| Step | Hyp | Ref
| Expression |
| 1 | | xkohmeo.f |
. . 3
⊢ 𝐹 = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) |
| 2 | | xkohmeo.x |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | xkohmeo.y |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | | txtopon 21394 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | 2, 3, 4 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 6 | | topontop 20718 |
. . . . . 6
⊢ ((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) → (𝐽 ×t 𝐾) ∈ Top) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ Top) |
| 8 | | xkohmeo.l |
. . . . 5
⊢ (𝜑 → 𝐿 ∈ Top) |
| 9 | | eqid 2622 |
. . . . . 6
⊢ (𝐿 ^ko (𝐽 ×t 𝐾)) = (𝐿 ^ko (𝐽 ×t 𝐾)) |
| 10 | 9 | xkotopon 21403 |
. . . . 5
⊢ (((𝐽 ×t 𝐾) ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko (𝐽 ×t 𝐾)) ∈ (TopOn‘((𝐽 ×t 𝐾) Cn 𝐿))) |
| 11 | 7, 8, 10 | syl2anc 693 |
. . . 4
⊢ (𝜑 → (𝐿 ^ko (𝐽 ×t 𝐾)) ∈ (TopOn‘((𝐽 ×t 𝐾) Cn 𝐿))) |
| 12 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑓 ∈ V |
| 13 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 14 | 12, 13 | op1std 7178 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑓, 𝑥〉 → (1st ‘𝑧) = 𝑓) |
| 15 | 12, 13 | op2ndd 7179 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑓, 𝑥〉 → (2nd ‘𝑧) = 𝑥) |
| 16 | | eqidd 2623 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑓, 𝑥〉 → 𝑦 = 𝑦) |
| 17 | 14, 15, 16 | oveq123d 6671 |
. . . . . . 7
⊢ (𝑧 = 〈𝑓, 𝑥〉 → ((2nd ‘𝑧)(1st ‘𝑧)𝑦) = (𝑥𝑓𝑦)) |
| 18 | 17 | mpteq2dv 4745 |
. . . . . 6
⊢ (𝑧 = 〈𝑓, 𝑥〉 → (𝑦 ∈ 𝑌 ↦ ((2nd ‘𝑧)(1st ‘𝑧)𝑦)) = (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 19 | 18 | mpt2mpt 6752 |
. . . . 5
⊢ (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (𝑦 ∈ 𝑌 ↦ ((2nd ‘𝑧)(1st ‘𝑧)𝑦))) = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) |
| 20 | | txtopon 21394 |
. . . . . . 7
⊢ (((𝐿 ^ko (𝐽 ×t 𝐾)) ∈ (TopOn‘((𝐽 ×t 𝐾) Cn 𝐿)) ∧ 𝐽 ∈ (TopOn‘𝑋)) → ((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ∈ (TopOn‘(((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋))) |
| 21 | 11, 2, 20 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ∈ (TopOn‘(((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋))) |
| 22 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 23 | | vex 3203 |
. . . . . . . . . . 11
⊢ 𝑦 ∈ V |
| 24 | 22, 23 | op1std 7178 |
. . . . . . . . . 10
⊢ (𝑤 = 〈𝑧, 𝑦〉 → (1st ‘𝑤) = 𝑧) |
| 25 | 24 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑧, 𝑦〉 → (1st
‘(1st ‘𝑤)) = (1st ‘𝑧)) |
| 26 | 24 | fveq2d 6195 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑧, 𝑦〉 → (2nd
‘(1st ‘𝑤)) = (2nd ‘𝑧)) |
| 27 | 22, 23 | op2ndd 7179 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑧, 𝑦〉 → (2nd ‘𝑤) = 𝑦) |
| 28 | 25, 26, 27 | oveq123d 6671 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑧, 𝑦〉 → ((2nd
‘(1st ‘𝑤))(1st ‘(1st
‘𝑤))(2nd
‘𝑤)) =
((2nd ‘𝑧)(1st ‘𝑧)𝑦)) |
| 29 | 28 | mpt2mpt 6752 |
. . . . . . 7
⊢ (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ ((2nd
‘(1st ‘𝑤))(1st ‘(1st
‘𝑤))(2nd
‘𝑤))) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ ((2nd ‘𝑧)(1st ‘𝑧)𝑦)) |
| 30 | | txtopon 21394 |
. . . . . . . . 9
⊢ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ∈ (TopOn‘(((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋)) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) ∈ (TopOn‘((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌))) |
| 31 | 21, 3, 30 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) ∈ (TopOn‘((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌))) |
| 32 | | eqid 2622 |
. . . . . . . . . 10
⊢ ∪ 𝐿 =
∪ 𝐿 |
| 33 | 32 | toptopon 20722 |
. . . . . . . . 9
⊢ (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 34 | 8, 33 | sylib 208 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 35 | | xkohmeo.j |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ 𝑛-Locally
Comp) |
| 36 | | xkohmeo.k |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ 𝑛-Locally
Comp) |
| 37 | | txcmp 21446 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ Comp ∧ 𝑦 ∈ Comp) → (𝑥 ×t 𝑦) ∈ Comp) |
| 38 | 37 | txnlly 21440 |
. . . . . . . . 9
⊢ ((𝐽 ∈ 𝑛-Locally Comp
∧ 𝐾 ∈
𝑛-Locally Comp) → (𝐽 ×t 𝐾) ∈ 𝑛-Locally
Comp) |
| 39 | 35, 36, 38 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ 𝑛-Locally
Comp) |
| 40 | 25 | mpt2mpt 6752 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (1st
‘(1st ‘𝑤))) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ (1st ‘𝑧)) |
| 41 | 5 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 42 | 34 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 43 | | xp1st 7198 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) → (1st ‘𝑤) ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋)) |
| 44 | 43 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → (1st ‘𝑤) ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋)) |
| 45 | | xp1st 7198 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑤) ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) → (1st
‘(1st ‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 46 | 44, 45 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → (1st
‘(1st ‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) |
| 47 | | cnf2 21053 |
. . . . . . . . . . . . 13
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ (1st ‘(1st ‘𝑤)) ∈ ((𝐽 ×t 𝐾) Cn 𝐿)) → (1st
‘(1st ‘𝑤)):(𝑋 × 𝑌)⟶∪ 𝐿) |
| 48 | 41, 42, 46, 47 | syl3anc 1326 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → (1st
‘(1st ‘𝑤)):(𝑋 × 𝑌)⟶∪ 𝐿) |
| 49 | 48 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌)) → (1st
‘(1st ‘𝑤)) = (𝑢 ∈ (𝑋 × 𝑌) ↦ ((1st
‘(1st ‘𝑤))‘𝑢))) |
| 50 | 49 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (1st
‘(1st ‘𝑤))) = (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (𝑢 ∈ (𝑋 × 𝑌) ↦ ((1st
‘(1st ‘𝑤))‘𝑢)))) |
| 51 | 40, 50 | syl5eqr 2670 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ (1st ‘𝑧)) = (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (𝑢 ∈ (𝑋 × 𝑌) ↦ ((1st
‘(1st ‘𝑤))‘𝑢)))) |
| 52 | 21, 3 | cnmpt1st 21471 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ 𝑧) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn ((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽))) |
| 53 | | fveq2 6191 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (1st ‘𝑡) = (1st ‘𝑧)) |
| 54 | 53 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (1st ‘𝑡)) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (1st ‘𝑧)) |
| 55 | 14 | mpt2mpt 6752 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (1st ‘𝑧)) = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ 𝑓) |
| 56 | 11, 2 | cnmpt1st 21471 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ 𝑓) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 57 | 55, 56 | syl5eqel 2705 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (1st ‘𝑧)) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 58 | 54, 57 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (1st ‘𝑡)) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 59 | 21, 3, 52, 21, 58, 53 | cnmpt21 21474 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ (1st ‘𝑧)) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 60 | 51, 59 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (𝑢 ∈ (𝑋 × 𝑌) ↦ ((1st
‘(1st ‘𝑤))‘𝑢))) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 61 | 26 | mpt2mpt 6752 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (2nd
‘(1st ‘𝑤))) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ (2nd ‘𝑧)) |
| 62 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (2nd ‘𝑡) = (2nd ‘𝑧)) |
| 63 | 62 | cbvmptv 4750 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (2nd ‘𝑡)) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (2nd ‘𝑧)) |
| 64 | 15 | mpt2mpt 6752 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (2nd ‘𝑧)) = (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ 𝑥) |
| 65 | 11, 2 | cnmpt2nd 21472 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn 𝐽)) |
| 66 | 64, 65 | syl5eqel 2705 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (2nd ‘𝑧)) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn 𝐽)) |
| 67 | 63, 66 | syl5eqel 2705 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑡 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (2nd ‘𝑡)) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn 𝐽)) |
| 68 | 21, 3, 52, 21, 67, 62 | cnmpt21 21474 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ (2nd ‘𝑧)) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn 𝐽)) |
| 69 | 61, 68 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (2nd
‘(1st ‘𝑤))) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn 𝐽)) |
| 70 | 27 | mpt2mpt 6752 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (2nd ‘𝑤)) = (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 71 | 21, 3 | cnmpt2nd 21472 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn 𝐾)) |
| 72 | 70, 71 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ (2nd ‘𝑤)) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn 𝐾)) |
| 73 | 31, 69, 72 | cnmpt1t 21468 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ 〈(2nd
‘(1st ‘𝑤)), (2nd ‘𝑤)〉) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn (𝐽 ×t 𝐾))) |
| 74 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑢 = 〈(2nd
‘(1st ‘𝑤)), (2nd ‘𝑤)〉 → ((1st
‘(1st ‘𝑤))‘𝑢) = ((1st ‘(1st
‘𝑤))‘〈(2nd
‘(1st ‘𝑤)), (2nd ‘𝑤)〉)) |
| 75 | | df-ov 6653 |
. . . . . . . . 9
⊢
((2nd ‘(1st ‘𝑤))(1st ‘(1st
‘𝑤))(2nd
‘𝑤)) =
((1st ‘(1st ‘𝑤))‘〈(2nd
‘(1st ‘𝑤)), (2nd ‘𝑤)〉) |
| 76 | 74, 75 | syl6eqr 2674 |
. . . . . . . 8
⊢ (𝑢 = 〈(2nd
‘(1st ‘𝑤)), (2nd ‘𝑤)〉 → ((1st
‘(1st ‘𝑤))‘𝑢) = ((2nd ‘(1st
‘𝑤))(1st
‘(1st ‘𝑤))(2nd ‘𝑤))) |
| 77 | 31, 5, 34, 39, 60, 73, 76 | cnmptk1p 21488 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ((((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) × 𝑌) ↦ ((2nd
‘(1st ‘𝑤))(1st ‘(1st
‘𝑤))(2nd
‘𝑤))) ∈
((((𝐿 ^ko
(𝐽 ×t
𝐾)) ×t
𝐽) ×t
𝐾) Cn 𝐿)) |
| 78 | 29, 77 | syl5eqelr 2706 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋), 𝑦 ∈ 𝑌 ↦ ((2nd ‘𝑧)(1st ‘𝑧)𝑦)) ∈ ((((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) ×t 𝐾) Cn 𝐿)) |
| 79 | 21, 3, 78 | cnmpt2k 21491 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ (((𝐽 ×t 𝐾) Cn 𝐿) × 𝑋) ↦ (𝑦 ∈ 𝑌 ↦ ((2nd ‘𝑧)(1st ‘𝑧)𝑦))) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn (𝐿 ^ko 𝐾))) |
| 80 | 19, 79 | syl5eqelr 2706 |
. . . 4
⊢ (𝜑 → (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿), 𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦))) ∈ (((𝐿 ^ko (𝐽 ×t 𝐾)) ×t 𝐽) Cn (𝐿 ^ko 𝐾))) |
| 81 | 11, 2, 80 | cnmpt2k 21491 |
. . 3
⊢ (𝜑 → (𝑓 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↦ (𝑥 ∈ 𝑋 ↦ (𝑦 ∈ 𝑌 ↦ (𝑥𝑓𝑦)))) ∈ ((𝐿 ^ko (𝐽 ×t 𝐾)) Cn ((𝐿 ^ko 𝐾) ^ko 𝐽))) |
| 82 | 1, 81 | syl5eqel 2705 |
. 2
⊢ (𝜑 → 𝐹 ∈ ((𝐿 ^ko (𝐽 ×t 𝐾)) Cn ((𝐿 ^ko 𝐾) ^ko 𝐽))) |
| 83 | 2, 3, 1, 35, 36, 8 | xkocnv 21617 |
. . . 4
⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)))) |
| 84 | 13, 23 | op1std 7178 |
. . . . . . . 8
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (1st ‘𝑧) = 𝑥) |
| 85 | 84 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑔‘(1st ‘𝑧)) = (𝑔‘𝑥)) |
| 86 | 13, 23 | op2ndd 7179 |
. . . . . . 7
⊢ (𝑧 = 〈𝑥, 𝑦〉 → (2nd ‘𝑧) = 𝑦) |
| 87 | 85, 86 | fveq12d 6197 |
. . . . . 6
⊢ (𝑧 = 〈𝑥, 𝑦〉 → ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧)) = ((𝑔‘𝑥)‘𝑦)) |
| 88 | 87 | mpt2mpt 6752 |
. . . . 5
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧))) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦)) |
| 89 | 88 | mpteq2i 4741 |
. . . 4
⊢ (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧)))) = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ ((𝑔‘𝑥)‘𝑦))) |
| 90 | 83, 89 | syl6eqr 2674 |
. . 3
⊢ (𝜑 → ◡𝐹 = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧))))) |
| 91 | | nllytop 21276 |
. . . . . 6
⊢ (𝐽 ∈ 𝑛-Locally Comp
→ 𝐽 ∈
Top) |
| 92 | 35, 91 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ Top) |
| 93 | | nllytop 21276 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑛-Locally Comp
→ 𝐾 ∈
Top) |
| 94 | 36, 93 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ Top) |
| 95 | | xkotop 21391 |
. . . . . 6
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ Top) |
| 96 | 94, 8, 95 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → (𝐿 ^ko 𝐾) ∈ Top) |
| 97 | | eqid 2622 |
. . . . . 6
⊢ ((𝐿 ^ko 𝐾) ^ko 𝐽) = ((𝐿 ^ko 𝐾) ^ko 𝐽) |
| 98 | 97 | xkotopon 21403 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ (𝐿 ^ko 𝐾) ∈ Top) → ((𝐿 ^ko 𝐾) ^ko 𝐽) ∈ (TopOn‘(𝐽 Cn (𝐿 ^ko 𝐾)))) |
| 99 | 92, 96, 98 | syl2anc 693 |
. . . 4
⊢ (𝜑 → ((𝐿 ^ko 𝐾) ^ko 𝐽) ∈ (TopOn‘(𝐽 Cn (𝐿 ^ko 𝐾)))) |
| 100 | | vex 3203 |
. . . . . . . . 9
⊢ 𝑔 ∈ V |
| 101 | 100, 22 | op1std 7178 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑔, 𝑧〉 → (1st ‘𝑤) = 𝑔) |
| 102 | 100, 22 | op2ndd 7179 |
. . . . . . . . 9
⊢ (𝑤 = 〈𝑔, 𝑧〉 → (2nd ‘𝑤) = 𝑧) |
| 103 | 102 | fveq2d 6195 |
. . . . . . . 8
⊢ (𝑤 = 〈𝑔, 𝑧〉 → (1st
‘(2nd ‘𝑤)) = (1st ‘𝑧)) |
| 104 | 101, 103 | fveq12d 6197 |
. . . . . . 7
⊢ (𝑤 = 〈𝑔, 𝑧〉 → ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))) = (𝑔‘(1st ‘𝑧))) |
| 105 | 102 | fveq2d 6195 |
. . . . . . 7
⊢ (𝑤 = 〈𝑔, 𝑧〉 → (2nd
‘(2nd ‘𝑤)) = (2nd ‘𝑧)) |
| 106 | 104, 105 | fveq12d 6197 |
. . . . . 6
⊢ (𝑤 = 〈𝑔, 𝑧〉 → (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘(2nd
‘(2nd ‘𝑤))) = ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧))) |
| 107 | 106 | mpt2mpt 6752 |
. . . . 5
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘(2nd
‘(2nd ‘𝑤)))) = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧))) |
| 108 | | txtopon 21394 |
. . . . . . 7
⊢ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ∈ (TopOn‘(𝐽 Cn (𝐿 ^ko 𝐾))) ∧ (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) → (((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) ∈ (TopOn‘((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)))) |
| 109 | 99, 5, 108 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) ∈ (TopOn‘((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)))) |
| 110 | 3 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → 𝐾 ∈ (TopOn‘𝑌)) |
| 111 | 34 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → 𝐿 ∈ (TopOn‘∪ 𝐿)) |
| 112 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 113 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢ (𝐿 ^ko 𝐾) = (𝐿 ^ko 𝐾) |
| 114 | 113 | xkotopon 21403 |
. . . . . . . . . . . . . 14
⊢ ((𝐾 ∈ Top ∧ 𝐿 ∈ Top) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 115 | 94, 8, 114 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 116 | 115 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿))) |
| 117 | | xp1st 7198 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) → (1st ‘𝑤) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 118 | 117 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (1st ‘𝑤) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) |
| 119 | | cnf2 21053 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐿 ^ko 𝐾) ∈ (TopOn‘(𝐾 Cn 𝐿)) ∧ (1st ‘𝑤) ∈ (𝐽 Cn (𝐿 ^ko 𝐾))) → (1st ‘𝑤):𝑋⟶(𝐾 Cn 𝐿)) |
| 120 | 112, 116,
118, 119 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (1st ‘𝑤):𝑋⟶(𝐾 Cn 𝐿)) |
| 121 | | xp2nd 7199 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) → (2nd ‘𝑤) ∈ (𝑋 × 𝑌)) |
| 122 | 121 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (2nd ‘𝑤) ∈ (𝑋 × 𝑌)) |
| 123 | | xp1st 7198 |
. . . . . . . . . . . 12
⊢
((2nd ‘𝑤) ∈ (𝑋 × 𝑌) → (1st
‘(2nd ‘𝑤)) ∈ 𝑋) |
| 124 | 122, 123 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (1st
‘(2nd ‘𝑤)) ∈ 𝑋) |
| 125 | 120, 124 | ffvelrnd 6360 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))) ∈ (𝐾 Cn 𝐿)) |
| 126 | | cnf2 21053 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ 𝐿 ∈ (TopOn‘∪ 𝐿)
∧ ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))) ∈ (𝐾 Cn 𝐿)) → ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))):𝑌⟶∪ 𝐿) |
| 127 | 110, 111,
125, 126 | syl3anc 1326 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))):𝑌⟶∪ 𝐿) |
| 128 | 127 | feqmptd 6249 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤))) = (𝑦 ∈ 𝑌 ↦ (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘𝑦))) |
| 129 | 128 | mpteq2dva 4744 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))) = (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (𝑦 ∈ 𝑌 ↦ (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘𝑦)))) |
| 130 | 101 | mpt2mpt 6752 |
. . . . . . . . . 10
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (1st ‘𝑤)) = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑔) |
| 131 | 120 | feqmptd 6249 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌))) → (1st ‘𝑤) = (𝑥 ∈ 𝑋 ↦ ((1st ‘𝑤)‘𝑥))) |
| 132 | 131 | mpteq2dva 4744 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (1st ‘𝑤)) = (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (𝑥 ∈ 𝑋 ↦ ((1st ‘𝑤)‘𝑥)))) |
| 133 | 130, 132 | syl5eqr 2670 |
. . . . . . . . 9
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑔) = (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (𝑥 ∈ 𝑋 ↦ ((1st ‘𝑤)‘𝑥)))) |
| 134 | 99, 5 | cnmpt1st 21471 |
. . . . . . . . 9
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑔) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn ((𝐿 ^ko 𝐾) ^ko 𝐽))) |
| 135 | 133, 134 | eqeltrrd 2702 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (𝑥 ∈ 𝑋 ↦ ((1st ‘𝑤)‘𝑥))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn ((𝐿 ^ko 𝐾) ^ko 𝐽))) |
| 136 | 103 | mpt2mpt 6752 |
. . . . . . . . 9
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (1st
‘(2nd ‘𝑤))) = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
| 137 | 99, 5 | cnmpt2nd 21472 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ 𝑧) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn (𝐽 ×t 𝐾))) |
| 138 | 53 | cbvmptv 4750 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑡)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) |
| 139 | 84 | mpt2mpt 6752 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) |
| 140 | 2, 3 | cnmpt1st 21471 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑥) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 141 | 139, 140 | syl5eqel 2705 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 142 | 138, 141 | syl5eqel 2705 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑡 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑡)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)) |
| 143 | 99, 5, 137, 5, 142, 53 | cnmpt21 21474 |
. . . . . . . . 9
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ (1st ‘𝑧)) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn 𝐽)) |
| 144 | 136, 143 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (1st
‘(2nd ‘𝑤))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn 𝐽)) |
| 145 | | fveq2 6191 |
. . . . . . . 8
⊢ (𝑥 = (1st
‘(2nd ‘𝑤)) → ((1st ‘𝑤)‘𝑥) = ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))) |
| 146 | 109, 2, 115, 35, 135, 144, 145 | cnmptk1p 21488 |
. . . . . . 7
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ ((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn (𝐿 ^ko 𝐾))) |
| 147 | 129, 146 | eqeltrrd 2702 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (𝑦 ∈ 𝑌 ↦ (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘𝑦))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn (𝐿 ^ko 𝐾))) |
| 148 | 105 | mpt2mpt 6752 |
. . . . . . 7
⊢ (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (2nd
‘(2nd ‘𝑤))) = (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
| 149 | 62 | cbvmptv 4750 |
. . . . . . . . 9
⊢ (𝑡 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑡)) = (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) |
| 150 | 86 | mpt2mpt 6752 |
. . . . . . . . . 10
⊢ (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) |
| 151 | 2, 3 | cnmpt2nd 21472 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 𝑦) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 152 | 150, 151 | syl5eqel 2705 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 153 | 149, 152 | syl5eqel 2705 |
. . . . . . . 8
⊢ (𝜑 → (𝑡 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑡)) ∈ ((𝐽 ×t 𝐾) Cn 𝐾)) |
| 154 | 99, 5, 137, 5, 153, 62 | cnmpt21 21474 |
. . . . . . 7
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ (2nd ‘𝑧)) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn 𝐾)) |
| 155 | 148, 154 | syl5eqel 2705 |
. . . . . 6
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (2nd
‘(2nd ‘𝑤))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn 𝐾)) |
| 156 | | fveq2 6191 |
. . . . . 6
⊢ (𝑦 = (2nd
‘(2nd ‘𝑤)) → (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘𝑦) = (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘(2nd
‘(2nd ‘𝑤)))) |
| 157 | 109, 3, 34, 36, 147, 155, 156 | cnmptk1p 21488 |
. . . . 5
⊢ (𝜑 → (𝑤 ∈ ((𝐽 Cn (𝐿 ^ko 𝐾)) × (𝑋 × 𝑌)) ↦ (((1st ‘𝑤)‘(1st
‘(2nd ‘𝑤)))‘(2nd
‘(2nd ‘𝑤)))) ∈ ((((𝐿 ^ko 𝐾) ^ko 𝐽) ×t (𝐽 ×t 𝐾)) Cn 𝐿)) |
| 158 | 107, 157 | syl5eqelr 2706 |
. . . 4
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)), 𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧))) ∈
((((𝐿 ^ko
𝐾) ^ko
𝐽) ×t
(𝐽 ×t
𝐾)) Cn 𝐿)) |
| 159 | 99, 5, 158 | cnmpt2k 21491 |
. . 3
⊢ (𝜑 → (𝑔 ∈ (𝐽 Cn (𝐿 ^ko 𝐾)) ↦ (𝑧 ∈ (𝑋 × 𝑌) ↦ ((𝑔‘(1st ‘𝑧))‘(2nd
‘𝑧)))) ∈
(((𝐿 ^ko
𝐾) ^ko
𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 160 | 90, 159 | eqeltrd 2701 |
. 2
⊢ (𝜑 → ◡𝐹 ∈ (((𝐿 ^ko 𝐾) ^ko 𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾)))) |
| 161 | | ishmeo 21562 |
. 2
⊢ (𝐹 ∈ ((𝐿 ^ko (𝐽 ×t 𝐾))Homeo((𝐿 ^ko 𝐾) ^ko 𝐽)) ↔ (𝐹 ∈ ((𝐿 ^ko (𝐽 ×t 𝐾)) Cn ((𝐿 ^ko 𝐾) ^ko 𝐽)) ∧ ◡𝐹 ∈ (((𝐿 ^ko 𝐾) ^ko 𝐽) Cn (𝐿 ^ko (𝐽 ×t 𝐾))))) |
| 162 | 82, 160, 161 | sylanbrc 698 |
1
⊢ (𝜑 → 𝐹 ∈ ((𝐿 ^ko (𝐽 ×t 𝐾))Homeo((𝐿 ^ko 𝐾) ^ko 𝐽))) |