17 . . . . . . . . . 10 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
5857, 21eqeltrrd 2702 . . . . . . . . 9 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥)
59 opeq1 4402 . . . . . . . . . . 11 (𝑡 = (1st𝑦) → ⟨𝑡, (2nd𝑦)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
6059eleq1d 2686 . . . . . . . . . 10 (𝑡 = (1st𝑦) → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
6160elrab 3363 . . . . . . . . 9 ((1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ ((1st𝑦) ∈ 𝑅 ∧ ⟨(1st𝑦), (2nd𝑦)⟩ ∈ 𝑥))
6255, 58, 61sylanbrc 698 . . . . . . . 8 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
63 nlly2i 21279 . . . . . . . 8 ((𝑅 ∈ 𝑛-Locally Comp ∧ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∈ 𝑅 ∧ (1st𝑦) ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
647, 53, 62, 63syl3anc 1326 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))
6510adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑅 ∈ Top)
6617adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ Top)
67 simprlr 803 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑅)
68 ssrab2 3687 . . . . . . . . . . . . . 14 {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆
6968a1i 11 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆)
70 incom 3805 . . . . . . . . . . . . . . . 16 ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) = (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
71 simprll 802 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
7271elpwid 4170 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 ⊆ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
73 ssrab2 3687 . . . . . . . . . . . . . . . . . . . . . 22 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ⊆ 𝑅
7472, 73syl6ss 3615 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑠 𝑅)
7574adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 𝑅)
76 elpwi 4168 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ 𝒫 𝑆𝑘 𝑆)
7776ad2antrl 764 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 𝑆)
78 eldif 3584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥))
7978anbi1i 731 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
80 anass 681 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑡 ∈ (𝑠 × 𝑘) ∧ ¬ 𝑡𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8179, 80bitri 264 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥) ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (𝑡 ∈ (𝑠 × 𝑘) ∧ (¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏)))
8281rexbii2 3039 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
83 ancom 466 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥))
84 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩))
8584eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏))
86 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑡 = ⟨𝑎, 𝑢⟩ → (𝑡𝑥 ↔ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8786notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑡 = ⟨𝑎, 𝑢⟩ → (¬ 𝑡𝑥 ↔ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
8885, 87anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑡 = ⟨𝑎, 𝑢⟩ → ((((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ∧ ¬ 𝑡𝑥) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
8983, 88syl5bb 272 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑡 = ⟨𝑎, 𝑢⟩ → ((¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
9089rexxp 5264 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑡 ∈ (𝑠 × 𝑘)(¬ 𝑡𝑥 ∧ ((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏) ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
9182, 90bitri 264 . . . . . . . . . . . . . . . . . . . . . . 23 (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ ∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥))
92 simpl 473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑠 𝑅𝑘 𝑆) → 𝑠 𝑅)
9392sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑎 𝑅)
9493adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑎 𝑅)
95 simplr 792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → 𝑘 𝑆)
9695sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → 𝑢 𝑆)
9794, 96opelxpd 5149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ⟨𝑎, 𝑢⟩ ∈ ( 𝑅 × 𝑆))
9897fvresd 6208 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = (2nd ‘⟨𝑎, 𝑢⟩))
99 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑎 ∈ V
100 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 𝑢 ∈ V
10199, 100op2nd 7177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2nd ‘⟨𝑎, 𝑢⟩) = 𝑢
10298, 101syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑢)
103102eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏𝑢 = 𝑏))
104103anbi1d 741 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) ∧ 𝑢𝑘) → ((((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
105104rexbidva 3049 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥)))
106 opeq2 4403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑢 = 𝑏 → ⟨𝑎, 𝑢⟩ = ⟨𝑎, 𝑏⟩)
107106eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑢 = 𝑏 → (⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
108107notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑢 = 𝑏 → (¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥 ↔ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
109108ceqsrexbv 3337 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑢𝑘 (𝑢 = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
110105, 109syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑎𝑠) → (∃𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
111110rexbidva 3049 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ ∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
112 r19.42v 3092 . . . . . . . . . . . . . . . . . . . . . . . 24 (∃𝑎𝑠 (𝑏𝑘 ∧ ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
113111, 112syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → (∃𝑎𝑠𝑢𝑘 (((2nd ↾ ( 𝑅 × 𝑆))‘⟨𝑎, 𝑢⟩) = 𝑏 ∧ ¬ ⟨𝑎, 𝑢⟩ ∈ 𝑥) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
11491, 113syl5bb 272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏 ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
115 f2ndres 7191 . . . . . . . . . . . . . . . . . . . . . . . 24 (2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆
116 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)):( 𝑅 × 𝑆)⟶ 𝑆 → (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆))
117115, 116ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆)
118 difss 3737 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘)
119 xpss12 5225 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 𝑅𝑘 𝑆) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
120118, 119syl5ss 3614 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆))
121 fvelimab 6253 . . . . . . . . . . . . . . . . . . . . . . 23 (((2nd ↾ ( 𝑅 × 𝑆)) Fn ( 𝑅 × 𝑆) ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ ( 𝑅 × 𝑆)) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
122117, 120, 121sylancr 695 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ ∃𝑡 ∈ ((𝑠 × 𝑘) ∖ 𝑥)((2nd ↾ ( 𝑅 × 𝑆))‘𝑡) = 𝑏))
123 eldif 3584 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
124 simpr 477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 𝑅𝑘 𝑆) → 𝑘 𝑆)
125124sselda 3603 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → 𝑏 𝑆)
126 sneq 4187 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑣 = 𝑏 → {𝑣} = {𝑏})
127126xpeq2d 5139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑣 = 𝑏 → (𝑠 × {𝑣}) = (𝑠 × {𝑏}))
128127sseq1d 3632 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {𝑏}) ⊆ 𝑥))
129 dfss3 3592 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥)
130 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑘 = ⟨𝑎, 𝑡⟩ → (𝑘𝑥 ↔ ⟨𝑎, 𝑡⟩ ∈ 𝑥))
131130ralxp 5263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑘 ∈ (𝑠 × {𝑏})𝑘𝑥 ↔ ∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥)
132 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑏 ∈ V
133 opeq2 4403 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑡 = 𝑏 → ⟨𝑎, 𝑡⟩ = ⟨𝑎, 𝑏⟩)
134133eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑡 = 𝑏 → (⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
135132, 134ralsn 4222 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∀𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ⟨𝑎, 𝑏⟩ ∈ 𝑥)
136135ralbii 2980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∀𝑎𝑠𝑡 ∈ {𝑏}⟨𝑎, 𝑡⟩ ∈ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
137129, 131, 1363bitri 286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑠 × {𝑏}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
138128, 137syl6bb 276 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑣 = 𝑏 → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
139138elrab3 3364 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑏 𝑆 → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
140125, 139syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
141140notbid 308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥))
142 rexnal 2995 . . . . . . . . . . . . . . . . . . . . . . . . 25 (∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ¬ ∀𝑎𝑠𝑎, 𝑏⟩ ∈ 𝑥)
143141, 142syl6bbr 278 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑠 𝑅𝑘 𝑆) ∧ 𝑏𝑘) → (¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥))
144143pm5.32da 673 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑠 𝑅𝑘 𝑆) → ((𝑏𝑘 ∧ ¬ 𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
145123, 144syl5bb 272 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑏𝑘 ∧ ∃𝑎𝑠 ¬ ⟨𝑎, 𝑏⟩ ∈ 𝑥)))
146114, 122, 1453bitr4d 300 . . . . . . . . . . . . . . . . . . . . 21 ((𝑠 𝑅𝑘 𝑆) → (𝑏 ∈ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ↔ 𝑏 ∈ (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
147146eqrdv 2620 . . . . . . . . . . . . . . . . . . . 20 ((𝑠 𝑅𝑘 𝑆) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
14875, 77, 147syl2anc 693 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
149 difin 3861 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
15066adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
15118restuni 20966 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆 ∈ Top ∧ 𝑘 𝑆) → 𝑘 = (𝑆t 𝑘))
152150, 77, 151syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 = (𝑆t 𝑘))
153152difeq1d 3727 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
154149, 153syl5eqr 2670 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∖ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
155148, 154eqtrd 2656 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
15616ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
157156elin2d 3803 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Haus)
158 df-ima 5127 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) = ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥))
159 resres 5409 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) = (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)))
160 inss2 3834 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ((𝑠 × 𝑘) ∖ 𝑥)
161160, 118sstri 3612 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘)
162 ssres2 5425 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (𝑠 × 𝑘) → (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘)))
163161, 162ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2nd ↾ (( 𝑅 × 𝑆) ∩ ((𝑠 × 𝑘) ∖ 𝑥))) ⊆ (2nd ↾ (𝑠 × 𝑘))
164159, 163eqsstri 3635 . . . . . . . . . . . . . . . . . . . . . . . 24 ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘))
165 rnss 5354 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ (2nd ↾ (𝑠 × 𝑘)) → ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘)))
166164, 165ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . 23 ran ((2nd ↾ ( 𝑅 × 𝑆)) ↾ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
167158, 166eqsstri 3635 . . . . . . . . . . . . . . . . . . . . . 22 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ ran (2nd ↾ (𝑠 × 𝑘))
168 f2ndres 7191 . . . . . . . . . . . . . . . . . . . . . . 23 (2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘
169 frn 6053 . . . . . . . . . . . . . . . . . . . . . . 23 ((2nd ↾ (𝑠 × 𝑘)):(𝑠 × 𝑘)⟶𝑘 → ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘)
170168, 169ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 ran (2nd ↾ (𝑠 × 𝑘)) ⊆ 𝑘
171167, 170sstri 3612 . . . . . . . . . . . . . . . . . . . . 21 ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘
172171, 77syl5ss 3614 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆)
17313ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ (TopOn‘ 𝑅))
174150, 19sylib 208 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ (TopOn‘ 𝑆))
175 tx2cn 21413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ (TopOn‘ 𝑅) ∧ 𝑆 ∈ (TopOn‘ 𝑆)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
176173, 174, 175syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆))
17727ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅 ×t 𝑆) ∈ Top)
178118a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘))
179 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑠 ∈ V
180 vex 3203 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘 ∈ V
181179, 180xpex 6962 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑠 × 𝑘) ∈ V
182181a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ∈ V)
183 restabs 20969 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ×t 𝑆) ∈ Top ∧ ((𝑠 × 𝑘) ∖ 𝑥) ⊆ (𝑠 × 𝑘) ∧ (𝑠 × 𝑘) ∈ V) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
184177, 178, 182, 183syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) = ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)))
18565adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑅 ∈ Top)
186156, 4syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑆 ∈ Top)
187179a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑠 ∈ V)
188 simprl 794 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑘 ∈ 𝒫 𝑆)
189 txrest 21434 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑠 ∈ V ∧ 𝑘 ∈ 𝒫 𝑆)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
190185, 186, 187, 188, 189syl22anc 1327 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅t 𝑠) ×t (𝑆t 𝑘)))
191 simprr3 1111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑅t 𝑠) ∈ Comp)
192191adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑅t 𝑠) ∈ Comp)
193 simprr 796 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Comp)
194 txcmp 21446 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑅t 𝑠) ∈ Comp ∧ (𝑆t 𝑘) ∈ Comp) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
195192, 193, 194syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅t 𝑠) ×t (𝑆t 𝑘)) ∈ Comp)
196190, 195eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp)
197 difin 3861 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ((𝑠 × 𝑘) ∖ 𝑥)
19875, 77, 119syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ ( 𝑅 × 𝑆))
199185, 150, 25syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( 𝑅 × 𝑆) = (𝑅 ×t 𝑆))
200198, 199sseqtrd 3641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆))
20128restuni 20966 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ⊆ (𝑅 ×t 𝑆)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
202177, 200, 201syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑠 × 𝑘) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
203202difeq1d 3727 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
204197, 203syl5eqr 2670 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) = ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)))
205 resttop 20964 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑅 ×t 𝑆) ∈ Top ∧ (𝑠 × 𝑘) ∈ V) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
206177, 181, 205sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top)
207 incom 3805 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑠 × 𝑘) ∩ 𝑥) = (𝑥 ∩ (𝑠 × 𝑘))
20822ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)))
209 kgeni 21340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) ∧ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
210208, 196, 209syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑥 ∩ (𝑠 × 𝑘)) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
211207, 210syl5eqel 2705 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))
212 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) = ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))
213212opncld 20837 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Top ∧ ((𝑠 × 𝑘) ∩ 𝑥) ∈ ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
214206, 211, 213syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( ((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∖ ((𝑠 × 𝑘) ∩ 𝑥)) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
215204, 214eqeltrd 2701 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘))))
216 cmpcld 21205 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ∈ Comp ∧ ((𝑠 × 𝑘) ∖ 𝑥) ∈ (Clsd‘((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)))) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
217196, 215, 216syl2anc 693 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (((𝑅 ×t 𝑆) ↾t (𝑠 × 𝑘)) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
218184, 217eqeltrrd 2702 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp)
219 imacmp 21200 . . . . . . . . . . . . . . . . . . . . 21 (((2nd ↾ ( 𝑅 × 𝑆)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆) ∧ ((𝑅 ×t 𝑆) ↾t ((𝑠 × 𝑘) ∖ 𝑥)) ∈ Comp) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
220176, 218, 219syl2anc 693 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp)
22118hauscmp 21210 . . . . . . . . . . . . . . . . . . . 20 ((𝑆 ∈ Haus ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑆 ∧ (𝑆t ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥))) ∈ Comp) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
222157, 172, 220, 221syl3anc 1326 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆))
223171a1i 11 . . . . . . . . . . . . . . . . . . 19 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘)
22418restcldi 20977 . . . . . . . . . . . . . . . . . . 19 ((𝑘 𝑆 ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘𝑆) ∧ ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ⊆ 𝑘) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
22577, 222, 223, 224syl3anc 1326 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((2nd ↾ ( 𝑅 × 𝑆)) “ ((𝑠 × 𝑘) ∖ 𝑥)) ∈ (Clsd‘(𝑆t 𝑘)))
226155, 225eqeltrrd 2702 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘)))
227 resttop 20964 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ Top ∧ 𝑘 ∈ 𝒫 𝑆) → (𝑆t 𝑘) ∈ Top)
228150, 188, 227syl2anc 693 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑆t 𝑘) ∈ Top)
229 inss1 3833 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑘
230229, 152syl5sseq 3653 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘))
231 eqid 2622 . . . . . . . . . . . . . . . . . . 19 (𝑆t 𝑘) = (𝑆t 𝑘)
232231isopn2 20836 . . . . . . . . . . . . . . . . . 18 (((𝑆t 𝑘) ∈ Top ∧ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ (𝑆t 𝑘)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
233228, 230, 232syl2anc 693 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ((𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘) ↔ ( (𝑆t 𝑘) ∖ (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})) ∈ (Clsd‘(𝑆t 𝑘))))
234226, 233mpbird 247 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → (𝑘 ∩ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑆t 𝑘))
23570, 234syl5eqel 2705 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ (𝑘 ∈ 𝒫 𝑆 ∧ (𝑆t 𝑘) ∈ Comp)) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘))
236235expr 643 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑘 ∈ 𝒫 𝑆) → ((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
237236ralrimiva 2966 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))
23866, 19sylib 208 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (TopOn‘ 𝑆))
239 elkgen 21339 . . . . . . . . . . . . . 14 (𝑆 ∈ (TopOn‘ 𝑆) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
240238, 239syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆) ↔ ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ⊆ 𝑆 ∧ ∀𝑘 ∈ 𝒫 𝑆((𝑆t 𝑘) ∈ Comp → ({𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∩ 𝑘) ∈ (𝑆t 𝑘)))))
24169, 237, 240mpbir2and 957 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ (𝑘Gen‘𝑆))
24216adantr 481 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ (ran 𝑘Gen ∩ Haus))
243242, 2syl 17 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑆 ∈ ran 𝑘Gen)
244 kgenidm 21350 . . . . . . . . . . . . 13 (𝑆 ∈ ran 𝑘Gen → (𝑘Gen‘𝑆) = 𝑆)
245243, 244syl 17 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑘Gen‘𝑆) = 𝑆)
246241, 245eleqtrd 2703 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)
247 txopn 21405 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑢𝑅 ∧ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ∈ 𝑆)) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24865, 66, 67, 246, 247syl22anc 1327 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆))
24957adantr 481 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
250 simprr1 1109 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (1st𝑦) ∈ 𝑢)
25134adantr 481 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ 𝑆)
252 relxp 5227 . . . . . . . . . . . . . . 15 Rel (𝑠 × {(2nd𝑦)})
253252a1i 11 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑠 × {(2nd𝑦)}))
254 opelxp 5146 . . . . . . . . . . . . . . 15 (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) ↔ (𝑎𝑠𝑏 ∈ {(2nd𝑦)}))
25572sselda 3603 . . . . . . . . . . . . . . . . . 18 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → 𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥})
256 opeq1 4402 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = 𝑎 → ⟨𝑡, (2nd𝑦)⟩ = ⟨𝑎, (2nd𝑦)⟩)
257256eleq1d 2686 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = 𝑎 → (⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
258257elrab 3363 . . . . . . . . . . . . . . . . . . 19 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ↔ (𝑎 𝑅 ∧ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
259258simprbi 480 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
260255, 259syl 17 . . . . . . . . . . . . . . . . 17 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥)
261 elsni 4194 . . . . . . . . . . . . . . . . . . 19 (𝑏 ∈ {(2nd𝑦)} → 𝑏 = (2nd𝑦))
262261opeq2d 4409 . . . . . . . . . . . . . . . . . 18 (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ = ⟨𝑎, (2nd𝑦)⟩)
263262eleq1d 2686 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ {(2nd𝑦)} → (⟨𝑎, 𝑏⟩ ∈ 𝑥 ↔ ⟨𝑎, (2nd𝑦)⟩ ∈ 𝑥))
264260, 263syl5ibrcom 237 . . . . . . . . . . . . . . . 16 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑠) → (𝑏 ∈ {(2nd𝑦)} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
265264expimpd 629 . . . . . . . . . . . . . . 15 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑠𝑏 ∈ {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
266254, 265syl5bi 232 . . . . . . . . . . . . . 14 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {(2nd𝑦)}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
267253, 266relssdv 5212 . . . . . . . . . . . . 13 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑠 × {(2nd𝑦)}) ⊆ 𝑥)
268 sneq 4187 . . . . . . . . . . . . . . . 16 (𝑣 = (2nd𝑦) → {𝑣} = {(2nd𝑦)})
269268xpeq2d 5139 . . . . . . . . . . . . . . 15 (𝑣 = (2nd𝑦) → (𝑠 × {𝑣}) = (𝑠 × {(2nd𝑦)}))
270269sseq1d 3632 . . . . . . . . . . . . . 14 (𝑣 = (2nd𝑦) → ((𝑠 × {𝑣}) ⊆ 𝑥 ↔ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
271270elrab 3363 . . . . . . . . . . . . 13 ((2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ ((2nd𝑦) ∈ 𝑆 ∧ (𝑠 × {(2nd𝑦)}) ⊆ 𝑥))
272251, 267, 271sylanbrc 698 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (2nd𝑦) ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
273250, 272opelxpd 5149 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ⟨(1st𝑦), (2nd𝑦)⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
274249, 273eqeltrd 2701 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
275 relxp 5227 . . . . . . . . . . . 12 Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})
276275a1i 11 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → Rel (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
277 opelxp 5146 . . . . . . . . . . . 12 (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ↔ (𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}))
278128elrab 3363 . . . . . . . . . . . . . . 15 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} ↔ (𝑏 𝑆 ∧ (𝑠 × {𝑏}) ⊆ 𝑥))
279278simprbi 480 . . . . . . . . . . . . . 14 (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → (𝑠 × {𝑏}) ⊆ 𝑥)
280 simprr2 1110 . . . . . . . . . . . . . . . 16 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → 𝑢𝑠)
281280sselda 3603 . . . . . . . . . . . . . . 15 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → 𝑎𝑠)
282 vsnid 4209 . . . . . . . . . . . . . . 15 𝑏 ∈ {𝑏}
283 opelxpi 5148 . . . . . . . . . . . . . . 15 ((𝑎𝑠𝑏 ∈ {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
284281, 282, 283sylancl 694 . . . . . . . . . . . . . 14 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → ⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}))
285 ssel 3597 . . . . . . . . . . . . . 14 ((𝑠 × {𝑏}) ⊆ 𝑥 → (⟨𝑎, 𝑏⟩ ∈ (𝑠 × {𝑏}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
286279, 284, 285syl2imc 41 . . . . . . . . . . . . 13 ((((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) ∧ 𝑎𝑢) → (𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥} → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
287286expimpd 629 . . . . . . . . . . . 12 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ((𝑎𝑢𝑏 ∈ {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
288277, 287syl5bi 232 . . . . . . . . . . 11 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (⟨𝑎, 𝑏⟩ ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ⟨𝑎, 𝑏⟩ ∈ 𝑥))
289276, 288relssdv 5212 . . . . . . . . . 10 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)
290 eleq2 2690 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑦𝑡𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥})))
291 sseq1 3626 . . . . . . . . . . . 12 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → (𝑡𝑥 ↔ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥))
292290, 291anbi12d 747 . . . . . . . . . . 11 (𝑡 = (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) → ((𝑦𝑡𝑡𝑥) ↔ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)))
293292rspcev 3309 . . . . . . . . . 10 (((𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∈ (𝑅 ×t 𝑆) ∧ (𝑦 ∈ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ∧ (𝑢 × {𝑣 𝑆 ∣ (𝑠 × {𝑣}) ⊆ 𝑥}) ⊆ 𝑥)) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
294248, 274, 289, 293syl12anc 1324 . . . . . . . . 9 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ ((𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅) ∧ ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp))) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
295294expr 643 . . . . . . . 8 (((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) ∧ (𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥} ∧ 𝑢𝑅)) → (((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
296295rexlimdvva 3038 . . . . . . 7 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → (∃𝑠 ∈ 𝒫 {𝑡 𝑅 ∣ ⟨𝑡, (2nd𝑦)⟩ ∈ 𝑥}∃𝑢𝑅 ((1st𝑦) ∈ 𝑢𝑢𝑠 ∧ (𝑅t 𝑠) ∈ Comp) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
29764, 296mpd 15 . . . . . 6 ((((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) ∧ 𝑦𝑥) → ∃𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
298297ralrimiva 2966 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥))
2996adantr 481 . . . . . 6 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑅 ×t 𝑆) ∈ Top)
300 eltop2 20779 . . . . . 6 ((𝑅 ×t 𝑆) ∈ Top → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
301299, 300syl 17 . . . . 5 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → (𝑥 ∈ (𝑅 ×t 𝑆) ↔ ∀𝑦𝑥𝑡 ∈ (𝑅 ×t 𝑆)(𝑦𝑡𝑡𝑥)))
302298, 301mpbird 247 . . . 4 (((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) ∧ 𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆))) → 𝑥 ∈ (𝑅 ×t 𝑆))
303302ex 450 . . 3 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑥 ∈ (𝑘Gen‘(𝑅 ×t 𝑆)) → 𝑥 ∈ (𝑅 ×t 𝑆)))
304303ssrdv 3609 . 2 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆))
305 iskgen2 21351 . 2 ((𝑅 ×t 𝑆) ∈ ran 𝑘Gen ↔ ((𝑅 ×t 𝑆) ∈ Top ∧ (𝑘Gen‘(𝑅 ×t 𝑆)) ⊆ (𝑅 ×t 𝑆)))
3066, 304, 305sylanbrc 698 1 ((𝑅 ∈ 𝑛-Locally Comp ∧ 𝑆 ∈ (ran 𝑘Gen ∩ Haus)) → (𝑅 ×t 𝑆) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177  cop 4183   cuni 4436  cmpt 4729   I cid 5023   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117  Rel wrel 5119   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  t crest 16081  Topctop 20698  TopOnctopon 20715  Clsdccld 20820   Cn ccn 21028  Hauscha 21112  Compccmp 21189  𝑛-Locally cnlly 21268  𝑘Genckgen 21336   ×t ctx 21363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-nlly 21270  df-kgen 21337  df-tx 21365
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator