Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
amba-pl08x.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2006 ARM Ltd.
3  * Copyright (c) 2010 ST-Ericsson SA
4  *
5  * Author: Peter Pearse <[email protected]>
6  * Author: Linus Walleij <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License as published by the Free
10  * Software Foundation; either version 2 of the License, or (at your option)
11  * any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc., 59
20  * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21  *
22  * The full GNU General Public License is in this distribution in the file
23  * called COPYING.
24  *
25  * Documentation: ARM DDI 0196G == PL080
26  * Documentation: ARM DDI 0218E == PL081
27  *
28  * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29  * channel.
30  *
31  * The PL080 has 8 channels available for simultaneous use, and the PL081
32  * has only two channels. So on these DMA controllers the number of channels
33  * and the number of incoming DMA signals are two totally different things.
34  * It is usually not possible to theoretically handle all physical signals,
35  * so a multiplexing scheme with possible denial of use is necessary.
36  *
37  * The PL080 has a dual bus master, PL081 has a single master.
38  *
39  * Memory to peripheral transfer may be visualized as
40  * Get data from memory to DMAC
41  * Until no data left
42  * On burst request from peripheral
43  * Destination burst from DMAC to peripheral
44  * Clear burst request
45  * Raise terminal count interrupt
46  *
47  * For peripherals with a FIFO:
48  * Source burst size == half the depth of the peripheral FIFO
49  * Destination burst size == the depth of the peripheral FIFO
50  *
51  * (Bursts are irrelevant for mem to mem transfers - there are no burst
52  * signals, the DMA controller will simply facilitate its AHB master.)
53  *
54  * ASSUMES default (little) endianness for DMA transfers
55  *
56  * The PL08x has two flow control settings:
57  * - DMAC flow control: the transfer size defines the number of transfers
58  * which occur for the current LLI entry, and the DMAC raises TC at the
59  * end of every LLI entry. Observed behaviour shows the DMAC listening
60  * to both the BREQ and SREQ signals (contrary to documented),
61  * transferring data if either is active. The LBREQ and LSREQ signals
62  * are ignored.
63  *
64  * - Peripheral flow control: the transfer size is ignored (and should be
65  * zero). The data is transferred from the current LLI entry, until
66  * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67  * will then move to the next LLI entry.
68  *
69  * Global TODO:
70  * - Break out common code from arch/arm/mach-s3c64xx and share
71  */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87 
88 #include "dmaengine.h"
89 #include "virt-dma.h"
90 
91 #define DRIVER_NAME "pl08xdmac"
92 
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95 
104 struct vendor_data {
107  bool nomadik;
108 };
109 
110 /*
111  * PL08X private data structures
112  * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
113  * start & end do not - their bus bit info is in cctl. Also note that these
114  * are fixed 32-bit quantities.
115  */
116 struct pl08x_lli {
121 };
122 
134 };
135 
146  unsigned int id;
147  void __iomem *base;
150  bool locked;
151 };
152 
160 struct pl08x_sg {
163  size_t len;
164  struct list_head node;
165 };
166 
178 struct pl08x_txd {
183  /* Default cctl value for LLIs */
185  /*
186  * Settings to be put into the physical channel when we
187  * trigger this txd. Other registers are in llis_va[0].
188  */
190  bool done;
191 };
192 
209 };
210 
229  const char *name;
230  const struct pl08x_channel_data *cd;
232  struct pl08x_txd *at;
235  bool slave;
236  int signal;
237  unsigned mux_use;
238 };
239 
258  void __iomem *base;
259  struct amba_device *adev;
260  const struct vendor_data *vd;
263  struct dma_pool *pool;
266 };
267 
268 /*
269  * PL08X specific defines
270  */
271 
272 /* Size (bytes) of each LLI buffer allocated for one transfer */
273 # define PL08X_LLI_TSFR_SIZE 0x2000
274 
275 /* Maximum times we call dma_pool_alloc on this pool without freeing */
276 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
277 #define PL08X_ALIGN 8
278 
279 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
280 {
281  return container_of(chan, struct pl08x_dma_chan, vc.chan);
282 }
283 
284 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
285 {
286  return container_of(tx, struct pl08x_txd, vd.tx);
287 }
288 
289 /*
290  * Mux handling.
291  *
292  * This gives us the DMA request input to the PL08x primecell which the
293  * peripheral described by the channel data will be routed to, possibly
294  * via a board/SoC specific external MUX. One important point to note
295  * here is that this does not depend on the physical channel.
296  */
297 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
298 {
299  const struct pl08x_platform_data *pd = plchan->host->pd;
300  int ret;
301 
302  if (plchan->mux_use++ == 0 && pd->get_signal) {
303  ret = pd->get_signal(plchan->cd);
304  if (ret < 0) {
305  plchan->mux_use = 0;
306  return ret;
307  }
308 
309  plchan->signal = ret;
310  }
311  return 0;
312 }
313 
314 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
315 {
316  const struct pl08x_platform_data *pd = plchan->host->pd;
317 
318  if (plchan->signal >= 0) {
319  WARN_ON(plchan->mux_use == 0);
320 
321  if (--plchan->mux_use == 0 && pd->put_signal) {
322  pd->put_signal(plchan->cd, plchan->signal);
323  plchan->signal = -1;
324  }
325  }
326 }
327 
328 /*
329  * Physical channel handling
330  */
331 
332 /* Whether a certain channel is busy or not */
333 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
334 {
335  unsigned int val;
336 
337  val = readl(ch->base + PL080_CH_CONFIG);
338  return val & PL080_CONFIG_ACTIVE;
339 }
340 
341 /*
342  * Set the initial DMA register values i.e. those for the first LLI
343  * The next LLI pointer and the configuration interrupt bit have
344  * been set when the LLIs were constructed. Poke them into the hardware
345  * and start the transfer.
346  */
347 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
348 {
349  struct pl08x_driver_data *pl08x = plchan->host;
350  struct pl08x_phy_chan *phychan = plchan->phychan;
351  struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
352  struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
353  struct pl08x_lli *lli;
354  u32 val;
355 
356  list_del(&txd->vd.node);
357 
358  plchan->at = txd;
359 
360  /* Wait for channel inactive */
361  while (pl08x_phy_channel_busy(phychan))
362  cpu_relax();
363 
364  lli = &txd->llis_va[0];
365 
366  dev_vdbg(&pl08x->adev->dev,
367  "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
368  "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
369  phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
370  txd->ccfg);
371 
372  writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
373  writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
374  writel(lli->lli, phychan->base + PL080_CH_LLI);
375  writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
376  writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
377 
378  /* Enable the DMA channel */
379  /* Do not access config register until channel shows as disabled */
380  while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
381  cpu_relax();
382 
383  /* Do not access config register until channel shows as inactive */
384  val = readl(phychan->base + PL080_CH_CONFIG);
385  while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
386  val = readl(phychan->base + PL080_CH_CONFIG);
387 
388  writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
389 }
390 
391 /*
392  * Pause the channel by setting the HALT bit.
393  *
394  * For M->P transfers, pause the DMAC first and then stop the peripheral -
395  * the FIFO can only drain if the peripheral is still requesting data.
396  * (note: this can still timeout if the DMAC FIFO never drains of data.)
397  *
398  * For P->M transfers, disable the peripheral first to stop it filling
399  * the DMAC FIFO, and then pause the DMAC.
400  */
401 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
402 {
403  u32 val;
404  int timeout;
405 
406  /* Set the HALT bit and wait for the FIFO to drain */
407  val = readl(ch->base + PL080_CH_CONFIG);
408  val |= PL080_CONFIG_HALT;
409  writel(val, ch->base + PL080_CH_CONFIG);
410 
411  /* Wait for channel inactive */
412  for (timeout = 1000; timeout; timeout--) {
413  if (!pl08x_phy_channel_busy(ch))
414  break;
415  udelay(1);
416  }
417  if (pl08x_phy_channel_busy(ch))
418  pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
419 }
420 
421 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
422 {
423  u32 val;
424 
425  /* Clear the HALT bit */
426  val = readl(ch->base + PL080_CH_CONFIG);
427  val &= ~PL080_CONFIG_HALT;
428  writel(val, ch->base + PL080_CH_CONFIG);
429 }
430 
431 /*
432  * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
433  * clears any pending interrupt status. This should not be used for
434  * an on-going transfer, but as a method of shutting down a channel
435  * (eg, when it's no longer used) or terminating a transfer.
436  */
437 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
438  struct pl08x_phy_chan *ch)
439 {
440  u32 val = readl(ch->base + PL080_CH_CONFIG);
441 
444 
445  writel(val, ch->base + PL080_CH_CONFIG);
446 
447  writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
448  writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
449 }
450 
451 static inline u32 get_bytes_in_cctl(u32 cctl)
452 {
453  /* The source width defines the number of bytes */
455 
456  switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
457  case PL080_WIDTH_8BIT:
458  break;
459  case PL080_WIDTH_16BIT:
460  bytes *= 2;
461  break;
462  case PL080_WIDTH_32BIT:
463  bytes *= 4;
464  break;
465  }
466  return bytes;
467 }
468 
469 /* The channel should be paused when calling this */
470 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
471 {
472  struct pl08x_phy_chan *ch;
473  struct pl08x_txd *txd;
474  size_t bytes = 0;
475 
476  ch = plchan->phychan;
477  txd = plchan->at;
478 
479  /*
480  * Follow the LLIs to get the number of remaining
481  * bytes in the currently active transaction.
482  */
483  if (ch && txd) {
484  u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
485 
486  /* First get the remaining bytes in the active transfer */
487  bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
488 
489  if (clli) {
490  struct pl08x_lli *llis_va = txd->llis_va;
491  dma_addr_t llis_bus = txd->llis_bus;
492  int index;
493 
494  BUG_ON(clli < llis_bus || clli >= llis_bus +
495  sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
496 
497  /*
498  * Locate the next LLI - as this is an array,
499  * it's simple maths to find.
500  */
501  index = (clli - llis_bus) / sizeof(struct pl08x_lli);
502 
503  for (; index < MAX_NUM_TSFR_LLIS; index++) {
504  bytes += get_bytes_in_cctl(llis_va[index].cctl);
505 
506  /*
507  * A LLI pointer of 0 terminates the LLI list
508  */
509  if (!llis_va[index].lli)
510  break;
511  }
512  }
513  }
514 
515  return bytes;
516 }
517 
518 /*
519  * Allocate a physical channel for a virtual channel
520  *
521  * Try to locate a physical channel to be used for this transfer. If all
522  * are taken return NULL and the requester will have to cope by using
523  * some fallback PIO mode or retrying later.
524  */
525 static struct pl08x_phy_chan *
526 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
527  struct pl08x_dma_chan *virt_chan)
528 {
529  struct pl08x_phy_chan *ch = NULL;
530  unsigned long flags;
531  int i;
532 
533  for (i = 0; i < pl08x->vd->channels; i++) {
534  ch = &pl08x->phy_chans[i];
535 
536  spin_lock_irqsave(&ch->lock, flags);
537 
538  if (!ch->locked && !ch->serving) {
539  ch->serving = virt_chan;
540  spin_unlock_irqrestore(&ch->lock, flags);
541  break;
542  }
543 
544  spin_unlock_irqrestore(&ch->lock, flags);
545  }
546 
547  if (i == pl08x->vd->channels) {
548  /* No physical channel available, cope with it */
549  return NULL;
550  }
551 
552  return ch;
553 }
554 
555 /* Mark the physical channel as free. Note, this write is atomic. */
556 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
557  struct pl08x_phy_chan *ch)
558 {
559  ch->serving = NULL;
560 }
561 
562 /*
563  * Try to allocate a physical channel. When successful, assign it to
564  * this virtual channel, and initiate the next descriptor. The
565  * virtual channel lock must be held at this point.
566  */
567 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
568 {
569  struct pl08x_driver_data *pl08x = plchan->host;
570  struct pl08x_phy_chan *ch;
571 
572  ch = pl08x_get_phy_channel(pl08x, plchan);
573  if (!ch) {
574  dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
575  plchan->state = PL08X_CHAN_WAITING;
576  return;
577  }
578 
579  dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
580  ch->id, plchan->name);
581 
582  plchan->phychan = ch;
583  plchan->state = PL08X_CHAN_RUNNING;
584  pl08x_start_next_txd(plchan);
585 }
586 
587 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
588  struct pl08x_dma_chan *plchan)
589 {
590  struct pl08x_driver_data *pl08x = plchan->host;
591 
592  dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
593  ch->id, plchan->name);
594 
595  /*
596  * We do this without taking the lock; we're really only concerned
597  * about whether this pointer is NULL or not, and we're guaranteed
598  * that this will only be called when it _already_ is non-NULL.
599  */
600  ch->serving = plchan;
601  plchan->phychan = ch;
602  plchan->state = PL08X_CHAN_RUNNING;
603  pl08x_start_next_txd(plchan);
604 }
605 
606 /*
607  * Free a physical DMA channel, potentially reallocating it to another
608  * virtual channel if we have any pending.
609  */
610 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
611 {
612  struct pl08x_driver_data *pl08x = plchan->host;
613  struct pl08x_dma_chan *p, *next;
614 
615  retry:
616  next = NULL;
617 
618  /* Find a waiting virtual channel for the next transfer. */
619  list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
620  if (p->state == PL08X_CHAN_WAITING) {
621  next = p;
622  break;
623  }
624 
625  if (!next) {
626  list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
627  if (p->state == PL08X_CHAN_WAITING) {
628  next = p;
629  break;
630  }
631  }
632 
633  /* Ensure that the physical channel is stopped */
634  pl08x_terminate_phy_chan(pl08x, plchan->phychan);
635 
636  if (next) {
637  bool success;
638 
639  /*
640  * Eww. We know this isn't going to deadlock
641  * but lockdep probably doesn't.
642  */
643  spin_lock(&next->vc.lock);
644  /* Re-check the state now that we have the lock */
645  success = next->state == PL08X_CHAN_WAITING;
646  if (success)
647  pl08x_phy_reassign_start(plchan->phychan, next);
648  spin_unlock(&next->vc.lock);
649 
650  /* If the state changed, try to find another channel */
651  if (!success)
652  goto retry;
653  } else {
654  /* No more jobs, so free up the physical channel */
655  pl08x_put_phy_channel(pl08x, plchan->phychan);
656  }
657 
658  plchan->phychan = NULL;
659  plchan->state = PL08X_CHAN_IDLE;
660 }
661 
662 /*
663  * LLI handling
664  */
665 
666 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
667 {
668  switch (coded) {
669  case PL080_WIDTH_8BIT:
670  return 1;
671  case PL080_WIDTH_16BIT:
672  return 2;
673  case PL080_WIDTH_32BIT:
674  return 4;
675  default:
676  break;
677  }
678  BUG();
679  return 0;
680 }
681 
682 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
683  size_t tsize)
684 {
685  u32 retbits = cctl;
686 
687  /* Remove all src, dst and transfer size bits */
688  retbits &= ~PL080_CONTROL_DWIDTH_MASK;
689  retbits &= ~PL080_CONTROL_SWIDTH_MASK;
690  retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
691 
692  /* Then set the bits according to the parameters */
693  switch (srcwidth) {
694  case 1:
696  break;
697  case 2:
699  break;
700  case 4:
702  break;
703  default:
704  BUG();
705  break;
706  }
707 
708  switch (dstwidth) {
709  case 1:
711  break;
712  case 2:
714  break;
715  case 4:
717  break;
718  default:
719  BUG();
720  break;
721  }
722 
723  retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
724  return retbits;
725 }
726 
728  struct pl08x_txd *txd;
731  size_t remainder;
733 };
734 
735 /*
736  * Autoselect a master bus to use for the transfer. Slave will be the chosen as
737  * victim in case src & dest are not similarly aligned. i.e. If after aligning
738  * masters address with width requirements of transfer (by sending few byte by
739  * byte data), slave is still not aligned, then its width will be reduced to
740  * BYTE.
741  * - prefers the destination bus if both available
742  * - prefers bus with fixed address (i.e. peripheral)
743  */
744 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
745  struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
746 {
747  if (!(cctl & PL080_CONTROL_DST_INCR)) {
748  *mbus = &bd->dstbus;
749  *sbus = &bd->srcbus;
750  } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
751  *mbus = &bd->srcbus;
752  *sbus = &bd->dstbus;
753  } else {
754  if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
755  *mbus = &bd->dstbus;
756  *sbus = &bd->srcbus;
757  } else {
758  *mbus = &bd->srcbus;
759  *sbus = &bd->dstbus;
760  }
761  }
762 }
763 
764 /*
765  * Fills in one LLI for a certain transfer descriptor and advance the counter
766  */
767 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
768  int num_llis, int len, u32 cctl)
769 {
770  struct pl08x_lli *llis_va = bd->txd->llis_va;
771  dma_addr_t llis_bus = bd->txd->llis_bus;
772 
773  BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
774 
775  llis_va[num_llis].cctl = cctl;
776  llis_va[num_llis].src = bd->srcbus.addr;
777  llis_va[num_llis].dst = bd->dstbus.addr;
778  llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
779  sizeof(struct pl08x_lli);
780  llis_va[num_llis].lli |= bd->lli_bus;
781 
782  if (cctl & PL080_CONTROL_SRC_INCR)
783  bd->srcbus.addr += len;
784  if (cctl & PL080_CONTROL_DST_INCR)
785  bd->dstbus.addr += len;
786 
787  BUG_ON(bd->remainder < len);
788 
789  bd->remainder -= len;
790 }
791 
792 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
793  u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
794 {
795  *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
796  pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
797  (*total_bytes) += len;
798 }
799 
800 /*
801  * This fills in the table of LLIs for the transfer descriptor
802  * Note that we assume we never have to change the burst sizes
803  * Return 0 for error
804  */
805 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
806  struct pl08x_txd *txd)
807 {
808  struct pl08x_bus_data *mbus, *sbus;
809  struct pl08x_lli_build_data bd;
810  int num_llis = 0;
811  u32 cctl, early_bytes = 0;
812  size_t max_bytes_per_lli, total_bytes;
813  struct pl08x_lli *llis_va;
814  struct pl08x_sg *dsg;
815 
816  txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
817  if (!txd->llis_va) {
818  dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
819  return 0;
820  }
821 
822  bd.txd = txd;
823  bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
824  cctl = txd->cctl;
825 
826  /* Find maximum width of the source bus */
827  bd.srcbus.maxwidth =
828  pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
830 
831  /* Find maximum width of the destination bus */
832  bd.dstbus.maxwidth =
833  pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
835 
836  list_for_each_entry(dsg, &txd->dsg_list, node) {
837  total_bytes = 0;
838  cctl = txd->cctl;
839 
840  bd.srcbus.addr = dsg->src_addr;
841  bd.dstbus.addr = dsg->dst_addr;
842  bd.remainder = dsg->len;
843  bd.srcbus.buswidth = bd.srcbus.maxwidth;
844  bd.dstbus.buswidth = bd.dstbus.maxwidth;
845 
846  pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
847 
848  dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
849  bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
850  bd.srcbus.buswidth,
851  bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
852  bd.dstbus.buswidth,
853  bd.remainder);
854  dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
855  mbus == &bd.srcbus ? "src" : "dst",
856  sbus == &bd.srcbus ? "src" : "dst");
857 
858  /*
859  * Zero length is only allowed if all these requirements are
860  * met:
861  * - flow controller is peripheral.
862  * - src.addr is aligned to src.width
863  * - dst.addr is aligned to dst.width
864  *
865  * sg_len == 1 should be true, as there can be two cases here:
866  *
867  * - Memory addresses are contiguous and are not scattered.
868  * Here, Only one sg will be passed by user driver, with
869  * memory address and zero length. We pass this to controller
870  * and after the transfer it will receive the last burst
871  * request from peripheral and so transfer finishes.
872  *
873  * - Memory addresses are scattered and are not contiguous.
874  * Here, Obviously as DMA controller doesn't know when a lli's
875  * transfer gets over, it can't load next lli. So in this
876  * case, there has to be an assumption that only one lli is
877  * supported. Thus, we can't have scattered addresses.
878  */
879  if (!bd.remainder) {
882  if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
883  (fc <= PL080_FLOW_SRC2DST_SRC))) {
884  dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
885  __func__);
886  return 0;
887  }
888 
889  if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
890  (bd.dstbus.addr % bd.dstbus.buswidth)) {
891  dev_err(&pl08x->adev->dev,
892  "%s src & dst address must be aligned to src"
893  " & dst width if peripheral is flow controller",
894  __func__);
895  return 0;
896  }
897 
898  cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
899  bd.dstbus.buswidth, 0);
900  pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
901  break;
902  }
903 
904  /*
905  * Send byte by byte for following cases
906  * - Less than a bus width available
907  * - until master bus is aligned
908  */
909  if (bd.remainder < mbus->buswidth)
910  early_bytes = bd.remainder;
911  else if ((mbus->addr) % (mbus->buswidth)) {
912  early_bytes = mbus->buswidth - (mbus->addr) %
913  (mbus->buswidth);
914  if ((bd.remainder - early_bytes) < mbus->buswidth)
915  early_bytes = bd.remainder;
916  }
917 
918  if (early_bytes) {
919  dev_vdbg(&pl08x->adev->dev,
920  "%s byte width LLIs (remain 0x%08x)\n",
921  __func__, bd.remainder);
922  prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
923  &total_bytes);
924  }
925 
926  if (bd.remainder) {
927  /*
928  * Master now aligned
929  * - if slave is not then we must set its width down
930  */
931  if (sbus->addr % sbus->buswidth) {
932  dev_dbg(&pl08x->adev->dev,
933  "%s set down bus width to one byte\n",
934  __func__);
935 
936  sbus->buswidth = 1;
937  }
938 
939  /*
940  * Bytes transferred = tsize * src width, not
941  * MIN(buswidths)
942  */
943  max_bytes_per_lli = bd.srcbus.buswidth *
945  dev_vdbg(&pl08x->adev->dev,
946  "%s max bytes per lli = %zu\n",
947  __func__, max_bytes_per_lli);
948 
949  /*
950  * Make largest possible LLIs until less than one bus
951  * width left
952  */
953  while (bd.remainder > (mbus->buswidth - 1)) {
954  size_t lli_len, tsize, width;
955 
956  /*
957  * If enough left try to send max possible,
958  * otherwise try to send the remainder
959  */
960  lli_len = min(bd.remainder, max_bytes_per_lli);
961 
962  /*
963  * Check against maximum bus alignment:
964  * Calculate actual transfer size in relation to
965  * bus width an get a maximum remainder of the
966  * highest bus width - 1
967  */
968  width = max(mbus->buswidth, sbus->buswidth);
969  lli_len = (lli_len / width) * width;
970  tsize = lli_len / bd.srcbus.buswidth;
971 
972  dev_vdbg(&pl08x->adev->dev,
973  "%s fill lli with single lli chunk of "
974  "size 0x%08zx (remainder 0x%08zx)\n",
975  __func__, lli_len, bd.remainder);
976 
977  cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
978  bd.dstbus.buswidth, tsize);
979  pl08x_fill_lli_for_desc(&bd, num_llis++,
980  lli_len, cctl);
981  total_bytes += lli_len;
982  }
983 
984  /*
985  * Send any odd bytes
986  */
987  if (bd.remainder) {
988  dev_vdbg(&pl08x->adev->dev,
989  "%s align with boundary, send odd bytes (remain %zu)\n",
990  __func__, bd.remainder);
991  prep_byte_width_lli(&bd, &cctl, bd.remainder,
992  num_llis++, &total_bytes);
993  }
994  }
995 
996  if (total_bytes != dsg->len) {
997  dev_err(&pl08x->adev->dev,
998  "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
999  __func__, total_bytes, dsg->len);
1000  return 0;
1001  }
1002 
1003  if (num_llis >= MAX_NUM_TSFR_LLIS) {
1004  dev_err(&pl08x->adev->dev,
1005  "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1006  __func__, (u32) MAX_NUM_TSFR_LLIS);
1007  return 0;
1008  }
1009  }
1010 
1011  llis_va = txd->llis_va;
1012  /* The final LLI terminates the LLI. */
1013  llis_va[num_llis - 1].lli = 0;
1014  /* The final LLI element shall also fire an interrupt. */
1015  llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1016 
1017 #ifdef VERBOSE_DEBUG
1018  {
1019  int i;
1020 
1021  dev_vdbg(&pl08x->adev->dev,
1022  "%-3s %-9s %-10s %-10s %-10s %s\n",
1023  "lli", "", "csrc", "cdst", "clli", "cctl");
1024  for (i = 0; i < num_llis; i++) {
1025  dev_vdbg(&pl08x->adev->dev,
1026  "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1027  i, &llis_va[i], llis_va[i].src,
1028  llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1029  );
1030  }
1031  }
1032 #endif
1033 
1034  return num_llis;
1035 }
1036 
1037 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1038  struct pl08x_txd *txd)
1039 {
1040  struct pl08x_sg *dsg, *_dsg;
1041 
1042  if (txd->llis_va)
1043  dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1044 
1045  list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1046  list_del(&dsg->node);
1047  kfree(dsg);
1048  }
1049 
1050  kfree(txd);
1051 }
1052 
1053 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1054 {
1055  struct device *dev = txd->vd.tx.chan->device->dev;
1056  struct pl08x_sg *dsg;
1057 
1058  if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1059  if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1060  list_for_each_entry(dsg, &txd->dsg_list, node)
1061  dma_unmap_single(dev, dsg->src_addr, dsg->len,
1062  DMA_TO_DEVICE);
1063  else {
1064  list_for_each_entry(dsg, &txd->dsg_list, node)
1065  dma_unmap_page(dev, dsg->src_addr, dsg->len,
1066  DMA_TO_DEVICE);
1067  }
1068  }
1069  if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1070  if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1071  list_for_each_entry(dsg, &txd->dsg_list, node)
1072  dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1073  DMA_FROM_DEVICE);
1074  else
1075  list_for_each_entry(dsg, &txd->dsg_list, node)
1076  dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1077  DMA_FROM_DEVICE);
1078  }
1079 }
1080 
1081 static void pl08x_desc_free(struct virt_dma_desc *vd)
1082 {
1083  struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1084  struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1085 
1086  if (!plchan->slave)
1087  pl08x_unmap_buffers(txd);
1088 
1089  if (!txd->done)
1090  pl08x_release_mux(plchan);
1091 
1092  pl08x_free_txd(plchan->host, txd);
1093 }
1094 
1095 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1096  struct pl08x_dma_chan *plchan)
1097 {
1098  LIST_HEAD(head);
1099  struct pl08x_txd *txd;
1100 
1101  vchan_get_all_descriptors(&plchan->vc, &head);
1102 
1103  while (!list_empty(&head)) {
1104  txd = list_first_entry(&head, struct pl08x_txd, vd.node);
1105  list_del(&txd->vd.node);
1106  pl08x_desc_free(&txd->vd);
1107  }
1108 }
1109 
1110 /*
1111  * The DMA ENGINE API
1112  */
1113 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1114 {
1115  return 0;
1116 }
1117 
1118 static void pl08x_free_chan_resources(struct dma_chan *chan)
1119 {
1120  /* Ensure all queued descriptors are freed */
1121  vchan_free_chan_resources(to_virt_chan(chan));
1122 }
1123 
1124 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1125  struct dma_chan *chan, unsigned long flags)
1126 {
1128 
1129  return retval;
1130 }
1131 
1132 /*
1133  * Code accessing dma_async_is_complete() in a tight loop may give problems.
1134  * If slaves are relying on interrupts to signal completion this function
1135  * must not be called with interrupts disabled.
1136  */
1137 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1138  dma_cookie_t cookie, struct dma_tx_state *txstate)
1139 {
1140  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1141  struct virt_dma_desc *vd;
1142  unsigned long flags;
1143  enum dma_status ret;
1144  size_t bytes = 0;
1145 
1146  ret = dma_cookie_status(chan, cookie, txstate);
1147  if (ret == DMA_SUCCESS)
1148  return ret;
1149 
1150  /*
1151  * There's no point calculating the residue if there's
1152  * no txstate to store the value.
1153  */
1154  if (!txstate) {
1155  if (plchan->state == PL08X_CHAN_PAUSED)
1156  ret = DMA_PAUSED;
1157  return ret;
1158  }
1159 
1160  spin_lock_irqsave(&plchan->vc.lock, flags);
1161  ret = dma_cookie_status(chan, cookie, txstate);
1162  if (ret != DMA_SUCCESS) {
1163  vd = vchan_find_desc(&plchan->vc, cookie);
1164  if (vd) {
1165  /* On the issued list, so hasn't been processed yet */
1166  struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1167  struct pl08x_sg *dsg;
1168 
1169  list_for_each_entry(dsg, &txd->dsg_list, node)
1170  bytes += dsg->len;
1171  } else {
1172  bytes = pl08x_getbytes_chan(plchan);
1173  }
1174  }
1175  spin_unlock_irqrestore(&plchan->vc.lock, flags);
1176 
1177  /*
1178  * This cookie not complete yet
1179  * Get number of bytes left in the active transactions and queue
1180  */
1181  dma_set_residue(txstate, bytes);
1182 
1183  if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1184  ret = DMA_PAUSED;
1185 
1186  /* Whether waiting or running, we're in progress */
1187  return ret;
1188 }
1189 
1190 /* PrimeCell DMA extension */
1191 struct burst_table {
1194 };
1195 
1196 static const struct burst_table burst_sizes[] = {
1197  {
1198  .burstwords = 256,
1199  .reg = PL080_BSIZE_256,
1200  },
1201  {
1202  .burstwords = 128,
1203  .reg = PL080_BSIZE_128,
1204  },
1205  {
1206  .burstwords = 64,
1207  .reg = PL080_BSIZE_64,
1208  },
1209  {
1210  .burstwords = 32,
1211  .reg = PL080_BSIZE_32,
1212  },
1213  {
1214  .burstwords = 16,
1215  .reg = PL080_BSIZE_16,
1216  },
1217  {
1218  .burstwords = 8,
1219  .reg = PL080_BSIZE_8,
1220  },
1221  {
1222  .burstwords = 4,
1223  .reg = PL080_BSIZE_4,
1224  },
1225  {
1226  .burstwords = 0,
1227  .reg = PL080_BSIZE_1,
1228  },
1229 };
1230 
1231 /*
1232  * Given the source and destination available bus masks, select which
1233  * will be routed to each port. We try to have source and destination
1234  * on separate ports, but always respect the allowable settings.
1235  */
1236 static u32 pl08x_select_bus(u8 src, u8 dst)
1237 {
1238  u32 cctl = 0;
1239 
1240  if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1241  cctl |= PL080_CONTROL_DST_AHB2;
1242  if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1243  cctl |= PL080_CONTROL_SRC_AHB2;
1244 
1245  return cctl;
1246 }
1247 
1248 static u32 pl08x_cctl(u32 cctl)
1249 {
1251  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1253 
1254  /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1255  return cctl | PL080_CONTROL_PROT_SYS;
1256 }
1257 
1258 static u32 pl08x_width(enum dma_slave_buswidth width)
1259 {
1260  switch (width) {
1262  return PL080_WIDTH_8BIT;
1264  return PL080_WIDTH_16BIT;
1266  return PL080_WIDTH_32BIT;
1267  default:
1268  return ~0;
1269  }
1270 }
1271 
1272 static u32 pl08x_burst(u32 maxburst)
1273 {
1274  int i;
1275 
1276  for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1277  if (burst_sizes[i].burstwords <= maxburst)
1278  break;
1279 
1280  return burst_sizes[i].reg;
1281 }
1282 
1283 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1284  enum dma_slave_buswidth addr_width, u32 maxburst)
1285 {
1286  u32 width, burst, cctl = 0;
1287 
1288  width = pl08x_width(addr_width);
1289  if (width == ~0)
1290  return ~0;
1291 
1292  cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1293  cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1294 
1295  /*
1296  * If this channel will only request single transfers, set this
1297  * down to ONE element. Also select one element if no maxburst
1298  * is specified.
1299  */
1300  if (plchan->cd->single)
1301  maxburst = 1;
1302 
1303  burst = pl08x_burst(maxburst);
1304  cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1305  cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1306 
1307  return pl08x_cctl(cctl);
1308 }
1309 
1310 static int dma_set_runtime_config(struct dma_chan *chan,
1311  struct dma_slave_config *config)
1312 {
1313  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1314 
1315  if (!plchan->slave)
1316  return -EINVAL;
1317 
1318  /* Reject definitely invalid configurations */
1319  if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1321  return -EINVAL;
1322 
1323  plchan->cfg = *config;
1324 
1325  return 0;
1326 }
1327 
1328 /*
1329  * Slave transactions callback to the slave device to allow
1330  * synchronization of slave DMA signals with the DMAC enable
1331  */
1332 static void pl08x_issue_pending(struct dma_chan *chan)
1333 {
1334  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1335  unsigned long flags;
1336 
1337  spin_lock_irqsave(&plchan->vc.lock, flags);
1338  if (vchan_issue_pending(&plchan->vc)) {
1339  if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1340  pl08x_phy_alloc_and_start(plchan);
1341  }
1342  spin_unlock_irqrestore(&plchan->vc.lock, flags);
1343 }
1344 
1345 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1346 {
1347  struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1348 
1349  if (txd) {
1350  INIT_LIST_HEAD(&txd->dsg_list);
1351 
1352  /* Always enable error and terminal interrupts */
1355  }
1356  return txd;
1357 }
1358 
1359 /*
1360  * Initialize a descriptor to be used by memcpy submit
1361  */
1362 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1363  struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1364  size_t len, unsigned long flags)
1365 {
1366  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1367  struct pl08x_driver_data *pl08x = plchan->host;
1368  struct pl08x_txd *txd;
1369  struct pl08x_sg *dsg;
1370  int ret;
1371 
1372  txd = pl08x_get_txd(plchan);
1373  if (!txd) {
1374  dev_err(&pl08x->adev->dev,
1375  "%s no memory for descriptor\n", __func__);
1376  return NULL;
1377  }
1378 
1379  dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1380  if (!dsg) {
1381  pl08x_free_txd(pl08x, txd);
1382  dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1383  __func__);
1384  return NULL;
1385  }
1386  list_add_tail(&dsg->node, &txd->dsg_list);
1387 
1388  dsg->src_addr = src;
1389  dsg->dst_addr = dest;
1390  dsg->len = len;
1391 
1392  /* Set platform data for m2m */
1394  txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1396 
1397  /* Both to be incremented or the code will break */
1398  txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1399 
1400  if (pl08x->vd->dualmaster)
1401  txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1402  pl08x->mem_buses);
1403 
1404  ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1405  if (!ret) {
1406  pl08x_free_txd(pl08x, txd);
1407  return NULL;
1408  }
1409 
1410  return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1411 }
1412 
1413 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1414  struct dma_chan *chan, struct scatterlist *sgl,
1415  unsigned int sg_len, enum dma_transfer_direction direction,
1416  unsigned long flags, void *context)
1417 {
1418  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1419  struct pl08x_driver_data *pl08x = plchan->host;
1420  struct pl08x_txd *txd;
1421  struct pl08x_sg *dsg;
1422  struct scatterlist *sg;
1423  enum dma_slave_buswidth addr_width;
1425  int ret, tmp;
1426  u8 src_buses, dst_buses;
1427  u32 maxburst, cctl;
1428 
1429  dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1430  __func__, sg_dma_len(sgl), plchan->name);
1431 
1432  txd = pl08x_get_txd(plchan);
1433  if (!txd) {
1434  dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1435  return NULL;
1436  }
1437 
1438  /*
1439  * Set up addresses, the PrimeCell configured address
1440  * will take precedence since this may configure the
1441  * channel target address dynamically at runtime.
1442  */
1443  if (direction == DMA_MEM_TO_DEV) {
1444  cctl = PL080_CONTROL_SRC_INCR;
1445  slave_addr = plchan->cfg.dst_addr;
1446  addr_width = plchan->cfg.dst_addr_width;
1447  maxburst = plchan->cfg.dst_maxburst;
1448  src_buses = pl08x->mem_buses;
1449  dst_buses = plchan->cd->periph_buses;
1450  } else if (direction == DMA_DEV_TO_MEM) {
1451  cctl = PL080_CONTROL_DST_INCR;
1452  slave_addr = plchan->cfg.src_addr;
1453  addr_width = plchan->cfg.src_addr_width;
1454  maxburst = plchan->cfg.src_maxburst;
1455  src_buses = plchan->cd->periph_buses;
1456  dst_buses = pl08x->mem_buses;
1457  } else {
1458  pl08x_free_txd(pl08x, txd);
1459  dev_err(&pl08x->adev->dev,
1460  "%s direction unsupported\n", __func__);
1461  return NULL;
1462  }
1463 
1464  cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1465  if (cctl == ~0) {
1466  pl08x_free_txd(pl08x, txd);
1467  dev_err(&pl08x->adev->dev,
1468  "DMA slave configuration botched?\n");
1469  return NULL;
1470  }
1471 
1472  txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1473 
1474  if (plchan->cfg.device_fc)
1475  tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1477  else
1478  tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1480 
1481  txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1482 
1483  ret = pl08x_request_mux(plchan);
1484  if (ret < 0) {
1485  pl08x_free_txd(pl08x, txd);
1486  dev_dbg(&pl08x->adev->dev,
1487  "unable to mux for transfer on %s due to platform restrictions\n",
1488  plchan->name);
1489  return NULL;
1490  }
1491 
1492  dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1493  plchan->signal, plchan->name);
1494 
1495  /* Assign the flow control signal to this channel */
1496  if (direction == DMA_MEM_TO_DEV)
1497  txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1498  else
1499  txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1500 
1501  for_each_sg(sgl, sg, sg_len, tmp) {
1502  dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1503  if (!dsg) {
1504  pl08x_release_mux(plchan);
1505  pl08x_free_txd(pl08x, txd);
1506  dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1507  __func__);
1508  return NULL;
1509  }
1510  list_add_tail(&dsg->node, &txd->dsg_list);
1511 
1512  dsg->len = sg_dma_len(sg);
1513  if (direction == DMA_MEM_TO_DEV) {
1514  dsg->src_addr = sg_dma_address(sg);
1515  dsg->dst_addr = slave_addr;
1516  } else {
1517  dsg->src_addr = slave_addr;
1518  dsg->dst_addr = sg_dma_address(sg);
1519  }
1520  }
1521 
1522  ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1523  if (!ret) {
1524  pl08x_release_mux(plchan);
1525  pl08x_free_txd(pl08x, txd);
1526  return NULL;
1527  }
1528 
1529  return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1530 }
1531 
1532 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1533  unsigned long arg)
1534 {
1535  struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1536  struct pl08x_driver_data *pl08x = plchan->host;
1537  unsigned long flags;
1538  int ret = 0;
1539 
1540  /* Controls applicable to inactive channels */
1541  if (cmd == DMA_SLAVE_CONFIG) {
1542  return dma_set_runtime_config(chan,
1543  (struct dma_slave_config *)arg);
1544  }
1545 
1546  /*
1547  * Anything succeeds on channels with no physical allocation and
1548  * no queued transfers.
1549  */
1550  spin_lock_irqsave(&plchan->vc.lock, flags);
1551  if (!plchan->phychan && !plchan->at) {
1552  spin_unlock_irqrestore(&plchan->vc.lock, flags);
1553  return 0;
1554  }
1555 
1556  switch (cmd) {
1557  case DMA_TERMINATE_ALL:
1558  plchan->state = PL08X_CHAN_IDLE;
1559 
1560  if (plchan->phychan) {
1561  /*
1562  * Mark physical channel as free and free any slave
1563  * signal
1564  */
1565  pl08x_phy_free(plchan);
1566  }
1567  /* Dequeue jobs and free LLIs */
1568  if (plchan->at) {
1569  pl08x_desc_free(&plchan->at->vd);
1570  plchan->at = NULL;
1571  }
1572  /* Dequeue jobs not yet fired as well */
1573  pl08x_free_txd_list(pl08x, plchan);
1574  break;
1575  case DMA_PAUSE:
1576  pl08x_pause_phy_chan(plchan->phychan);
1577  plchan->state = PL08X_CHAN_PAUSED;
1578  break;
1579  case DMA_RESUME:
1580  pl08x_resume_phy_chan(plchan->phychan);
1581  plchan->state = PL08X_CHAN_RUNNING;
1582  break;
1583  default:
1584  /* Unknown command */
1585  ret = -ENXIO;
1586  break;
1587  }
1588 
1589  spin_unlock_irqrestore(&plchan->vc.lock, flags);
1590 
1591  return ret;
1592 }
1593 
1594 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1595 {
1596  struct pl08x_dma_chan *plchan;
1597  char *name = chan_id;
1598 
1599  /* Reject channels for devices not bound to this driver */
1600  if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1601  return false;
1602 
1603  plchan = to_pl08x_chan(chan);
1604 
1605  /* Check that the channel is not taken! */
1606  if (!strcmp(plchan->name, name))
1607  return true;
1608 
1609  return false;
1610 }
1611 
1612 /*
1613  * Just check that the device is there and active
1614  * TODO: turn this bit on/off depending on the number of physical channels
1615  * actually used, if it is zero... well shut it off. That will save some
1616  * power. Cut the clock at the same time.
1617  */
1618 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1619 {
1620  /* The Nomadik variant does not have the config register */
1621  if (pl08x->vd->nomadik)
1622  return;
1624 }
1625 
1626 static irqreturn_t pl08x_irq(int irq, void *dev)
1627 {
1628  struct pl08x_driver_data *pl08x = dev;
1629  u32 mask = 0, err, tc, i;
1630 
1631  /* check & clear - ERR & TC interrupts */
1632  err = readl(pl08x->base + PL080_ERR_STATUS);
1633  if (err) {
1634  dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1635  __func__, err);
1636  writel(err, pl08x->base + PL080_ERR_CLEAR);
1637  }
1638  tc = readl(pl08x->base + PL080_TC_STATUS);
1639  if (tc)
1640  writel(tc, pl08x->base + PL080_TC_CLEAR);
1641 
1642  if (!err && !tc)
1643  return IRQ_NONE;
1644 
1645  for (i = 0; i < pl08x->vd->channels; i++) {
1646  if (((1 << i) & err) || ((1 << i) & tc)) {
1647  /* Locate physical channel */
1648  struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1649  struct pl08x_dma_chan *plchan = phychan->serving;
1650  struct pl08x_txd *tx;
1651 
1652  if (!plchan) {
1653  dev_err(&pl08x->adev->dev,
1654  "%s Error TC interrupt on unused channel: 0x%08x\n",
1655  __func__, i);
1656  continue;
1657  }
1658 
1659  spin_lock(&plchan->vc.lock);
1660  tx = plchan->at;
1661  if (tx) {
1662  plchan->at = NULL;
1663  /*
1664  * This descriptor is done, release its mux
1665  * reservation.
1666  */
1667  pl08x_release_mux(plchan);
1668  tx->done = true;
1669  vchan_cookie_complete(&tx->vd);
1670 
1671  /*
1672  * And start the next descriptor (if any),
1673  * otherwise free this channel.
1674  */
1675  if (vchan_next_desc(&plchan->vc))
1676  pl08x_start_next_txd(plchan);
1677  else
1678  pl08x_phy_free(plchan);
1679  }
1680  spin_unlock(&plchan->vc.lock);
1681 
1682  mask |= (1 << i);
1683  }
1684  }
1685 
1686  return mask ? IRQ_HANDLED : IRQ_NONE;
1687 }
1688 
1689 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1690 {
1691  chan->slave = true;
1692  chan->name = chan->cd->bus_id;
1693  chan->cfg.src_addr = chan->cd->addr;
1694  chan->cfg.dst_addr = chan->cd->addr;
1695 }
1696 
1697 /*
1698  * Initialise the DMAC memcpy/slave channels.
1699  * Make a local wrapper to hold required data
1700  */
1701 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1702  struct dma_device *dmadev, unsigned int channels, bool slave)
1703 {
1704  struct pl08x_dma_chan *chan;
1705  int i;
1706 
1707  INIT_LIST_HEAD(&dmadev->channels);
1708 
1709  /*
1710  * Register as many many memcpy as we have physical channels,
1711  * we won't always be able to use all but the code will have
1712  * to cope with that situation.
1713  */
1714  for (i = 0; i < channels; i++) {
1715  chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1716  if (!chan) {
1717  dev_err(&pl08x->adev->dev,
1718  "%s no memory for channel\n", __func__);
1719  return -ENOMEM;
1720  }
1721 
1722  chan->host = pl08x;
1723  chan->state = PL08X_CHAN_IDLE;
1724  chan->signal = -1;
1725 
1726  if (slave) {
1727  chan->cd = &pl08x->pd->slave_channels[i];
1728  pl08x_dma_slave_init(chan);
1729  } else {
1730  chan->cd = &pl08x->pd->memcpy_channel;
1731  chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1732  if (!chan->name) {
1733  kfree(chan);
1734  return -ENOMEM;
1735  }
1736  }
1737  dev_dbg(&pl08x->adev->dev,
1738  "initialize virtual channel \"%s\"\n",
1739  chan->name);
1740 
1741  chan->vc.desc_free = pl08x_desc_free;
1742  vchan_init(&chan->vc, dmadev);
1743  }
1744  dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1745  i, slave ? "slave" : "memcpy");
1746  return i;
1747 }
1748 
1749 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1750 {
1751  struct pl08x_dma_chan *chan = NULL;
1752  struct pl08x_dma_chan *next;
1753 
1755  next, &dmadev->channels, vc.chan.device_node) {
1756  list_del(&chan->vc.chan.device_node);
1757  kfree(chan);
1758  }
1759 }
1760 
1761 #ifdef CONFIG_DEBUG_FS
1762 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1763 {
1764  switch (state) {
1765  case PL08X_CHAN_IDLE:
1766  return "idle";
1767  case PL08X_CHAN_RUNNING:
1768  return "running";
1769  case PL08X_CHAN_PAUSED:
1770  return "paused";
1771  case PL08X_CHAN_WAITING:
1772  return "waiting";
1773  default:
1774  break;
1775  }
1776  return "UNKNOWN STATE";
1777 }
1778 
1779 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1780 {
1781  struct pl08x_driver_data *pl08x = s->private;
1782  struct pl08x_dma_chan *chan;
1783  struct pl08x_phy_chan *ch;
1784  unsigned long flags;
1785  int i;
1786 
1787  seq_printf(s, "PL08x physical channels:\n");
1788  seq_printf(s, "CHANNEL:\tUSER:\n");
1789  seq_printf(s, "--------\t-----\n");
1790  for (i = 0; i < pl08x->vd->channels; i++) {
1791  struct pl08x_dma_chan *virt_chan;
1792 
1793  ch = &pl08x->phy_chans[i];
1794 
1795  spin_lock_irqsave(&ch->lock, flags);
1796  virt_chan = ch->serving;
1797 
1798  seq_printf(s, "%d\t\t%s%s\n",
1799  ch->id,
1800  virt_chan ? virt_chan->name : "(none)",
1801  ch->locked ? " LOCKED" : "");
1802 
1803  spin_unlock_irqrestore(&ch->lock, flags);
1804  }
1805 
1806  seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1807  seq_printf(s, "CHANNEL:\tSTATE:\n");
1808  seq_printf(s, "--------\t------\n");
1809  list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1810  seq_printf(s, "%s\t\t%s\n", chan->name,
1811  pl08x_state_str(chan->state));
1812  }
1813 
1814  seq_printf(s, "\nPL08x virtual slave channels:\n");
1815  seq_printf(s, "CHANNEL:\tSTATE:\n");
1816  seq_printf(s, "--------\t------\n");
1817  list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1818  seq_printf(s, "%s\t\t%s\n", chan->name,
1819  pl08x_state_str(chan->state));
1820  }
1821 
1822  return 0;
1823 }
1824 
1825 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1826 {
1827  return single_open(file, pl08x_debugfs_show, inode->i_private);
1828 }
1829 
1830 static const struct file_operations pl08x_debugfs_operations = {
1831  .open = pl08x_debugfs_open,
1832  .read = seq_read,
1833  .llseek = seq_lseek,
1834  .release = single_release,
1835 };
1836 
1837 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838 {
1839  /* Expose a simple debugfs interface to view all clocks */
1840  (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1841  S_IFREG | S_IRUGO, NULL, pl08x,
1842  &pl08x_debugfs_operations);
1843 }
1844 
1845 #else
1846 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1847 {
1848 }
1849 #endif
1850 
1851 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1852 {
1853  struct pl08x_driver_data *pl08x;
1854  const struct vendor_data *vd = id->data;
1855  int ret = 0;
1856  int i;
1857 
1858  ret = amba_request_regions(adev, NULL);
1859  if (ret)
1860  return ret;
1861 
1862  /* Create the driver state holder */
1863  pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1864  if (!pl08x) {
1865  ret = -ENOMEM;
1866  goto out_no_pl08x;
1867  }
1868 
1869  /* Initialize memcpy engine */
1870  dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1871  pl08x->memcpy.dev = &adev->dev;
1872  pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1873  pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1874  pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1875  pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1876  pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1877  pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1878  pl08x->memcpy.device_control = pl08x_control;
1879 
1880  /* Initialize slave engine */
1881  dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1882  pl08x->slave.dev = &adev->dev;
1883  pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1884  pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1885  pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1886  pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1887  pl08x->slave.device_issue_pending = pl08x_issue_pending;
1888  pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1889  pl08x->slave.device_control = pl08x_control;
1890 
1891  /* Get the platform data */
1892  pl08x->pd = dev_get_platdata(&adev->dev);
1893  if (!pl08x->pd) {
1894  dev_err(&adev->dev, "no platform data supplied\n");
1895  ret = -EINVAL;
1896  goto out_no_platdata;
1897  }
1898 
1899  /* Assign useful pointers to the driver state */
1900  pl08x->adev = adev;
1901  pl08x->vd = vd;
1902 
1903  /* By default, AHB1 only. If dualmaster, from platform */
1904  pl08x->lli_buses = PL08X_AHB1;
1905  pl08x->mem_buses = PL08X_AHB1;
1906  if (pl08x->vd->dualmaster) {
1907  pl08x->lli_buses = pl08x->pd->lli_buses;
1908  pl08x->mem_buses = pl08x->pd->mem_buses;
1909  }
1910 
1911  /* A DMA memory pool for LLIs, align on 1-byte boundary */
1912  pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1914  if (!pl08x->pool) {
1915  ret = -ENOMEM;
1916  goto out_no_lli_pool;
1917  }
1918 
1919  pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1920  if (!pl08x->base) {
1921  ret = -ENOMEM;
1922  goto out_no_ioremap;
1923  }
1924 
1925  /* Turn on the PL08x */
1926  pl08x_ensure_on(pl08x);
1927 
1928  /* Attach the interrupt handler */
1929  writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1930  writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1931 
1932  ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1933  DRIVER_NAME, pl08x);
1934  if (ret) {
1935  dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1936  __func__, adev->irq[0]);
1937  goto out_no_irq;
1938  }
1939 
1940  /* Initialize physical channels */
1941  pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1942  GFP_KERNEL);
1943  if (!pl08x->phy_chans) {
1944  dev_err(&adev->dev, "%s failed to allocate "
1945  "physical channel holders\n",
1946  __func__);
1947  ret = -ENOMEM;
1948  goto out_no_phychans;
1949  }
1950 
1951  for (i = 0; i < vd->channels; i++) {
1952  struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1953 
1954  ch->id = i;
1955  ch->base = pl08x->base + PL080_Cx_BASE(i);
1956  spin_lock_init(&ch->lock);
1957 
1958  /*
1959  * Nomadik variants can have channels that are locked
1960  * down for the secure world only. Lock up these channels
1961  * by perpetually serving a dummy virtual channel.
1962  */
1963  if (vd->nomadik) {
1964  u32 val;
1965 
1966  val = readl(ch->base + PL080_CH_CONFIG);
1968  dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1969  ch->locked = true;
1970  }
1971  }
1972 
1973  dev_dbg(&adev->dev, "physical channel %d is %s\n",
1974  i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1975  }
1976 
1977  /* Register as many memcpy channels as there are physical channels */
1978  ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1979  pl08x->vd->channels, false);
1980  if (ret <= 0) {
1981  dev_warn(&pl08x->adev->dev,
1982  "%s failed to enumerate memcpy channels - %d\n",
1983  __func__, ret);
1984  goto out_no_memcpy;
1985  }
1986  pl08x->memcpy.chancnt = ret;
1987 
1988  /* Register slave channels */
1989  ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1990  pl08x->pd->num_slave_channels, true);
1991  if (ret <= 0) {
1992  dev_warn(&pl08x->adev->dev,
1993  "%s failed to enumerate slave channels - %d\n",
1994  __func__, ret);
1995  goto out_no_slave;
1996  }
1997  pl08x->slave.chancnt = ret;
1998 
1999  ret = dma_async_device_register(&pl08x->memcpy);
2000  if (ret) {
2001  dev_warn(&pl08x->adev->dev,
2002  "%s failed to register memcpy as an async device - %d\n",
2003  __func__, ret);
2004  goto out_no_memcpy_reg;
2005  }
2006 
2007  ret = dma_async_device_register(&pl08x->slave);
2008  if (ret) {
2009  dev_warn(&pl08x->adev->dev,
2010  "%s failed to register slave as an async device - %d\n",
2011  __func__, ret);
2012  goto out_no_slave_reg;
2013  }
2014 
2015  amba_set_drvdata(adev, pl08x);
2016  init_pl08x_debugfs(pl08x);
2017  dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2018  amba_part(adev), amba_rev(adev),
2019  (unsigned long long)adev->res.start, adev->irq[0]);
2020 
2021  return 0;
2022 
2023 out_no_slave_reg:
2025 out_no_memcpy_reg:
2026  pl08x_free_virtual_channels(&pl08x->slave);
2027 out_no_slave:
2028  pl08x_free_virtual_channels(&pl08x->memcpy);
2029 out_no_memcpy:
2030  kfree(pl08x->phy_chans);
2031 out_no_phychans:
2032  free_irq(adev->irq[0], pl08x);
2033 out_no_irq:
2034  iounmap(pl08x->base);
2035 out_no_ioremap:
2036  dma_pool_destroy(pl08x->pool);
2037 out_no_lli_pool:
2038 out_no_platdata:
2039  kfree(pl08x);
2040 out_no_pl08x:
2041  amba_release_regions(adev);
2042  return ret;
2043 }
2044 
2045 /* PL080 has 8 channels and the PL080 have just 2 */
2046 static struct vendor_data vendor_pl080 = {
2047  .channels = 8,
2048  .dualmaster = true,
2049 };
2050 
2051 static struct vendor_data vendor_nomadik = {
2052  .channels = 8,
2053  .dualmaster = true,
2054  .nomadik = true,
2055 };
2056 
2057 static struct vendor_data vendor_pl081 = {
2058  .channels = 2,
2059  .dualmaster = false,
2060 };
2061 
2062 static struct amba_id pl08x_ids[] = {
2063  /* PL080 */
2064  {
2065  .id = 0x00041080,
2066  .mask = 0x000fffff,
2067  .data = &vendor_pl080,
2068  },
2069  /* PL081 */
2070  {
2071  .id = 0x00041081,
2072  .mask = 0x000fffff,
2073  .data = &vendor_pl081,
2074  },
2075  /* Nomadik 8815 PL080 variant */
2076  {
2077  .id = 0x00280080,
2078  .mask = 0x00ffffff,
2079  .data = &vendor_nomadik,
2080  },
2081  { 0, 0 },
2082 };
2083 
2084 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2085 
2086 static struct amba_driver pl08x_amba_driver = {
2087  .drv.name = DRIVER_NAME,
2088  .id_table = pl08x_ids,
2089  .probe = pl08x_probe,
2090 };
2091 
2092 static int __init pl08x_init(void)
2093 {
2094  int retval;
2095  retval = amba_driver_register(&pl08x_amba_driver);
2096  if (retval)
2098  "failed to register as an AMBA device (%d)\n",
2099  retval);
2100  return retval;
2101 }
2102 subsys_initcall(pl08x_init);