Proof of Theorem xdivrec
| Step | Hyp | Ref
| Expression |
| 1 | | simp2 1062 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ∈
ℝ) |
| 2 | 1 | rexrd 10089 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ∈
ℝ*) |
| 3 | | simp1 1061 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐴 ∈
ℝ*) |
| 4 | | 1re 10039 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 5 | 4 | rexri 10097 |
. . . . . . . 8
⊢ 1 ∈
ℝ* |
| 6 | 5 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → 1
∈ ℝ*) |
| 7 | | simp3 1063 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
𝐵 ≠ 0) |
| 8 | 6, 1, 7 | xdivcld 29631 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → (1
/𝑒 𝐵)
∈ ℝ*) |
| 9 | 3, 8 | xmulcld 12132 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e (1
/𝑒 𝐵))
∈ ℝ*) |
| 10 | | xmulcom 12096 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ (𝐴
·e (1 /𝑒 𝐵)) ∈ ℝ*) → (𝐵 ·e (𝐴 ·e (1
/𝑒 𝐵)))
= ((𝐴 ·e
(1 /𝑒 𝐵)) ·e 𝐵)) |
| 11 | 2, 9, 10 | syl2anc 693 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= ((𝐴 ·e
(1 /𝑒 𝐵)) ·e 𝐵)) |
| 12 | | xmulass 12117 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ ((𝐴
·e (1 /𝑒 𝐵)) ·e 𝐵) = (𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵))) |
| 13 | 3, 8, 2, 12 | syl3anc 1326 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝐴 ·e (1
/𝑒 𝐵))
·e 𝐵) =
(𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵))) |
| 14 | | xmulcom 12096 |
. . . . . . 7
⊢ (((1
/𝑒 𝐵)
∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((1
/𝑒 𝐵)
·e 𝐵) =
(𝐵 ·e (1
/𝑒 𝐵))) |
| 15 | 8, 2, 14 | syl2anc 693 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵)
·e 𝐵) =
(𝐵 ·e (1
/𝑒 𝐵))) |
| 16 | | eqid 2622 |
. . . . . . 7
⊢ (1
/𝑒 𝐵) =
(1 /𝑒 𝐵) |
| 17 | | xdivmul 29633 |
. . . . . . . 8
⊢ ((1
∈ ℝ* ∧ (1 /𝑒 𝐵) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((1
/𝑒 𝐵) =
(1 /𝑒 𝐵)
↔ (𝐵
·e (1 /𝑒 𝐵)) = 1)) |
| 18 | 6, 8, 1, 7, 17 | syl112anc 1330 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵) =
(1 /𝑒 𝐵)
↔ (𝐵
·e (1 /𝑒 𝐵)) = 1)) |
| 19 | 16, 18 | mpbii 223 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e (1
/𝑒 𝐵)) =
1) |
| 20 | 15, 19 | eqtrd 2656 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) → ((1
/𝑒 𝐵)
·e 𝐵) =
1) |
| 21 | 20 | oveq2d 6666 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e ((1
/𝑒 𝐵)
·e 𝐵)) =
(𝐴 ·e
1)) |
| 22 | 11, 13, 21 | 3eqtrd 2660 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= (𝐴 ·e
1)) |
| 23 | | xmulid1 12109 |
. . . 4
⊢ (𝐴 ∈ ℝ*
→ (𝐴
·e 1) = 𝐴) |
| 24 | 3, 23 | syl 17 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 ·e 1)
= 𝐴) |
| 25 | 22, 24 | eqtrd 2656 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐵 ·e
(𝐴 ·e (1
/𝑒 𝐵)))
= 𝐴) |
| 26 | | xdivmul 29633 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ (𝐴
·e (1 /𝑒 𝐵)) ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → ((𝐴 /𝑒 𝐵) = (𝐴 ·e (1
/𝑒 𝐵))
↔ (𝐵
·e (𝐴
·e (1 /𝑒 𝐵))) = 𝐴)) |
| 27 | 3, 9, 1, 7, 26 | syl112anc 1330 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
((𝐴 /𝑒
𝐵) = (𝐴 ·e (1
/𝑒 𝐵))
↔ (𝐵
·e (𝐴
·e (1 /𝑒 𝐵))) = 𝐴)) |
| 28 | 25, 27 | mpbird 247 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈ ℝ
∧ 𝐵 ≠ 0) →
(𝐴 /𝑒
𝐵) = (𝐴 ·e (1
/𝑒 𝐵))) |