| Step | Hyp | Ref
| Expression |
| 1 | | vdwapfval 15675 |
. . . . . . 7
⊢ (𝐾 ∈ ℕ0
→ (AP‘𝐾) =
(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
| 2 | 1 | 3ad2ant1 1082 |
. . . . . 6
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (AP‘𝐾) =
(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))) |
| 3 | 2 | oveqd 6667 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷)) |
| 4 | | oveq2 6658 |
. . . . . . . . . 10
⊢ (𝑑 = 𝐷 → (𝑚 · 𝑑) = (𝑚 · 𝐷)) |
| 5 | | oveq12 6659 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ (𝑚 · 𝑑) = (𝑚 · 𝐷)) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷))) |
| 6 | 4, 5 | sylan2 491 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → (𝑎 + (𝑚 · 𝑑)) = (𝐴 + (𝑚 · 𝐷))) |
| 7 | 6 | mpteq2dv 4745 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
| 8 | 7 | rneqd 5353 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑑 = 𝐷) → ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
| 9 | | eqid 2622 |
. . . . . . 7
⊢ (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) = (𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑)))) |
| 10 | | ovex 6678 |
. . . . . . . . 9
⊢
(0...(𝐾 − 1))
∈ V |
| 11 | 10 | mptex 6486 |
. . . . . . . 8
⊢ (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V |
| 12 | 11 | rnex 7100 |
. . . . . . 7
⊢ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) ∈ V |
| 13 | 8, 9, 12 | ovmpt2a 6791 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
| 14 | 13 | 3adant1 1079 |
. . . . 5
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(𝑎 ∈ ℕ, 𝑑 ∈ ℕ ↦ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝑎 + (𝑚 · 𝑑))))𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
| 15 | 3, 14 | eqtrd 2656 |
. . . 4
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = ran (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷)))) |
| 16 | | eqid 2622 |
. . . . 5
⊢ (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = (𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) |
| 17 | 16 | rnmpt 5371 |
. . . 4
⊢ ran
(𝑚 ∈ (0...(𝐾 − 1)) ↦ (𝐴 + (𝑚 · 𝐷))) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} |
| 18 | 15, 17 | syl6eq 2672 |
. . 3
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝐴(AP‘𝐾)𝐷) = {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))}) |
| 19 | 18 | eleq2d 2687 |
. 2
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ 𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))})) |
| 20 | | id 22 |
. . . . 5
⊢ (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 = (𝐴 + (𝑚 · 𝐷))) |
| 21 | | ovex 6678 |
. . . . 5
⊢ (𝐴 + (𝑚 · 𝐷)) ∈ V |
| 22 | 20, 21 | syl6eqel 2709 |
. . . 4
⊢ (𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V) |
| 23 | 22 | rexlimivw 3029 |
. . 3
⊢
(∃𝑚 ∈
(0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)) → 𝑋 ∈ V) |
| 24 | | eqeq1 2626 |
. . . 4
⊢ (𝑥 = 𝑋 → (𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ 𝑋 = (𝐴 + (𝑚 · 𝐷)))) |
| 25 | 24 | rexbidv 3052 |
. . 3
⊢ (𝑥 = 𝑋 → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷)) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) |
| 26 | 23, 25 | elab3 3358 |
. 2
⊢ (𝑋 ∈ {𝑥 ∣ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = (𝐴 + (𝑚 · 𝐷))} ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷))) |
| 27 | 19, 26 | syl6bb 276 |
1
⊢ ((𝐾 ∈ ℕ0
∧ 𝐴 ∈ ℕ
∧ 𝐷 ∈ ℕ)
→ (𝑋 ∈ (𝐴(AP‘𝐾)𝐷) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑋 = (𝐴 + (𝑚 · 𝐷)))) |