| Step | Hyp | Ref
| Expression |
| 1 | | xmeter.1 |
. . . . 5
⊢ ∼ =
(◡𝐷 “ ℝ) |
| 2 | | cnvimass 5485 |
. . . . 5
⊢ (◡𝐷 “ ℝ) ⊆ dom 𝐷 |
| 3 | 1, 2 | eqsstri 3635 |
. . . 4
⊢ ∼
⊆ dom 𝐷 |
| 4 | | xmetf 22134 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) |
| 5 | | fdm 6051 |
. . . . 5
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ* → dom
𝐷 = (𝑋 × 𝑋)) |
| 6 | 4, 5 | syl 17 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → dom 𝐷 = (𝑋 × 𝑋)) |
| 7 | 3, 6 | syl5sseq 3653 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ ⊆ (𝑋 × 𝑋)) |
| 8 | | relxp 5227 |
. . 3
⊢ Rel
(𝑋 × 𝑋) |
| 9 | | relss 5206 |
. . 3
⊢ ( ∼
⊆ (𝑋 × 𝑋) → (Rel (𝑋 × 𝑋) → Rel ∼ )) |
| 10 | 7, 8, 9 | mpisyl 21 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → Rel ∼ ) |
| 11 | 1 | xmeterval 22237 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑦 ↔ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ))) |
| 12 | 11 | biimpa 501 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ (𝑥𝐷𝑦) ∈ ℝ)) |
| 13 | 12 | simp2d 1074 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∈ 𝑋) |
| 14 | 12 | simp1d 1073 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑥 ∈ 𝑋) |
| 15 | | simpl 473 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝐷 ∈ (∞Met‘𝑋)) |
| 16 | | xmetsym 22152 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
| 17 | 15, 14, 13, 16 | syl3anc 1326 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥)) |
| 18 | 12 | simp3d 1075 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑥𝐷𝑦) ∈ ℝ) |
| 19 | 17, 18 | eqeltrrd 2702 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑦𝐷𝑥) ∈ ℝ) |
| 20 | 1 | xmeterval 22237 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ))) |
| 21 | 20 | adantr 481 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → (𝑦 ∼ 𝑥 ↔ (𝑦 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑦𝐷𝑥) ∈ ℝ))) |
| 22 | 13, 14, 19, 21 | mpbir3and 1245 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∼ 𝑦) → 𝑦 ∼ 𝑥) |
| 23 | 14 | adantrr 753 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∈ 𝑋) |
| 24 | 1 | xmeterval 22237 |
. . . . . 6
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑦 ∼ 𝑧 ↔ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ))) |
| 25 | 24 | biimpa 501 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑦 ∼ 𝑧) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)) |
| 26 | 25 | adantrl 752 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑦𝐷𝑧) ∈ ℝ)) |
| 27 | 26 | simp2d 1074 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑧 ∈ 𝑋) |
| 28 | | simpl 473 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝐷 ∈ (∞Met‘𝑋)) |
| 29 | 18 | adantrr 753 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑦) ∈ ℝ) |
| 30 | 26 | simp3d 1075 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑦𝐷𝑧) ∈ ℝ) |
| 31 | | rexadd 12063 |
. . . . . 6
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) = ((𝑥𝐷𝑦) + (𝑦𝐷𝑧))) |
| 32 | | readdcl 10019 |
. . . . . 6
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) + (𝑦𝐷𝑧)) ∈ ℝ) |
| 33 | 31, 32 | eqeltrd 2701 |
. . . . 5
⊢ (((𝑥𝐷𝑦) ∈ ℝ ∧ (𝑦𝐷𝑧) ∈ ℝ) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ) |
| 34 | 29, 30, 33 | syl2anc 693 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ) |
| 35 | 13 | adantrr 753 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑦 ∈ 𝑋) |
| 36 | | xmettri 22156 |
. . . . 5
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧))) |
| 37 | 28, 23, 27, 35, 36 | syl13anc 1328 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧))) |
| 38 | | xmetlecl 22151 |
. . . 4
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) ∧ (((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)) ∈ ℝ ∧ (𝑥𝐷𝑧) ≤ ((𝑥𝐷𝑦) +𝑒 (𝑦𝐷𝑧)))) → (𝑥𝐷𝑧) ∈ ℝ) |
| 39 | 28, 23, 27, 34, 37, 38 | syl122anc 1335 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥𝐷𝑧) ∈ ℝ) |
| 40 | 1 | xmeterval 22237 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ))) |
| 41 | 40 | adantr 481 |
. . 3
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → (𝑥 ∼ 𝑧 ↔ (𝑥 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ∧ (𝑥𝐷𝑧) ∈ ℝ))) |
| 42 | 23, 27, 39, 41 | mpbir3and 1245 |
. 2
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ (𝑥 ∼ 𝑦 ∧ 𝑦 ∼ 𝑧)) → 𝑥 ∼ 𝑧) |
| 43 | | xmet0 22147 |
. . . . . . 7
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷𝑥) = 0) |
| 44 | | 0re 10040 |
. . . . . . 7
⊢ 0 ∈
ℝ |
| 45 | 43, 44 | syl6eqel 2709 |
. . . . . 6
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐷𝑥) ∈ ℝ) |
| 46 | 45 | ex 450 |
. . . . 5
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 → (𝑥𝐷𝑥) ∈ ℝ)) |
| 47 | 46 | pm4.71rd 667 |
. . . 4
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋))) |
| 48 | | df-3an 1039 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ)) |
| 49 | | anidm 676 |
. . . . . 6
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ↔ 𝑥 ∈ 𝑋) |
| 50 | 49 | anbi2ci 732 |
. . . . 5
⊢ (((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋) ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋)) |
| 51 | 48, 50 | bitri 264 |
. . . 4
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ) ↔ ((𝑥𝐷𝑥) ∈ ℝ ∧ 𝑥 ∈ 𝑋)) |
| 52 | 47, 51 | syl6bbr 278 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ))) |
| 53 | 1 | xmeterval 22237 |
. . 3
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∼ 𝑥 ↔ (𝑥 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ∧ (𝑥𝐷𝑥) ∈ ℝ))) |
| 54 | 52, 53 | bitr4d 271 |
. 2
⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝑥 ∈ 𝑋 ↔ 𝑥 ∼ 𝑥)) |
| 55 | 10, 22, 42, 54 | iserd 7768 |
1
⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ Er 𝑋) |