MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwapval Structured version   Visualization version   Unicode version

Theorem vdwapval 15677
Description: Value of the arithmetic progression function. (Contributed by Mario Carneiro, 18-Aug-2014.)
Assertion
Ref Expression
vdwapval  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( X  e.  ( A
(AP `  K ) D )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) X  =  ( A  +  ( m  x.  D ) ) ) )
Distinct variable groups:    A, m    D, m    m, K    m, X

Proof of Theorem vdwapval
Dummy variables  a 
d  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vdwapfval 15675 . . . . . . 7  |-  ( K  e.  NN0  ->  (AP `  K )  =  ( a  e.  NN , 
d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) ) )
213ad2ant1 1082 . . . . . 6  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  (AP `  K )  =  ( a  e.  NN , 
d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) ) )
32oveqd 6667 . . . . 5  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  K ) D )  =  ( A ( a  e.  NN ,  d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) ) ) D ) )
4 oveq2 6658 . . . . . . . . . 10  |-  ( d  =  D  ->  (
m  x.  d )  =  ( m  x.  D ) )
5 oveq12 6659 . . . . . . . . . 10  |-  ( ( a  =  A  /\  ( m  x.  d
)  =  ( m  x.  D ) )  ->  ( a  +  ( m  x.  d
) )  =  ( A  +  ( m  x.  D ) ) )
64, 5sylan2 491 . . . . . . . . 9  |-  ( ( a  =  A  /\  d  =  D )  ->  ( a  +  ( m  x.  d ) )  =  ( A  +  ( m  x.  D ) ) )
76mpteq2dv 4745 . . . . . . . 8  |-  ( ( a  =  A  /\  d  =  D )  ->  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) )  =  ( m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( A  +  ( m  x.  D ) ) ) )
87rneqd 5353 . . . . . . 7  |-  ( ( a  =  A  /\  d  =  D )  ->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) )  =  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( A  +  ( m  x.  D
) ) ) )
9 eqid 2622 . . . . . . 7  |-  ( a  e.  NN ,  d  e.  NN  |->  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( a  +  ( m  x.  d ) ) ) )  =  ( a  e.  NN , 
d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) ) 
|->  ( a  +  ( m  x.  d ) ) ) )
10 ovex 6678 . . . . . . . . 9  |-  ( 0 ... ( K  - 
1 ) )  e. 
_V
1110mptex 6486 . . . . . . . 8  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( A  +  ( m  x.  D ) ) )  e.  _V
1211rnex 7100 . . . . . . 7  |-  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( A  +  ( m  x.  D ) ) )  e.  _V
138, 9, 12ovmpt2a 6791 . . . . . 6  |-  ( ( A  e.  NN  /\  D  e.  NN )  ->  ( A ( a  e.  NN ,  d  e.  NN  |->  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( a  +  ( m  x.  d ) ) ) ) D )  =  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( A  +  ( m  x.  D ) ) ) )
14133adant1 1079 . . . . 5  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A ( a  e.  NN ,  d  e.  NN  |->  ran  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( a  +  ( m  x.  d
) ) ) ) D )  =  ran  ( m  e.  (
0 ... ( K  - 
1 ) )  |->  ( A  +  ( m  x.  D ) ) ) )
153, 14eqtrd 2656 . . . 4  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  K ) D )  =  ran  ( m  e.  (
0 ... ( K  - 
1 ) )  |->  ( A  +  ( m  x.  D ) ) ) )
16 eqid 2622 . . . . 5  |-  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( A  +  ( m  x.  D ) ) )  =  ( m  e.  ( 0 ... ( K  -  1 ) )  |->  ( A  +  ( m  x.  D
) ) )
1716rnmpt 5371 . . . 4  |-  ran  (
m  e.  ( 0 ... ( K  - 
1 ) )  |->  ( A  +  ( m  x.  D ) ) )  =  { x  |  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( A  +  ( m  x.  D ) ) }
1815, 17syl6eq 2672 . . 3  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( A (AP `  K ) D )  =  {
x  |  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( A  +  ( m  x.  D ) ) } )
1918eleq2d 2687 . 2  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( X  e.  ( A
(AP `  K ) D )  <->  X  e.  { x  |  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( A  +  ( m  x.  D ) ) } ) )
20 id 22 . . . . 5  |-  ( X  =  ( A  +  ( m  x.  D
) )  ->  X  =  ( A  +  ( m  x.  D
) ) )
21 ovex 6678 . . . . 5  |-  ( A  +  ( m  x.  D ) )  e. 
_V
2220, 21syl6eqel 2709 . . . 4  |-  ( X  =  ( A  +  ( m  x.  D
) )  ->  X  e.  _V )
2322rexlimivw 3029 . . 3  |-  ( E. m  e.  ( 0 ... ( K  - 
1 ) ) X  =  ( A  +  ( m  x.  D
) )  ->  X  e.  _V )
24 eqeq1 2626 . . . 4  |-  ( x  =  X  ->  (
x  =  ( A  +  ( m  x.  D ) )  <->  X  =  ( A  +  (
m  x.  D ) ) ) )
2524rexbidv 3052 . . 3  |-  ( x  =  X  ->  ( E. m  e.  (
0 ... ( K  - 
1 ) ) x  =  ( A  +  ( m  x.  D
) )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) X  =  ( A  +  ( m  x.  D ) ) ) )
2623, 25elab3 3358 . 2  |-  ( X  e.  { x  |  E. m  e.  ( 0 ... ( K  -  1 ) ) x  =  ( A  +  ( m  x.  D ) ) }  <->  E. m  e.  (
0 ... ( K  - 
1 ) ) X  =  ( A  +  ( m  x.  D
) ) )
2719, 26syl6bb 276 1  |-  ( ( K  e.  NN0  /\  A  e.  NN  /\  D  e.  NN )  ->  ( X  e.  ( A
(AP `  K ) D )  <->  E. m  e.  ( 0 ... ( K  -  1 ) ) X  =  ( A  +  ( m  x.  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   E.wrex 2913   _Vcvv 3200    |-> cmpt 4729   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   0cc0 9936   1c1 9937    + caddc 9939    x. cmul 9941    - cmin 10266   NNcn 11020   NN0cn0 11292   ...cfz 12326  APcvdwa 15669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-vdwap 15672
This theorem is referenced by:  vdwapun  15678  vdwap0  15680  vdwmc2  15683  vdwlem1  15685  vdwlem2  15686  vdwlem6  15690  vdwlem8  15692
  Copyright terms: Public domain W3C validator