| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . . . 6
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ) |
| 2 | | vdwlem2.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 3 | | nnaddcl 11042 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
| 4 | 1, 2, 3 | syl2anr 495 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
| 5 | | simpllr 799 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ) |
| 6 | 5 | nncnd 11036 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ) |
| 7 | 2 | ad3antrrr 766 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ) |
| 8 | 7 | nncnd 11036 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ) |
| 9 | | elfznn0 12433 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0) |
| 10 | 9 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0) |
| 11 | 10 | nn0cnd 11353 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ) |
| 12 | | simplrl 800 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ) |
| 13 | 12 | nncnd 11036 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ) |
| 14 | 11, 13 | mulcld 10060 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ) |
| 15 | 6, 8, 14 | add32d 10263 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
| 16 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐})) |
| 17 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)) |
| 18 | | oveq1 6657 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑)) |
| 19 | 18 | oveq2d 6666 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) |
| 20 | 19 | eqeq2d 2632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ((𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)) ↔ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))) |
| 21 | 20 | rspcev 3309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
| 22 | 17, 21 | mpan2 707 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
| 23 | 22 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
| 24 | | vdwlem2.k |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 25 | 24 | ad2antrr 762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐾 ∈
ℕ0) |
| 26 | 25 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) |
| 27 | | vdwapval 15677 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ 𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ)
→ ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
| 28 | 26, 5, 12, 27 | syl3anc 1326 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
| 29 | 23, 28 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑)) |
| 30 | 16, 29 | sseldd 3604 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐})) |
| 31 | | elfznn 12370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ) |
| 32 | | nnaddcl 11042 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ) |
| 33 | 31, 2, 32 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ) |
| 34 | | nnuz 11723 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ℕ =
(ℤ≥‘1) |
| 35 | 33, 34 | syl6eleq 2711 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈
(ℤ≥‘1)) |
| 36 | | vdwlem2.m |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) |
| 38 | | elfzuz3 12339 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ≥‘𝑥)) |
| 39 | 2 | nnzd 11481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 40 | | eluzadd 11716 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑊 ∈
(ℤ≥‘𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
| 41 | 38, 39, 40 | syl2anr 495 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
| 42 | | uztrn 11704 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑀 ∈
(ℤ≥‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
| 43 | 37, 41, 42 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
| 44 | | elfzuzb 12336 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ≥‘1)
∧ 𝑀 ∈
(ℤ≥‘(𝑥 + 𝑁)))) |
| 45 | 35, 43, 44 | sylanbrc 698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀)) |
| 46 | | vdwlem2.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝑅) |
| 47 | 46 | ffvelrnda 6359 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
| 48 | 45, 47 | syldan 487 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
| 49 | | vdwlem2.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁))) |
| 50 | 48, 49 | fmptd 6385 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) |
| 51 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:(1...𝑊)⟶𝑅 → 𝐺 Fn (1...𝑊)) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 Fn (1...𝑊)) |
| 53 | 52 | ad3antrrr 766 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊)) |
| 54 | | fniniseg 6338 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
| 55 | 53, 54 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
| 56 | 30, 55 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)) |
| 57 | 56 | simpld 475 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊)) |
| 58 | 45 | ralrimiva 2966 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
| 59 | 58 | ad3antrrr 766 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
| 60 | | oveq1 6657 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
| 61 | 60 | eleq1d 2686 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))) |
| 62 | 61 | rspcv 3305 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))) |
| 63 | 57, 59, 62 | sylc 65 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)) |
| 64 | 15, 63 | eqeltrd 2701 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)) |
| 65 | 15 | fveq2d 6195 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
| 66 | 60 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
| 67 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V |
| 68 | 66, 49, 67 | fvmpt 6282 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
| 69 | 57, 68 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
| 70 | 56 | simprd 479 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐) |
| 71 | 65, 69, 70 | 3eqtr2d 2662 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐) |
| 72 | 64, 71 | jca 554 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
| 73 | | eleq1 2689 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))) |
| 74 | | fveq2 6191 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝐹‘𝑥) = (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
| 75 | 74 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹‘𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
| 76 | 73, 75 | anbi12d 747 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))) |
| 77 | 72, 76 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
| 78 | 77 | rexlimdva 3031 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
| 79 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ) |
| 80 | | simprl 794 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ) |
| 81 | | vdwapval 15677 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
| 82 | 25, 79, 80, 81 | syl3anc 1326 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
| 83 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ (𝐹:(1...𝑀)⟶𝑅 → 𝐹 Fn (1...𝑀)) |
| 84 | 46, 83 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn (1...𝑀)) |
| 85 | 84 | ad2antrr 762 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀)) |
| 86 | | fniniseg 6338 |
. . . . . . . . . 10
⊢ (𝐹 Fn (1...𝑀) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
| 87 | 85, 86 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
| 88 | 78, 82, 87 | 3imtr4d 283 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
| 89 | 88 | ssrdv 3609 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 90 | 89 | expr 643 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 91 | 90 | reximdva 3017 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 92 | | oveq1 6657 |
. . . . . . . 8
⊢ (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑)) |
| 93 | 92 | sseq1d 3632 |
. . . . . . 7
⊢ (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 94 | 93 | rexbidv 3052 |
. . . . . 6
⊢ (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 95 | 94 | rspcev 3309 |
. . . . 5
⊢ (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
| 96 | 4, 91, 95 | syl6an 568 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 97 | 96 | rexlimdva 3031 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 98 | 97 | eximdv 1846 |
. 2
⊢ (𝜑 → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 99 | | ovex 6678 |
. . 3
⊢
(1...𝑊) ∈
V |
| 100 | 99, 24, 50 | vdwmc 15682 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) |
| 101 | | ovex 6678 |
. . 3
⊢
(1...𝑀) ∈
V |
| 102 | 101, 24, 46 | vdwmc 15682 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
| 103 | 98, 100, 102 | 3imtr4d 283 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹)) |