MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunress Structured version   Visualization version   GIF version

Theorem wunress 15940
Description: Closure of structure restriction in a weak universe. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunress.1 (𝜑𝑈 ∈ WUni)
wunress.2 (𝜑 → ω ∈ 𝑈)
wunress.3 (𝜑𝑊𝑈)
Assertion
Ref Expression
wunress (𝜑 → (𝑊s 𝐴) ∈ 𝑈)

Proof of Theorem wunress
StepHypRef Expression
1 wunress.3 . . . . 5 (𝜑𝑊𝑈)
2 eqid 2622 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
3 eqid 2622 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
42, 3ressval 15927 . . . . 5 ((𝑊𝑈𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
51, 4sylan 488 . . . 4 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) = if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)))
6 wunress.1 . . . . . . 7 (𝜑𝑈 ∈ WUni)
7 df-base 15863 . . . . . . . . 9 Base = Slot 1
8 wunress.2 . . . . . . . . . 10 (𝜑 → ω ∈ 𝑈)
96, 8wunndx 15878 . . . . . . . . 9 (𝜑 → ndx ∈ 𝑈)
107, 6, 9wunstr 15881 . . . . . . . 8 (𝜑 → (Base‘ndx) ∈ 𝑈)
11 incom 3805 . . . . . . . . 9 (𝐴 ∩ (Base‘𝑊)) = ((Base‘𝑊) ∩ 𝐴)
127, 6, 1wunstr 15881 . . . . . . . . . 10 (𝜑 → (Base‘𝑊) ∈ 𝑈)
136, 12wunin 9535 . . . . . . . . 9 (𝜑 → ((Base‘𝑊) ∩ 𝐴) ∈ 𝑈)
1411, 13syl5eqel 2705 . . . . . . . 8 (𝜑 → (𝐴 ∩ (Base‘𝑊)) ∈ 𝑈)
156, 10, 14wunop 9544 . . . . . . 7 (𝜑 → ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩ ∈ 𝑈)
166, 1, 15wunsets 15900 . . . . . 6 (𝜑 → (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩) ∈ 𝑈)
171, 16ifcld 4131 . . . . 5 (𝜑 → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
1817adantr 481 . . . 4 ((𝜑𝐴 ∈ V) → if((Base‘𝑊) ⊆ 𝐴, 𝑊, (𝑊 sSet ⟨(Base‘ndx), (𝐴 ∩ (Base‘𝑊))⟩)) ∈ 𝑈)
195, 18eqeltrd 2701 . . 3 ((𝜑𝐴 ∈ V) → (𝑊s 𝐴) ∈ 𝑈)
2019ex 450 . 2 (𝜑 → (𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
216wun0 9540 . . 3 (𝜑 → ∅ ∈ 𝑈)
22 reldmress 15926 . . . . 5 Rel dom ↾s
2322ovprc2 6685 . . . 4 𝐴 ∈ V → (𝑊s 𝐴) = ∅)
2423eleq1d 2686 . . 3 𝐴 ∈ V → ((𝑊s 𝐴) ∈ 𝑈 ↔ ∅ ∈ 𝑈))
2521, 24syl5ibrcom 237 . 2 (𝜑 → (¬ 𝐴 ∈ V → (𝑊s 𝐴) ∈ 𝑈))
2620, 25pm2.61d 170 1 (𝜑 → (𝑊s 𝐴) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  wss 3574  c0 3915  ifcif 4086  cop 4183  cfv 5888  (class class class)co 6650  ωcom 7065  WUnicwun 9522  1c1 9937  ndxcnx 15854   sSet csts 15855  Basecbs 15857  s cress 15858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-pm 7860  df-wun 9524  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-plp 9805  df-ltp 9807  df-enr 9877  df-nr 9878  df-c 9942  df-nn 11021  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator