Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexdiv Structured version   Visualization version   GIF version

Theorem rexdiv 29634
Description: The extended real division operation when both arguments are real. (Contributed by Thierry Arnoux, 18-Dec-2016.)
Assertion
Ref Expression
rexdiv ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))

Proof of Theorem rexdiv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 redivcl 10744 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) ∈ ℝ)
2 recn 10026 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
3 recn 10026 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 id 22 . . . . . 6 (𝐵 ≠ 0 → 𝐵 ≠ 0)
52, 3, 43anim123i 1247 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
6 divcan2 10693 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
75, 6syl 17 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
8 oveq2 6658 . . . . . 6 (𝑥 = (𝐴 / 𝐵) → (𝐵 · 𝑥) = (𝐵 · (𝐴 / 𝐵)))
98eqeq1d 2624 . . . . 5 (𝑥 = (𝐴 / 𝐵) → ((𝐵 · 𝑥) = 𝐴 ↔ (𝐵 · (𝐴 / 𝐵)) = 𝐴))
109rspcev 3309 . . . 4 (((𝐴 / 𝐵) ∈ ℝ ∧ (𝐵 · (𝐴 / 𝐵)) = 𝐴) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
111, 7, 10syl2anc 693 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴)
12 receu 10672 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
135, 12syl 17 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)
14 ax-resscn 9993 . . . 4 ℝ ⊆ ℂ
15 id 22 . . . . 5 ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
1615rgenw 2924 . . . 4 𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)
17 riotass2 6638 . . . 4 (((ℝ ⊆ ℂ ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 · 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1814, 16, 17mpanl12 718 . . 3 ((∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
1911, 13, 18syl2anc 693 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
20 rexr 10085 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
21 xdivval 29627 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
2220, 21syl3an1 1359 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
23 ressxr 10083 . . . . 5 ℝ ⊆ ℝ*
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ℝ ⊆ ℝ*)
25 rexmul 12101 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝐵 ·e 𝑥) = (𝐵 · 𝑥))
2625eqeq1d 2624 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 ·e 𝑥) = 𝐴 ↔ (𝐵 · 𝑥) = 𝐴))
2726biimprd 238 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
2827ralrimiva 2966 . . . . 5 (𝐵 ∈ ℝ → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
29283ad2ant2 1083 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴))
30 xreceu 29630 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
3120, 30syl3an1 1359 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)
32 riotass2 6638 . . . 4 (((ℝ ⊆ ℝ* ∧ ∀𝑥 ∈ ℝ ((𝐵 · 𝑥) = 𝐴 → (𝐵 ·e 𝑥) = 𝐴)) ∧ (∃𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴 ∧ ∃!𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3324, 29, 11, 31, 32syl22anc 1327 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
3422, 33eqtr4d 2659 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ (𝐵 · 𝑥) = 𝐴))
35 divval 10687 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
365, 35syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 / 𝐵) = (𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴))
3719, 34, 363eqtr4d 2666 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝐴 / 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wne 2794  wral 2912  wrex 2913  ∃!wreu 2914  wss 3574  crio 6610  (class class class)co 6650  cc 9934  cr 9935  0cc0 9936   · cmul 9941  *cxr 10073   / cdiv 10684   ·e cxmu 11945   /𝑒 cxdiv 29625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-xneg 11946  df-xmul 11948  df-xdiv 29626
This theorem is referenced by:  xdivid  29636  xdiv0  29637  rpxdivcld  29642  esumdivc  30145  probmeasb  30492  coinfliplem  30540
  Copyright terms: Public domain W3C validator