Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
aty128fb.c
Go to the documentation of this file.
1 /* $Id: aty128fb.c,v 1.1.1.1.36.1 1999/12/11 09:03:05 Exp $
2  * linux/drivers/video/aty128fb.c -- Frame buffer device for ATI Rage128
3  *
4  * Copyright (C) 1999-2003, Brad Douglas <[email protected]>
5  * Copyright (C) 1999, Anthony Tong <[email protected]>
6  *
7  * Ani Joshi / Jeff Garzik
8  * - Code cleanup
9  *
10  * Michel Danzer <[email protected]>
11  * - 15/16 bit cleanup
12  * - fix panning
13  *
14  * Benjamin Herrenschmidt
15  * - pmac-specific PM stuff
16  * - various fixes & cleanups
17  *
18  * Andreas Hundt <[email protected]>
19  * - FB_ACTIVATE fixes
20  *
21  * Paul Mackerras <[email protected]>
22  * - Convert to new framebuffer API,
23  * fix colormap setting at 16 bits/pixel (565)
24  *
25  * Paul Mundt
26  * - PCI hotplug
27  *
28  * Jon Smirl <[email protected]>
29  * - PCI ID update
30  * - replace ROM BIOS search
31  *
32  * Based off of Geert's atyfb.c and vfb.c.
33  *
34  * TODO:
35  * - monitor sensing (DDC)
36  * - virtual display
37  * - other platform support (only ppc/x86 supported)
38  * - hardware cursor support
39  *
40  * Please cc: your patches to [email protected].
41  */
42 
43 /*
44  * A special note of gratitude to ATI's devrel for providing documentation,
45  * example code and hardware. Thanks Nitya. -atong and brad
46  */
47 
48 
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/kernel.h>
52 #include <linux/errno.h>
53 #include <linux/string.h>
54 #include <linux/mm.h>
55 #include <linux/vmalloc.h>
56 #include <linux/delay.h>
57 #include <linux/interrupt.h>
58 #include <linux/uaccess.h>
59 #include <linux/fb.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/ioport.h>
63 #include <linux/console.h>
64 #include <linux/backlight.h>
65 #include <asm/io.h>
66 
67 #ifdef CONFIG_PPC_PMAC
68 #include <asm/machdep.h>
69 #include <asm/pmac_feature.h>
70 #include <asm/prom.h>
71 #include <asm/pci-bridge.h>
72 #include "../macmodes.h"
73 #endif
74 
75 #ifdef CONFIG_PMAC_BACKLIGHT
76 #include <asm/backlight.h>
77 #endif
78 
79 #ifdef CONFIG_BOOTX_TEXT
80 #include <asm/btext.h>
81 #endif /* CONFIG_BOOTX_TEXT */
82 
83 #ifdef CONFIG_MTRR
84 #include <asm/mtrr.h>
85 #endif
86 
87 #include <video/aty128.h>
88 
89 /* Debug flag */
90 #undef DEBUG
91 
92 #ifdef DEBUG
93 #define DBG(fmt, args...) \
94  printk(KERN_DEBUG "aty128fb: %s " fmt, __func__, ##args);
95 #else
96 #define DBG(fmt, args...)
97 #endif
98 
99 #ifndef CONFIG_PPC_PMAC
100 /* default mode */
102  /* 640x480, 60 Hz, Non-Interlaced (25.175 MHz dotclock) */
103  640, 480, 640, 480, 0, 0, 8, 0,
104  {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
105  0, 0, -1, -1, 0, 39722, 48, 16, 33, 10, 96, 2,
107 };
108 
109 #else /* CONFIG_PPC_PMAC */
110 /* default to 1024x768 at 75Hz on PPC - this will work
111  * on the iMac, the usual 640x480 @ 60Hz doesn't. */
112 static struct fb_var_screeninfo default_var = {
113  /* 1024x768, 75 Hz, Non-Interlaced (78.75 MHz dotclock) */
114  1024, 768, 1024, 768, 0, 0, 8, 0,
115  {0, 8, 0}, {0, 8, 0}, {0, 8, 0}, {0, 0, 0},
116  0, 0, -1, -1, 0, 12699, 160, 32, 28, 1, 96, 3,
119 };
120 #endif /* CONFIG_PPC_PMAC */
121 
122 /* default modedb mode */
123 /* 640x480, 60 Hz, Non-Interlaced (25.172 MHz dotclock) */
124 static struct fb_videomode defaultmode __devinitdata = {
125  .refresh = 60,
126  .xres = 640,
127  .yres = 480,
128  .pixclock = 39722,
129  .left_margin = 48,
130  .right_margin = 16,
131  .upper_margin = 33,
132  .lower_margin = 10,
133  .hsync_len = 96,
134  .vsync_len = 2,
135  .sync = 0,
136  .vmode = FB_VMODE_NONINTERLACED
137 };
138 
139 /* Chip generations */
140 enum {
149 };
150 
151 /* Must match above enum */
152 static char * const r128_family[] __devinitconst = {
153  "AGP",
154  "PCI",
155  "PRO AGP",
156  "PRO PCI",
157  "M3 AGP",
158  "M3 PCI",
159  "M4 AGP",
160  "Ultra AGP",
161 };
162 
163 /*
164  * PCI driver prototypes
165  */
166 static int aty128_probe(struct pci_dev *pdev,
167  const struct pci_device_id *ent);
168 static void aty128_remove(struct pci_dev *pdev);
169 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state);
170 static int aty128_pci_resume(struct pci_dev *pdev);
171 static int aty128_do_resume(struct pci_dev *pdev);
172 
173 /* supported Rage128 chipsets */
174 static struct pci_device_id aty128_pci_tbl[] = {
178  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M3 },
180  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
182  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_M4 },
234  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
236  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
240  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
242  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
246  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
248  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
250  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
252  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
254  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
256  PCI_ANY_ID, PCI_ANY_ID, 0, 0, rage_128 },
269  { 0, }
270 };
271 
272 MODULE_DEVICE_TABLE(pci, aty128_pci_tbl);
273 
274 static struct pci_driver aty128fb_driver = {
275  .name = "aty128fb",
276  .id_table = aty128_pci_tbl,
277  .probe = aty128_probe,
278  .remove = __devexit_p(aty128_remove),
279  .suspend = aty128_pci_suspend,
280  .resume = aty128_pci_resume,
281 };
282 
283 /* packed BIOS settings */
284 #ifndef CONFIG_PPC
285 typedef struct {
308 } __attribute__ ((packed)) PLL_BLOCK;
309 #endif /* !CONFIG_PPC */
310 
311 /* onboard memory information */
323  const char *name;
324 };
325 
326 /* various memory configurations */
327 static const struct aty128_meminfo sdr_128 =
328  { 4, 4, 3, 3, 1, 3, 1, 16, 30, 16, "128-bit SDR SGRAM (1:1)" };
329 static const struct aty128_meminfo sdr_64 =
330  { 4, 8, 3, 3, 1, 3, 1, 17, 46, 17, "64-bit SDR SGRAM (1:1)" };
331 static const struct aty128_meminfo sdr_sgram =
332  { 4, 4, 1, 2, 1, 2, 1, 16, 24, 16, "64-bit SDR SGRAM (2:1)" };
333 static const struct aty128_meminfo ddr_sgram =
334  { 4, 4, 3, 3, 2, 3, 1, 16, 31, 16, "64-bit DDR SGRAM" };
335 
336 static struct fb_fix_screeninfo aty128fb_fix __devinitdata = {
337  .id = "ATY Rage128",
338  .type = FB_TYPE_PACKED_PIXELS,
339  .visual = FB_VISUAL_PSEUDOCOLOR,
340  .xpanstep = 8,
341  .ypanstep = 1,
342  .mmio_len = 0x2000,
343  .accel = FB_ACCEL_ATI_RAGE128,
344 };
345 
346 static char *mode_option __devinitdata = NULL;
347 
348 #ifdef CONFIG_PPC_PMAC
349 static int default_vmode __devinitdata = VMODE_1024_768_60;
350 static int default_cmode __devinitdata = CMODE_8;
351 #endif
352 
353 static int default_crt_on __devinitdata = 0;
354 static int default_lcd_on __devinitdata = 1;
355 
356 #ifdef CONFIG_MTRR
357 static bool mtrr = true;
358 #endif
359 
360 #ifdef CONFIG_PMAC_BACKLIGHT
361 static int backlight __devinitdata = 1;
362 #else
363 static int backlight __devinitdata = 0;
364 #endif
365 
366 /* PLL constants */
375 };
376 
377 struct aty128_crtc {
386 };
387 
388 struct aty128_pll {
392 };
393 
397 };
398 
399 /* register values for a specific mode */
400 struct aty128fb_par {
402  struct aty128_pll pll;
405  struct aty128_constants constants; /* PLL and others */
406  void __iomem *regbase; /* remapped mmio */
407  u32 vram_size; /* onboard video ram */
408  int chip_gen;
409  const struct aty128_meminfo *mem; /* onboard mem info */
410 #ifdef CONFIG_MTRR
411  struct { int vram; int vram_valid; } mtrr;
412 #endif
414  int fifo_slots; /* free slots in FIFO (64 max) */
415 
416  int pm_reg;
418  struct pci_dev *pdev;
419  struct fb_info *next;
420  int asleep;
422 
423  u8 red[32]; /* see aty128fb_setcolreg */
424  u8 green[64];
425  u8 blue[32];
426  u32 pseudo_palette[16]; /* used for TRUECOLOR */
427 };
428 
429 
430 #define round_div(n, d) ((n+(d/2))/d)
431 
432 static int aty128fb_check_var(struct fb_var_screeninfo *var,
433  struct fb_info *info);
434 static int aty128fb_set_par(struct fb_info *info);
435 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
436  u_int transp, struct fb_info *info);
437 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
438  struct fb_info *fb);
439 static int aty128fb_blank(int blank, struct fb_info *fb);
440 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, unsigned long arg);
441 static int aty128fb_sync(struct fb_info *info);
442 
443  /*
444  * Internal routines
445  */
446 
447 static int aty128_encode_var(struct fb_var_screeninfo *var,
448  const struct aty128fb_par *par);
449 static int aty128_decode_var(struct fb_var_screeninfo *var,
450  struct aty128fb_par *par);
451 #if 0
452 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
453  void __iomem *bios);
454 static void __devinit __iomem *aty128_map_ROM(struct pci_dev *pdev,
455  const struct aty128fb_par *par);
456 #endif
457 static void aty128_timings(struct aty128fb_par *par);
458 static void aty128_init_engine(struct aty128fb_par *par);
459 static void aty128_reset_engine(const struct aty128fb_par *par);
460 static void aty128_flush_pixel_cache(const struct aty128fb_par *par);
461 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par);
462 static void wait_for_fifo(u16 entries, struct aty128fb_par *par);
463 static void wait_for_idle(struct aty128fb_par *par);
464 static u32 depth_to_dst(u32 depth);
465 
466 #ifdef CONFIG_FB_ATY128_BACKLIGHT
467 static void aty128_bl_set_power(struct fb_info *info, int power);
468 #endif
469 
470 #define BIOS_IN8(v) (readb(bios + (v)))
471 #define BIOS_IN16(v) (readb(bios + (v)) | \
472  (readb(bios + (v) + 1) << 8))
473 #define BIOS_IN32(v) (readb(bios + (v)) | \
474  (readb(bios + (v) + 1) << 8) | \
475  (readb(bios + (v) + 2) << 16) | \
476  (readb(bios + (v) + 3) << 24))
477 
478 
479 static struct fb_ops aty128fb_ops = {
480  .owner = THIS_MODULE,
481  .fb_check_var = aty128fb_check_var,
482  .fb_set_par = aty128fb_set_par,
483  .fb_setcolreg = aty128fb_setcolreg,
484  .fb_pan_display = aty128fb_pan_display,
485  .fb_blank = aty128fb_blank,
486  .fb_ioctl = aty128fb_ioctl,
487  .fb_sync = aty128fb_sync,
488  .fb_fillrect = cfb_fillrect,
489  .fb_copyarea = cfb_copyarea,
490  .fb_imageblit = cfb_imageblit,
491 };
492 
493  /*
494  * Functions to read from/write to the mmio registers
495  * - endian conversions may possibly be avoided by
496  * using the other register aperture. TODO.
497  */
498 static inline u32 _aty_ld_le32(volatile unsigned int regindex,
499  const struct aty128fb_par *par)
500 {
501  return readl (par->regbase + regindex);
502 }
503 
504 static inline void _aty_st_le32(volatile unsigned int regindex, u32 val,
505  const struct aty128fb_par *par)
506 {
507  writel (val, par->regbase + regindex);
508 }
509 
510 static inline u8 _aty_ld_8(unsigned int regindex,
511  const struct aty128fb_par *par)
512 {
513  return readb (par->regbase + regindex);
514 }
515 
516 static inline void _aty_st_8(unsigned int regindex, u8 val,
517  const struct aty128fb_par *par)
518 {
519  writeb (val, par->regbase + regindex);
520 }
521 
522 #define aty_ld_le32(regindex) _aty_ld_le32(regindex, par)
523 #define aty_st_le32(regindex, val) _aty_st_le32(regindex, val, par)
524 #define aty_ld_8(regindex) _aty_ld_8(regindex, par)
525 #define aty_st_8(regindex, val) _aty_st_8(regindex, val, par)
526 
527  /*
528  * Functions to read from/write to the pll registers
529  */
530 
531 #define aty_ld_pll(pll_index) _aty_ld_pll(pll_index, par)
532 #define aty_st_pll(pll_index, val) _aty_st_pll(pll_index, val, par)
533 
534 
535 static u32 _aty_ld_pll(unsigned int pll_index,
536  const struct aty128fb_par *par)
537 {
538  aty_st_8(CLOCK_CNTL_INDEX, pll_index & 0x3F);
540 }
541 
542 
543 static void _aty_st_pll(unsigned int pll_index, u32 val,
544  const struct aty128fb_par *par)
545 {
546  aty_st_8(CLOCK_CNTL_INDEX, (pll_index & 0x3F) | PLL_WR_EN);
548 }
549 
550 
551 /* return true when the PLL has completed an atomic update */
552 static int aty_pll_readupdate(const struct aty128fb_par *par)
553 {
555 }
556 
557 
558 static void aty_pll_wait_readupdate(const struct aty128fb_par *par)
559 {
560  unsigned long timeout = jiffies + HZ/100; // should be more than enough
561  int reset = 1;
562 
563  while (time_before(jiffies, timeout))
564  if (aty_pll_readupdate(par)) {
565  reset = 0;
566  break;
567  }
568 
569  if (reset) /* reset engine?? */
570  printk(KERN_DEBUG "aty128fb: PLL write timeout!\n");
571 }
572 
573 
574 /* tell PLL to update */
575 static void aty_pll_writeupdate(const struct aty128fb_par *par)
576 {
577  aty_pll_wait_readupdate(par);
578 
581 }
582 
583 
584 /* write to the scratch register to test r/w functionality */
585 static int __devinit register_test(const struct aty128fb_par *par)
586 {
587  u32 val;
588  int flag = 0;
589 
591 
592  aty_st_le32(BIOS_0_SCRATCH, 0x55555555);
593  if (aty_ld_le32(BIOS_0_SCRATCH) == 0x55555555) {
594  aty_st_le32(BIOS_0_SCRATCH, 0xAAAAAAAA);
595 
596  if (aty_ld_le32(BIOS_0_SCRATCH) == 0xAAAAAAAA)
597  flag = 1;
598  }
599 
600  aty_st_le32(BIOS_0_SCRATCH, val); // restore value
601  return flag;
602 }
603 
604 
605 /*
606  * Accelerator engine functions
607  */
608 static void do_wait_for_fifo(u16 entries, struct aty128fb_par *par)
609 {
610  int i;
611 
612  for (;;) {
613  for (i = 0; i < 2000000; i++) {
614  par->fifo_slots = aty_ld_le32(GUI_STAT) & 0x0fff;
615  if (par->fifo_slots >= entries)
616  return;
617  }
618  aty128_reset_engine(par);
619  }
620 }
621 
622 
623 static void wait_for_idle(struct aty128fb_par *par)
624 {
625  int i;
626 
627  do_wait_for_fifo(64, par);
628 
629  for (;;) {
630  for (i = 0; i < 2000000; i++) {
631  if (!(aty_ld_le32(GUI_STAT) & (1 << 31))) {
632  aty128_flush_pixel_cache(par);
633  par->blitter_may_be_busy = 0;
634  return;
635  }
636  }
637  aty128_reset_engine(par);
638  }
639 }
640 
641 
642 static void wait_for_fifo(u16 entries, struct aty128fb_par *par)
643 {
644  if (par->fifo_slots < entries)
645  do_wait_for_fifo(64, par);
646  par->fifo_slots -= entries;
647 }
648 
649 
650 static void aty128_flush_pixel_cache(const struct aty128fb_par *par)
651 {
652  int i;
653  u32 tmp;
654 
656  tmp &= ~(0x00ff);
657  tmp |= 0x00ff;
659 
660  for (i = 0; i < 2000000; i++)
662  break;
663 }
664 
665 
666 static void aty128_reset_engine(const struct aty128fb_par *par)
667 {
668  u32 gen_reset_cntl, clock_cntl_index, mclk_cntl;
669 
670  aty128_flush_pixel_cache(par);
671 
672  clock_cntl_index = aty_ld_le32(CLOCK_CNTL_INDEX);
673  mclk_cntl = aty_ld_pll(MCLK_CNTL);
674 
675  aty_st_pll(MCLK_CNTL, mclk_cntl | 0x00030000);
676 
677  gen_reset_cntl = aty_ld_le32(GEN_RESET_CNTL);
678  aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl | SOFT_RESET_GUI);
680  aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl & ~(SOFT_RESET_GUI));
682 
683  aty_st_pll(MCLK_CNTL, mclk_cntl);
684  aty_st_le32(CLOCK_CNTL_INDEX, clock_cntl_index);
685  aty_st_le32(GEN_RESET_CNTL, gen_reset_cntl);
686 
687  /* use old pio mode */
689 
690  DBG("engine reset");
691 }
692 
693 
694 static void aty128_init_engine(struct aty128fb_par *par)
695 {
696  u32 pitch_value;
697 
698  wait_for_idle(par);
699 
700  /* 3D scaler not spoken here */
701  wait_for_fifo(1, par);
702  aty_st_le32(SCALE_3D_CNTL, 0x00000000);
703 
704  aty128_reset_engine(par);
705 
706  pitch_value = par->crtc.pitch;
707  if (par->crtc.bpp == 24) {
708  pitch_value = pitch_value * 3;
709  }
710 
711  wait_for_fifo(4, par);
712  /* setup engine offset registers */
713  aty_st_le32(DEFAULT_OFFSET, 0x00000000);
714 
715  /* setup engine pitch registers */
716  aty_st_le32(DEFAULT_PITCH, pitch_value);
717 
718  /* set the default scissor register to max dimensions */
719  aty_st_le32(DEFAULT_SC_BOTTOM_RIGHT, (0x1FFF << 16) | 0x1FFF);
720 
721  /* set the drawing controls registers */
728  (depth_to_dst(par->crtc.depth) << 8) |
732  ROP3_PATCOPY |
738 
739  wait_for_fifo(8, par);
740  /* clear the line drawing registers */
744 
745  /* set brush color registers */
746  aty_st_le32(DP_BRUSH_FRGD_CLR, 0xFFFFFFFF); /* white */
747  aty_st_le32(DP_BRUSH_BKGD_CLR, 0x00000000); /* black */
748 
749  /* set source color registers */
750  aty_st_le32(DP_SRC_FRGD_CLR, 0xFFFFFFFF); /* white */
751  aty_st_le32(DP_SRC_BKGD_CLR, 0x00000000); /* black */
752 
753  /* default write mask */
754  aty_st_le32(DP_WRITE_MASK, 0xFFFFFFFF);
755 
756  /* Wait for all the writes to be completed before returning */
757  wait_for_idle(par);
758 }
759 
760 
761 /* convert depth values to their register representation */
762 static u32 depth_to_dst(u32 depth)
763 {
764  if (depth <= 8)
765  return DST_8BPP;
766  else if (depth <= 15)
767  return DST_15BPP;
768  else if (depth == 16)
769  return DST_16BPP;
770  else if (depth <= 24)
771  return DST_24BPP;
772  else if (depth <= 32)
773  return DST_32BPP;
774 
775  return -EINVAL;
776 }
777 
778 /*
779  * PLL informations retreival
780  */
781 
782 
783 #ifndef __sparc__
784 static void __iomem * __devinit aty128_map_ROM(const struct aty128fb_par *par,
785  struct pci_dev *dev)
786 {
787  u16 dptr;
788  u8 rom_type;
789  void __iomem *bios;
790  size_t rom_size;
791 
792  /* Fix from ATI for problem with Rage128 hardware not leaving ROM enabled */
793  unsigned int temp;
795  temp &= 0x00ffffffu;
796  temp |= 0x04 << 24;
799 
800  bios = pci_map_rom(dev, &rom_size);
801 
802  if (!bios) {
803  printk(KERN_ERR "aty128fb: ROM failed to map\n");
804  return NULL;
805  }
806 
807  /* Very simple test to make sure it appeared */
808  if (BIOS_IN16(0) != 0xaa55) {
809  printk(KERN_DEBUG "aty128fb: Invalid ROM signature %x should "
810  " be 0xaa55\n", BIOS_IN16(0));
811  goto failed;
812  }
813 
814  /* Look for the PCI data to check the ROM type */
815  dptr = BIOS_IN16(0x18);
816 
817  /* Check the PCI data signature. If it's wrong, we still assume a normal
818  * x86 ROM for now, until I've verified this works everywhere.
819  * The goal here is more to phase out Open Firmware images.
820  *
821  * Currently, we only look at the first PCI data, we could iteratre and
822  * deal with them all, and we should use fb_bios_start relative to start
823  * of image and not relative start of ROM, but so far, I never found a
824  * dual-image ATI card.
825  *
826  * typedef struct {
827  * u32 signature; + 0x00
828  * u16 vendor; + 0x04
829  * u16 device; + 0x06
830  * u16 reserved_1; + 0x08
831  * u16 dlen; + 0x0a
832  * u8 drevision; + 0x0c
833  * u8 class_hi; + 0x0d
834  * u16 class_lo; + 0x0e
835  * u16 ilen; + 0x10
836  * u16 irevision; + 0x12
837  * u8 type; + 0x14
838  * u8 indicator; + 0x15
839  * u16 reserved_2; + 0x16
840  * } pci_data_t;
841  */
842  if (BIOS_IN32(dptr) != (('R' << 24) | ('I' << 16) | ('C' << 8) | 'P')) {
843  printk(KERN_WARNING "aty128fb: PCI DATA signature in ROM incorrect: %08x\n",
844  BIOS_IN32(dptr));
845  goto anyway;
846  }
847  rom_type = BIOS_IN8(dptr + 0x14);
848  switch(rom_type) {
849  case 0:
850  printk(KERN_INFO "aty128fb: Found Intel x86 BIOS ROM Image\n");
851  break;
852  case 1:
853  printk(KERN_INFO "aty128fb: Found Open Firmware ROM Image\n");
854  goto failed;
855  case 2:
856  printk(KERN_INFO "aty128fb: Found HP PA-RISC ROM Image\n");
857  goto failed;
858  default:
859  printk(KERN_INFO "aty128fb: Found unknown type %d ROM Image\n",
860  rom_type);
861  goto failed;
862  }
863  anyway:
864  return bios;
865 
866  failed:
867  pci_unmap_rom(dev, bios);
868  return NULL;
869 }
870 
871 static void __devinit aty128_get_pllinfo(struct aty128fb_par *par,
872  unsigned char __iomem *bios)
873 {
874  unsigned int bios_hdr;
875  unsigned int bios_pll;
876 
877  bios_hdr = BIOS_IN16(0x48);
878  bios_pll = BIOS_IN16(bios_hdr + 0x30);
879 
880  par->constants.ppll_max = BIOS_IN32(bios_pll + 0x16);
881  par->constants.ppll_min = BIOS_IN32(bios_pll + 0x12);
882  par->constants.xclk = BIOS_IN16(bios_pll + 0x08);
883  par->constants.ref_divider = BIOS_IN16(bios_pll + 0x10);
884  par->constants.ref_clk = BIOS_IN16(bios_pll + 0x0e);
885 
886  DBG("ppll_max %d ppll_min %d xclk %d ref_divider %d ref clock %d\n",
887  par->constants.ppll_max, par->constants.ppll_min,
888  par->constants.xclk, par->constants.ref_divider,
889  par->constants.ref_clk);
890 
891 }
892 
893 #ifdef CONFIG_X86
894 static void __iomem * __devinit aty128_find_mem_vbios(struct aty128fb_par *par)
895 {
896  /* I simplified this code as we used to miss the signatures in
897  * a lot of case. It's now closer to XFree, we just don't check
898  * for signatures at all... Something better will have to be done
899  * if we end up having conflicts
900  */
901  u32 segstart;
902  unsigned char __iomem *rom_base = NULL;
903 
904  for (segstart=0x000c0000; segstart<0x000f0000; segstart+=0x00001000) {
905  rom_base = ioremap(segstart, 0x10000);
906  if (rom_base == NULL)
907  return NULL;
908  if (readb(rom_base) == 0x55 && readb(rom_base + 1) == 0xaa)
909  break;
910  iounmap(rom_base);
911  rom_base = NULL;
912  }
913  return rom_base;
914 }
915 #endif
916 #endif /* ndef(__sparc__) */
917 
918 /* fill in known card constants if pll_block is not available */
919 static void __devinit aty128_timings(struct aty128fb_par *par)
920 {
921 #ifdef CONFIG_PPC_OF
922  /* instead of a table lookup, assume OF has properly
923  * setup the PLL registers and use their values
924  * to set the XCLK values and reference divider values */
925 
926  u32 x_mpll_ref_fb_div;
927  u32 xclk_cntl;
928  u32 Nx, M;
929  unsigned PostDivSet[] = { 0, 1, 2, 4, 8, 3, 6, 12 };
930 #endif
931 
932  if (!par->constants.ref_clk)
933  par->constants.ref_clk = 2950;
934 
935 #ifdef CONFIG_PPC_OF
936  x_mpll_ref_fb_div = aty_ld_pll(X_MPLL_REF_FB_DIV);
937  xclk_cntl = aty_ld_pll(XCLK_CNTL) & 0x7;
938  Nx = (x_mpll_ref_fb_div & 0x00ff00) >> 8;
939  M = x_mpll_ref_fb_div & 0x0000ff;
940 
941  par->constants.xclk = round_div((2 * Nx * par->constants.ref_clk),
942  (M * PostDivSet[xclk_cntl]));
943 
944  par->constants.ref_divider =
946 #endif
947 
948  if (!par->constants.ref_divider) {
949  par->constants.ref_divider = 0x3b;
950 
951  aty_st_pll(X_MPLL_REF_FB_DIV, 0x004c4c1e);
952  aty_pll_writeupdate(par);
953  }
954  aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider);
955  aty_pll_writeupdate(par);
956 
957  /* from documentation */
958  if (!par->constants.ppll_min)
959  par->constants.ppll_min = 12500;
960  if (!par->constants.ppll_max)
961  par->constants.ppll_max = 25000; /* 23000 on some cards? */
962  if (!par->constants.xclk)
963  par->constants.xclk = 0x1d4d; /* same as mclk */
964 
965  par->constants.fifo_width = 128;
966  par->constants.fifo_depth = 32;
967 
968  switch (aty_ld_le32(MEM_CNTL) & 0x3) {
969  case 0:
970  par->mem = &sdr_128;
971  break;
972  case 1:
973  par->mem = &sdr_sgram;
974  break;
975  case 2:
976  par->mem = &ddr_sgram;
977  break;
978  default:
979  par->mem = &sdr_sgram;
980  }
981 }
982 
983 
984 
985 /*
986  * CRTC programming
987  */
988 
989 /* Program the CRTC registers */
990 static void aty128_set_crtc(const struct aty128_crtc *crtc,
991  const struct aty128fb_par *par)
992 {
998  aty_st_le32(CRTC_PITCH, crtc->pitch);
1001  /* Disable ATOMIC updating. Is this the right place? */
1002  aty_st_pll(PPLL_CNTL, aty_ld_pll(PPLL_CNTL) & ~(0x00030000));
1003 }
1004 
1005 
1006 static int aty128_var_to_crtc(const struct fb_var_screeninfo *var,
1007  struct aty128_crtc *crtc,
1008  const struct aty128fb_par *par)
1009 {
1010  u32 xres, yres, vxres, vyres, xoffset, yoffset, bpp, dst;
1011  u32 left, right, upper, lower, hslen, vslen, sync, vmode;
1012  u32 h_total, h_disp, h_sync_strt, h_sync_wid, h_sync_pol;
1013  u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1014  u32 depth, bytpp;
1015  u8 mode_bytpp[7] = { 0, 0, 1, 2, 2, 3, 4 };
1016 
1017  /* input */
1018  xres = var->xres;
1019  yres = var->yres;
1020  vxres = var->xres_virtual;
1021  vyres = var->yres_virtual;
1022  xoffset = var->xoffset;
1023  yoffset = var->yoffset;
1024  bpp = var->bits_per_pixel;
1025  left = var->left_margin;
1026  right = var->right_margin;
1027  upper = var->upper_margin;
1028  lower = var->lower_margin;
1029  hslen = var->hsync_len;
1030  vslen = var->vsync_len;
1031  sync = var->sync;
1032  vmode = var->vmode;
1033 
1034  if (bpp != 16)
1035  depth = bpp;
1036  else
1037  depth = (var->green.length == 6) ? 16 : 15;
1038 
1039  /* check for mode eligibility
1040  * accept only non interlaced modes */
1041  if ((vmode & FB_VMODE_MASK) != FB_VMODE_NONINTERLACED)
1042  return -EINVAL;
1043 
1044  /* convert (and round up) and validate */
1045  xres = (xres + 7) & ~7;
1046  xoffset = (xoffset + 7) & ~7;
1047 
1048  if (vxres < xres + xoffset)
1049  vxres = xres + xoffset;
1050 
1051  if (vyres < yres + yoffset)
1052  vyres = yres + yoffset;
1053 
1054  /* convert depth into ATI register depth */
1055  dst = depth_to_dst(depth);
1056 
1057  if (dst == -EINVAL) {
1058  printk(KERN_ERR "aty128fb: Invalid depth or RGBA\n");
1059  return -EINVAL;
1060  }
1061 
1062  /* convert register depth to bytes per pixel */
1063  bytpp = mode_bytpp[dst];
1064 
1065  /* make sure there is enough video ram for the mode */
1066  if ((u32)(vxres * vyres * bytpp) > par->vram_size) {
1067  printk(KERN_ERR "aty128fb: Not enough memory for mode\n");
1068  return -EINVAL;
1069  }
1070 
1071  h_disp = (xres >> 3) - 1;
1072  h_total = (((xres + right + hslen + left) >> 3) - 1) & 0xFFFFL;
1073 
1074  v_disp = yres - 1;
1075  v_total = (yres + upper + vslen + lower - 1) & 0xFFFFL;
1076 
1077  /* check to make sure h_total and v_total are in range */
1078  if (((h_total >> 3) - 1) > 0x1ff || (v_total - 1) > 0x7FF) {
1079  printk(KERN_ERR "aty128fb: invalid width ranges\n");
1080  return -EINVAL;
1081  }
1082 
1083  h_sync_wid = (hslen + 7) >> 3;
1084  if (h_sync_wid == 0)
1085  h_sync_wid = 1;
1086  else if (h_sync_wid > 0x3f) /* 0x3f = max hwidth */
1087  h_sync_wid = 0x3f;
1088 
1089  h_sync_strt = (h_disp << 3) + right;
1090 
1091  v_sync_wid = vslen;
1092  if (v_sync_wid == 0)
1093  v_sync_wid = 1;
1094  else if (v_sync_wid > 0x1f) /* 0x1f = max vwidth */
1095  v_sync_wid = 0x1f;
1096 
1097  v_sync_strt = v_disp + lower;
1098 
1099  h_sync_pol = sync & FB_SYNC_HOR_HIGH_ACT ? 0 : 1;
1100  v_sync_pol = sync & FB_SYNC_VERT_HIGH_ACT ? 0 : 1;
1101 
1102  c_sync = sync & FB_SYNC_COMP_HIGH_ACT ? (1 << 4) : 0;
1103 
1104  crtc->gen_cntl = 0x3000000L | c_sync | (dst << 8);
1105 
1106  crtc->h_total = h_total | (h_disp << 16);
1107  crtc->v_total = v_total | (v_disp << 16);
1108 
1109  crtc->h_sync_strt_wid = h_sync_strt | (h_sync_wid << 16) |
1110  (h_sync_pol << 23);
1111  crtc->v_sync_strt_wid = v_sync_strt | (v_sync_wid << 16) |
1112  (v_sync_pol << 23);
1113 
1114  crtc->pitch = vxres >> 3;
1115 
1116  crtc->offset = 0;
1117 
1118  if ((var->activate & FB_ACTIVATE_MASK) == FB_ACTIVATE_NOW)
1119  crtc->offset_cntl = 0x00010000;
1120  else
1121  crtc->offset_cntl = 0;
1122 
1123  crtc->vxres = vxres;
1124  crtc->vyres = vyres;
1125  crtc->xoffset = xoffset;
1126  crtc->yoffset = yoffset;
1127  crtc->depth = depth;
1128  crtc->bpp = bpp;
1129 
1130  return 0;
1131 }
1132 
1133 
1134 static int aty128_pix_width_to_var(int pix_width, struct fb_var_screeninfo *var)
1135 {
1136 
1137  /* fill in pixel info */
1138  var->red.msb_right = 0;
1139  var->green.msb_right = 0;
1140  var->blue.offset = 0;
1141  var->blue.msb_right = 0;
1142  var->transp.offset = 0;
1143  var->transp.length = 0;
1144  var->transp.msb_right = 0;
1145  switch (pix_width) {
1146  case CRTC_PIX_WIDTH_8BPP:
1147  var->bits_per_pixel = 8;
1148  var->red.offset = 0;
1149  var->red.length = 8;
1150  var->green.offset = 0;
1151  var->green.length = 8;
1152  var->blue.length = 8;
1153  break;
1154  case CRTC_PIX_WIDTH_15BPP:
1155  var->bits_per_pixel = 16;
1156  var->red.offset = 10;
1157  var->red.length = 5;
1158  var->green.offset = 5;
1159  var->green.length = 5;
1160  var->blue.length = 5;
1161  break;
1162  case CRTC_PIX_WIDTH_16BPP:
1163  var->bits_per_pixel = 16;
1164  var->red.offset = 11;
1165  var->red.length = 5;
1166  var->green.offset = 5;
1167  var->green.length = 6;
1168  var->blue.length = 5;
1169  break;
1170  case CRTC_PIX_WIDTH_24BPP:
1171  var->bits_per_pixel = 24;
1172  var->red.offset = 16;
1173  var->red.length = 8;
1174  var->green.offset = 8;
1175  var->green.length = 8;
1176  var->blue.length = 8;
1177  break;
1178  case CRTC_PIX_WIDTH_32BPP:
1179  var->bits_per_pixel = 32;
1180  var->red.offset = 16;
1181  var->red.length = 8;
1182  var->green.offset = 8;
1183  var->green.length = 8;
1184  var->blue.length = 8;
1185  var->transp.offset = 24;
1186  var->transp.length = 8;
1187  break;
1188  default:
1189  printk(KERN_ERR "aty128fb: Invalid pixel width\n");
1190  return -EINVAL;
1191  }
1192 
1193  return 0;
1194 }
1195 
1196 
1197 static int aty128_crtc_to_var(const struct aty128_crtc *crtc,
1198  struct fb_var_screeninfo *var)
1199 {
1200  u32 xres, yres, left, right, upper, lower, hslen, vslen, sync;
1201  u32 h_total, h_disp, h_sync_strt, h_sync_dly, h_sync_wid, h_sync_pol;
1202  u32 v_total, v_disp, v_sync_strt, v_sync_wid, v_sync_pol, c_sync;
1203  u32 pix_width;
1204 
1205  /* fun with masking */
1206  h_total = crtc->h_total & 0x1ff;
1207  h_disp = (crtc->h_total >> 16) & 0xff;
1208  h_sync_strt = (crtc->h_sync_strt_wid >> 3) & 0x1ff;
1209  h_sync_dly = crtc->h_sync_strt_wid & 0x7;
1210  h_sync_wid = (crtc->h_sync_strt_wid >> 16) & 0x3f;
1211  h_sync_pol = (crtc->h_sync_strt_wid >> 23) & 0x1;
1212  v_total = crtc->v_total & 0x7ff;
1213  v_disp = (crtc->v_total >> 16) & 0x7ff;
1214  v_sync_strt = crtc->v_sync_strt_wid & 0x7ff;
1215  v_sync_wid = (crtc->v_sync_strt_wid >> 16) & 0x1f;
1216  v_sync_pol = (crtc->v_sync_strt_wid >> 23) & 0x1;
1217  c_sync = crtc->gen_cntl & CRTC_CSYNC_EN ? 1 : 0;
1218  pix_width = crtc->gen_cntl & CRTC_PIX_WIDTH_MASK;
1219 
1220  /* do conversions */
1221  xres = (h_disp + 1) << 3;
1222  yres = v_disp + 1;
1223  left = ((h_total - h_sync_strt - h_sync_wid) << 3) - h_sync_dly;
1224  right = ((h_sync_strt - h_disp) << 3) + h_sync_dly;
1225  hslen = h_sync_wid << 3;
1226  upper = v_total - v_sync_strt - v_sync_wid;
1227  lower = v_sync_strt - v_disp;
1228  vslen = v_sync_wid;
1229  sync = (h_sync_pol ? 0 : FB_SYNC_HOR_HIGH_ACT) |
1230  (v_sync_pol ? 0 : FB_SYNC_VERT_HIGH_ACT) |
1231  (c_sync ? FB_SYNC_COMP_HIGH_ACT : 0);
1232 
1233  aty128_pix_width_to_var(pix_width, var);
1234 
1235  var->xres = xres;
1236  var->yres = yres;
1237  var->xres_virtual = crtc->vxres;
1238  var->yres_virtual = crtc->vyres;
1239  var->xoffset = crtc->xoffset;
1240  var->yoffset = crtc->yoffset;
1241  var->left_margin = left;
1242  var->right_margin = right;
1243  var->upper_margin = upper;
1244  var->lower_margin = lower;
1245  var->hsync_len = hslen;
1246  var->vsync_len = vslen;
1247  var->sync = sync;
1249 
1250  return 0;
1251 }
1252 
1253 static void aty128_set_crt_enable(struct aty128fb_par *par, int on)
1254 {
1255  if (on) {
1257  CRT_CRTC_ON);
1260  } else
1262  ~CRT_CRTC_ON);
1263 }
1264 
1265 static void aty128_set_lcd_enable(struct aty128fb_par *par, int on)
1266 {
1267  u32 reg;
1268 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1269  struct fb_info *info = pci_get_drvdata(par->pdev);
1270 #endif
1271 
1272  if (on) {
1273  reg = aty_ld_le32(LVDS_GEN_CNTL);
1274  reg |= LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION;
1275  reg &= ~LVDS_DISPLAY_DIS;
1276  aty_st_le32(LVDS_GEN_CNTL, reg);
1277 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1278  aty128_bl_set_power(info, FB_BLANK_UNBLANK);
1279 #endif
1280  } else {
1281 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1282  aty128_bl_set_power(info, FB_BLANK_POWERDOWN);
1283 #endif
1284  reg = aty_ld_le32(LVDS_GEN_CNTL);
1285  reg |= LVDS_DISPLAY_DIS;
1286  aty_st_le32(LVDS_GEN_CNTL, reg);
1287  mdelay(100);
1288  reg &= ~(LVDS_ON /*| LVDS_EN*/);
1289  aty_st_le32(LVDS_GEN_CNTL, reg);
1290  }
1291 }
1292 
1293 static void aty128_set_pll(struct aty128_pll *pll,
1294  const struct aty128fb_par *par)
1295 {
1296  u32 div3;
1297 
1298  unsigned char post_conv[] = /* register values for post dividers */
1299  { 2, 0, 1, 4, 2, 2, 6, 2, 3, 2, 2, 2, 7 };
1300 
1301  /* select PPLL_DIV_3 */
1303 
1304  /* reset PLL */
1307 
1308  /* write the reference divider */
1309  aty_pll_wait_readupdate(par);
1310  aty_st_pll(PPLL_REF_DIV, par->constants.ref_divider & 0x3ff);
1311  aty_pll_writeupdate(par);
1312 
1313  div3 = aty_ld_pll(PPLL_DIV_3);
1314  div3 &= ~PPLL_FB3_DIV_MASK;
1315  div3 |= pll->feedback_divider;
1316  div3 &= ~PPLL_POST3_DIV_MASK;
1317  div3 |= post_conv[pll->post_divider] << 16;
1318 
1319  /* write feedback and post dividers */
1320  aty_pll_wait_readupdate(par);
1321  aty_st_pll(PPLL_DIV_3, div3);
1322  aty_pll_writeupdate(par);
1323 
1324  aty_pll_wait_readupdate(par);
1325  aty_st_pll(HTOTAL_CNTL, 0); /* no horiz crtc adjustment */
1326  aty_pll_writeupdate(par);
1327 
1328  /* clear the reset, just in case */
1330 }
1331 
1332 
1333 static int aty128_var_to_pll(u32 period_in_ps, struct aty128_pll *pll,
1334  const struct aty128fb_par *par)
1335 {
1336  const struct aty128_constants c = par->constants;
1337  unsigned char post_dividers[] = {1,2,4,8,3,6,12};
1338  u32 output_freq;
1339  u32 vclk; /* in .01 MHz */
1340  int i = 0;
1341  u32 n, d;
1342 
1343  vclk = 100000000 / period_in_ps; /* convert units to 10 kHz */
1344 
1345  /* adjust pixel clock if necessary */
1346  if (vclk > c.ppll_max)
1347  vclk = c.ppll_max;
1348  if (vclk * 12 < c.ppll_min)
1349  vclk = c.ppll_min/12;
1350 
1351  /* now, find an acceptable divider */
1352  for (i = 0; i < ARRAY_SIZE(post_dividers); i++) {
1353  output_freq = post_dividers[i] * vclk;
1354  if (output_freq >= c.ppll_min && output_freq <= c.ppll_max) {
1355  pll->post_divider = post_dividers[i];
1356  break;
1357  }
1358  }
1359 
1360  if (i == ARRAY_SIZE(post_dividers))
1361  return -EINVAL;
1362 
1363  /* calculate feedback divider */
1364  n = c.ref_divider * output_freq;
1365  d = c.ref_clk;
1366 
1367  pll->feedback_divider = round_div(n, d);
1368  pll->vclk = vclk;
1369 
1370  DBG("post %d feedback %d vlck %d output %d ref_divider %d "
1371  "vclk_per: %d\n", pll->post_divider,
1372  pll->feedback_divider, vclk, output_freq,
1373  c.ref_divider, period_in_ps);
1374 
1375  return 0;
1376 }
1377 
1378 
1379 static int aty128_pll_to_var(const struct aty128_pll *pll,
1380  struct fb_var_screeninfo *var)
1381 {
1382  var->pixclock = 100000000 / pll->vclk;
1383 
1384  return 0;
1385 }
1386 
1387 
1388 static void aty128_set_fifo(const struct aty128_ddafifo *dsp,
1389  const struct aty128fb_par *par)
1390 {
1393 }
1394 
1395 
1396 static int aty128_ddafifo(struct aty128_ddafifo *dsp,
1397  const struct aty128_pll *pll,
1398  u32 depth,
1399  const struct aty128fb_par *par)
1400 {
1401  const struct aty128_meminfo *m = par->mem;
1402  u32 xclk = par->constants.xclk;
1403  u32 fifo_width = par->constants.fifo_width;
1404  u32 fifo_depth = par->constants.fifo_depth;
1405  s32 x, b, p, ron, roff;
1406  u32 n, d, bpp;
1407 
1408  /* round up to multiple of 8 */
1409  bpp = (depth+7) & ~7;
1410 
1411  n = xclk * fifo_width;
1412  d = pll->vclk * bpp;
1413  x = round_div(n, d);
1414 
1415  ron = 4 * m->MB +
1416  3 * ((m->Trcd - 2 > 0) ? m->Trcd - 2 : 0) +
1417  2 * m->Trp +
1418  m->Twr +
1419  m->CL +
1420  m->Tr2w +
1421  x;
1422 
1423  DBG("x %x\n", x);
1424 
1425  b = 0;
1426  while (x) {
1427  x >>= 1;
1428  b++;
1429  }
1430  p = b + 1;
1431 
1432  ron <<= (11 - p);
1433 
1434  n <<= (11 - p);
1435  x = round_div(n, d);
1436  roff = x * (fifo_depth - 4);
1437 
1438  if ((ron + m->Rloop) >= roff) {
1439  printk(KERN_ERR "aty128fb: Mode out of range!\n");
1440  return -EINVAL;
1441  }
1442 
1443  DBG("p: %x rloop: %x x: %x ron: %x roff: %x\n",
1444  p, m->Rloop, x, ron, roff);
1445 
1446  dsp->dda_config = p << 16 | m->Rloop << 20 | x;
1447  dsp->dda_on_off = ron << 16 | roff;
1448 
1449  return 0;
1450 }
1451 
1452 
1453 /*
1454  * This actually sets the video mode.
1455  */
1456 static int aty128fb_set_par(struct fb_info *info)
1457 {
1458  struct aty128fb_par *par = info->par;
1459  u32 config;
1460  int err;
1461 
1462  if ((err = aty128_decode_var(&info->var, par)) != 0)
1463  return err;
1464 
1465  if (par->blitter_may_be_busy)
1466  wait_for_idle(par);
1467 
1468  /* clear all registers that may interfere with mode setting */
1469  aty_st_le32(OVR_CLR, 0);
1477  aty_st_le32(I2C_CNTL_1, 0); /* turn off i2c */
1478  aty_st_le32(GEN_INT_CNTL, 0); /* turn off interrupts */
1481 
1482  aty_st_8(CRTC_EXT_CNTL + 1, 4); /* turn video off */
1483 
1484  aty128_set_crtc(&par->crtc, par);
1485  aty128_set_pll(&par->pll, par);
1486  aty128_set_fifo(&par->fifo_reg, par);
1487 
1488  config = aty_ld_le32(CNFG_CNTL) & ~3;
1489 
1490 #if defined(__BIG_ENDIAN)
1491  if (par->crtc.bpp == 32)
1492  config |= 2; /* make aperture do 32 bit swapping */
1493  else if (par->crtc.bpp == 16)
1494  config |= 1; /* make aperture do 16 bit swapping */
1495 #endif
1496 
1497  aty_st_le32(CNFG_CNTL, config);
1498  aty_st_8(CRTC_EXT_CNTL + 1, 0); /* turn the video back on */
1499 
1500  info->fix.line_length = (par->crtc.vxres * par->crtc.bpp) >> 3;
1501  info->fix.visual = par->crtc.bpp == 8 ? FB_VISUAL_PSEUDOCOLOR
1503 
1504  if (par->chip_gen == rage_M3) {
1505  aty128_set_crt_enable(par, par->crt_on);
1506  aty128_set_lcd_enable(par, par->lcd_on);
1507  }
1508  if (par->accel_flags & FB_ACCELF_TEXT)
1509  aty128_init_engine(par);
1510 
1511 #ifdef CONFIG_BOOTX_TEXT
1512  btext_update_display(info->fix.smem_start,
1513  (((par->crtc.h_total>>16) & 0xff)+1)*8,
1514  ((par->crtc.v_total>>16) & 0x7ff)+1,
1515  par->crtc.bpp,
1516  par->crtc.vxres*par->crtc.bpp/8);
1517 #endif /* CONFIG_BOOTX_TEXT */
1518 
1519  return 0;
1520 }
1521 
1522 /*
1523  * encode/decode the User Defined Part of the Display
1524  */
1525 
1526 static int aty128_decode_var(struct fb_var_screeninfo *var,
1527  struct aty128fb_par *par)
1528 {
1529  int err;
1530  struct aty128_crtc crtc;
1531  struct aty128_pll pll;
1532  struct aty128_ddafifo fifo_reg;
1533 
1534  if ((err = aty128_var_to_crtc(var, &crtc, par)))
1535  return err;
1536 
1537  if ((err = aty128_var_to_pll(var->pixclock, &pll, par)))
1538  return err;
1539 
1540  if ((err = aty128_ddafifo(&fifo_reg, &pll, crtc.depth, par)))
1541  return err;
1542 
1543  par->crtc = crtc;
1544  par->pll = pll;
1545  par->fifo_reg = fifo_reg;
1546  par->accel_flags = var->accel_flags;
1547 
1548  return 0;
1549 }
1550 
1551 
1552 static int aty128_encode_var(struct fb_var_screeninfo *var,
1553  const struct aty128fb_par *par)
1554 {
1555  int err;
1556 
1557  if ((err = aty128_crtc_to_var(&par->crtc, var)))
1558  return err;
1559 
1560  if ((err = aty128_pll_to_var(&par->pll, var)))
1561  return err;
1562 
1563  var->nonstd = 0;
1564  var->activate = 0;
1565 
1566  var->height = -1;
1567  var->width = -1;
1568  var->accel_flags = par->accel_flags;
1569 
1570  return 0;
1571 }
1572 
1573 
1574 static int aty128fb_check_var(struct fb_var_screeninfo *var,
1575  struct fb_info *info)
1576 {
1577  struct aty128fb_par par;
1578  int err;
1579 
1580  par = *(struct aty128fb_par *)info->par;
1581  if ((err = aty128_decode_var(var, &par)) != 0)
1582  return err;
1583  aty128_encode_var(var, &par);
1584  return 0;
1585 }
1586 
1587 
1588 /*
1589  * Pan or Wrap the Display
1590  */
1591 static int aty128fb_pan_display(struct fb_var_screeninfo *var,
1592  struct fb_info *fb)
1593 {
1594  struct aty128fb_par *par = fb->par;
1595  u32 xoffset, yoffset;
1596  u32 offset;
1597  u32 xres, yres;
1598 
1599  xres = (((par->crtc.h_total >> 16) & 0xff) + 1) << 3;
1600  yres = ((par->crtc.v_total >> 16) & 0x7ff) + 1;
1601 
1602  xoffset = (var->xoffset +7) & ~7;
1603  yoffset = var->yoffset;
1604 
1605  if (xoffset+xres > par->crtc.vxres || yoffset+yres > par->crtc.vyres)
1606  return -EINVAL;
1607 
1608  par->crtc.xoffset = xoffset;
1609  par->crtc.yoffset = yoffset;
1610 
1611  offset = ((yoffset * par->crtc.vxres + xoffset) * (par->crtc.bpp >> 3))
1612  & ~7;
1613 
1614  if (par->crtc.bpp == 24)
1615  offset += 8 * (offset % 3); /* Must be multiple of 8 and 3 */
1616 
1617  aty_st_le32(CRTC_OFFSET, offset);
1618 
1619  return 0;
1620 }
1621 
1622 
1623 /*
1624  * Helper function to store a single palette register
1625  */
1626 static void aty128_st_pal(u_int regno, u_int red, u_int green, u_int blue,
1627  struct aty128fb_par *par)
1628 {
1629  if (par->chip_gen == rage_M3) {
1630 #if 0
1631  /* Note: For now, on M3, we set palette on both heads, which may
1632  * be useless. Can someone with a M3 check this ?
1633  *
1634  * This code would still be useful if using the second CRTC to
1635  * do mirroring
1636  */
1637 
1640  aty_st_8(PALETTE_INDEX, regno);
1641  aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1642 #endif
1645  }
1646 
1647  aty_st_8(PALETTE_INDEX, regno);
1648  aty_st_le32(PALETTE_DATA, (red<<16)|(green<<8)|blue);
1649 }
1650 
1651 static int aty128fb_sync(struct fb_info *info)
1652 {
1653  struct aty128fb_par *par = info->par;
1654 
1655  if (par->blitter_may_be_busy)
1656  wait_for_idle(par);
1657  return 0;
1658 }
1659 
1660 #ifndef MODULE
1661 static int __devinit aty128fb_setup(char *options)
1662 {
1663  char *this_opt;
1664 
1665  if (!options || !*options)
1666  return 0;
1667 
1668  while ((this_opt = strsep(&options, ",")) != NULL) {
1669  if (!strncmp(this_opt, "lcd:", 4)) {
1670  default_lcd_on = simple_strtoul(this_opt+4, NULL, 0);
1671  continue;
1672  } else if (!strncmp(this_opt, "crt:", 4)) {
1673  default_crt_on = simple_strtoul(this_opt+4, NULL, 0);
1674  continue;
1675  } else if (!strncmp(this_opt, "backlight:", 10)) {
1676  backlight = simple_strtoul(this_opt+10, NULL, 0);
1677  continue;
1678  }
1679 #ifdef CONFIG_MTRR
1680  if(!strncmp(this_opt, "nomtrr", 6)) {
1681  mtrr = 0;
1682  continue;
1683  }
1684 #endif
1685 #ifdef CONFIG_PPC_PMAC
1686  /* vmode and cmode deprecated */
1687  if (!strncmp(this_opt, "vmode:", 6)) {
1688  unsigned int vmode = simple_strtoul(this_opt+6, NULL, 0);
1689  if (vmode > 0 && vmode <= VMODE_MAX)
1690  default_vmode = vmode;
1691  continue;
1692  } else if (!strncmp(this_opt, "cmode:", 6)) {
1693  unsigned int cmode = simple_strtoul(this_opt+6, NULL, 0);
1694  switch (cmode) {
1695  case 0:
1696  case 8:
1697  default_cmode = CMODE_8;
1698  break;
1699  case 15:
1700  case 16:
1701  default_cmode = CMODE_16;
1702  break;
1703  case 24:
1704  case 32:
1705  default_cmode = CMODE_32;
1706  break;
1707  }
1708  continue;
1709  }
1710 #endif /* CONFIG_PPC_PMAC */
1711  mode_option = this_opt;
1712  }
1713  return 0;
1714 }
1715 #endif /* MODULE */
1716 
1717 /* Backlight */
1718 #ifdef CONFIG_FB_ATY128_BACKLIGHT
1719 #define MAX_LEVEL 0xFF
1720 
1721 static int aty128_bl_get_level_brightness(struct aty128fb_par *par,
1722  int level)
1723 {
1724  struct fb_info *info = pci_get_drvdata(par->pdev);
1725  int atylevel;
1726 
1727  /* Get and convert the value */
1728  /* No locking of bl_curve since we read a single value */
1729  atylevel = MAX_LEVEL -
1730  (info->bl_curve[level] * FB_BACKLIGHT_MAX / MAX_LEVEL);
1731 
1732  if (atylevel < 0)
1733  atylevel = 0;
1734  else if (atylevel > MAX_LEVEL)
1735  atylevel = MAX_LEVEL;
1736 
1737  return atylevel;
1738 }
1739 
1740 /* We turn off the LCD completely instead of just dimming the backlight.
1741  * This provides greater power saving and the display is useless without
1742  * backlight anyway
1743  */
1744 #define BACKLIGHT_LVDS_OFF
1745 /* That one prevents proper CRT output with LCD off */
1746 #undef BACKLIGHT_DAC_OFF
1747 
1748 static int aty128_bl_update_status(struct backlight_device *bd)
1749 {
1750  struct aty128fb_par *par = bl_get_data(bd);
1751  unsigned int reg = aty_ld_le32(LVDS_GEN_CNTL);
1752  int level;
1753 
1754  if (bd->props.power != FB_BLANK_UNBLANK ||
1755  bd->props.fb_blank != FB_BLANK_UNBLANK ||
1756  !par->lcd_on)
1757  level = 0;
1758  else
1759  level = bd->props.brightness;
1760 
1761  reg |= LVDS_BL_MOD_EN | LVDS_BLON;
1762  if (level > 0) {
1763  reg |= LVDS_DIGION;
1764  if (!(reg & LVDS_ON)) {
1765  reg &= ~LVDS_BLON;
1766  aty_st_le32(LVDS_GEN_CNTL, reg);
1768  mdelay(10);
1769  reg |= LVDS_BLON;
1770  aty_st_le32(LVDS_GEN_CNTL, reg);
1771  }
1772  reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1773  reg |= (aty128_bl_get_level_brightness(par, level) <<
1775 #ifdef BACKLIGHT_LVDS_OFF
1776  reg |= LVDS_ON | LVDS_EN;
1777  reg &= ~LVDS_DISPLAY_DIS;
1778 #endif
1779  aty_st_le32(LVDS_GEN_CNTL, reg);
1780 #ifdef BACKLIGHT_DAC_OFF
1782 #endif
1783  } else {
1784  reg &= ~LVDS_BL_MOD_LEVEL_MASK;
1785  reg |= (aty128_bl_get_level_brightness(par, 0) <<
1787 #ifdef BACKLIGHT_LVDS_OFF
1788  reg |= LVDS_DISPLAY_DIS;
1789  aty_st_le32(LVDS_GEN_CNTL, reg);
1791  udelay(10);
1792  reg &= ~(LVDS_ON | LVDS_EN | LVDS_BLON | LVDS_DIGION);
1793 #endif
1794  aty_st_le32(LVDS_GEN_CNTL, reg);
1795 #ifdef BACKLIGHT_DAC_OFF
1797 #endif
1798  }
1799 
1800  return 0;
1801 }
1802 
1803 static int aty128_bl_get_brightness(struct backlight_device *bd)
1804 {
1805  return bd->props.brightness;
1806 }
1807 
1808 static const struct backlight_ops aty128_bl_data = {
1809  .get_brightness = aty128_bl_get_brightness,
1810  .update_status = aty128_bl_update_status,
1811 };
1812 
1813 static void aty128_bl_set_power(struct fb_info *info, int power)
1814 {
1815  if (info->bl_dev) {
1816  info->bl_dev->props.power = power;
1817  backlight_update_status(info->bl_dev);
1818  }
1819 }
1820 
1821 static void aty128_bl_init(struct aty128fb_par *par)
1822 {
1823  struct backlight_properties props;
1824  struct fb_info *info = pci_get_drvdata(par->pdev);
1825  struct backlight_device *bd;
1826  char name[12];
1827 
1828  /* Could be extended to Rage128Pro LVDS output too */
1829  if (par->chip_gen != rage_M3)
1830  return;
1831 
1832 #ifdef CONFIG_PMAC_BACKLIGHT
1833  if (!pmac_has_backlight_type("ati"))
1834  return;
1835 #endif
1836 
1837  snprintf(name, sizeof(name), "aty128bl%d", info->node);
1838 
1839  memset(&props, 0, sizeof(struct backlight_properties));
1840  props.type = BACKLIGHT_RAW;
1841  props.max_brightness = FB_BACKLIGHT_LEVELS - 1;
1842  bd = backlight_device_register(name, info->dev, par, &aty128_bl_data,
1843  &props);
1844  if (IS_ERR(bd)) {
1845  info->bl_dev = NULL;
1846  printk(KERN_WARNING "aty128: Backlight registration failed\n");
1847  goto error;
1848  }
1849 
1850  info->bl_dev = bd;
1851  fb_bl_default_curve(info, 0,
1852  63 * FB_BACKLIGHT_MAX / MAX_LEVEL,
1853  219 * FB_BACKLIGHT_MAX / MAX_LEVEL);
1854 
1855  bd->props.brightness = bd->props.max_brightness;
1856  bd->props.power = FB_BLANK_UNBLANK;
1857  backlight_update_status(bd);
1858 
1859  printk("aty128: Backlight initialized (%s)\n", name);
1860 
1861  return;
1862 
1863 error:
1864  return;
1865 }
1866 
1867 static void aty128_bl_exit(struct backlight_device *bd)
1868 {
1870  printk("aty128: Backlight unloaded\n");
1871 }
1872 #endif /* CONFIG_FB_ATY128_BACKLIGHT */
1873 
1874 /*
1875  * Initialisation
1876  */
1877 
1878 #ifdef CONFIG_PPC_PMAC__disabled
1879 static void aty128_early_resume(void *data)
1880 {
1881  struct aty128fb_par *par = data;
1882 
1883  if (!console_trylock())
1884  return;
1885  pci_restore_state(par->pdev);
1886  aty128_do_resume(par->pdev);
1887  console_unlock();
1888 }
1889 #endif /* CONFIG_PPC_PMAC */
1890 
1891 static int __devinit aty128_init(struct pci_dev *pdev,
1892  const struct pci_device_id *ent)
1893 {
1894  struct fb_info *info = pci_get_drvdata(pdev);
1895  struct aty128fb_par *par = info->par;
1896  struct fb_var_screeninfo var;
1897  char video_card[50];
1898  u8 chip_rev;
1899  u32 dac;
1900 
1901  /* Get the chip revision */
1902  chip_rev = (aty_ld_le32(CNFG_CNTL) >> 16) & 0x1F;
1903 
1904  strcpy(video_card, "Rage128 XX ");
1905  video_card[8] = ent->device >> 8;
1906  video_card[9] = ent->device & 0xFF;
1907 
1908  /* range check to make sure */
1909  if (ent->driver_data < ARRAY_SIZE(r128_family))
1910  strlcat(video_card, r128_family[ent->driver_data],
1911  sizeof(video_card));
1912 
1913  printk(KERN_INFO "aty128fb: %s [chip rev 0x%x] ", video_card, chip_rev);
1914 
1915  if (par->vram_size % (1024 * 1024) == 0)
1916  printk("%dM %s\n", par->vram_size / (1024*1024), par->mem->name);
1917  else
1918  printk("%dk %s\n", par->vram_size / 1024, par->mem->name);
1919 
1920  par->chip_gen = ent->driver_data;
1921 
1922  /* fill in info */
1923  info->fbops = &aty128fb_ops;
1924  info->flags = FBINFO_FLAG_DEFAULT;
1925 
1926  par->lcd_on = default_lcd_on;
1927  par->crt_on = default_crt_on;
1928 
1929  var = default_var;
1930 #ifdef CONFIG_PPC_PMAC
1931  if (machine_is(powermac)) {
1932  /* Indicate sleep capability */
1933  if (par->chip_gen == rage_M3) {
1934  pmac_call_feature(PMAC_FTR_DEVICE_CAN_WAKE, NULL, 0, 1);
1935 #if 0 /* Disable the early video resume hack for now as it's causing problems,
1936  * among others we now rely on the PCI core restoring the config space
1937  * for us, which isn't the case with that hack, and that code path causes
1938  * various things to be called with interrupts off while they shouldn't.
1939  * I'm leaving the code in as it can be useful for debugging purposes
1940  */
1941  pmac_set_early_video_resume(aty128_early_resume, par);
1942 #endif
1943  }
1944 
1945  /* Find default mode */
1946  if (mode_option) {
1947  if (!mac_find_mode(&var, info, mode_option, 8))
1948  var = default_var;
1949  } else {
1950  if (default_vmode <= 0 || default_vmode > VMODE_MAX)
1951  default_vmode = VMODE_1024_768_60;
1952 
1953  /* iMacs need that resolution
1954  * PowerMac2,1 first r128 iMacs
1955  * PowerMac2,2 summer 2000 iMacs
1956  * PowerMac4,1 january 2001 iMacs "flower power"
1957  */
1958  if (of_machine_is_compatible("PowerMac2,1") ||
1959  of_machine_is_compatible("PowerMac2,2") ||
1960  of_machine_is_compatible("PowerMac4,1"))
1961  default_vmode = VMODE_1024_768_75;
1962 
1963  /* iBook SE */
1964  if (of_machine_is_compatible("PowerBook2,2"))
1965  default_vmode = VMODE_800_600_60;
1966 
1967  /* PowerBook Firewire (Pismo), iBook Dual USB */
1968  if (of_machine_is_compatible("PowerBook3,1") ||
1969  of_machine_is_compatible("PowerBook4,1"))
1970  default_vmode = VMODE_1024_768_60;
1971 
1972  /* PowerBook Titanium */
1973  if (of_machine_is_compatible("PowerBook3,2"))
1974  default_vmode = VMODE_1152_768_60;
1975 
1976  if (default_cmode > 16)
1977  default_cmode = CMODE_32;
1978  else if (default_cmode > 8)
1979  default_cmode = CMODE_16;
1980  else
1981  default_cmode = CMODE_8;
1982 
1983  if (mac_vmode_to_var(default_vmode, default_cmode, &var))
1984  var = default_var;
1985  }
1986  } else
1987 #endif /* CONFIG_PPC_PMAC */
1988  {
1989  if (mode_option)
1990  if (fb_find_mode(&var, info, mode_option, NULL,
1991  0, &defaultmode, 8) == 0)
1992  var = default_var;
1993  }
1994 
1995  var.accel_flags &= ~FB_ACCELF_TEXT;
1996 // var.accel_flags |= FB_ACCELF_TEXT;/* FIXME Will add accel later */
1997 
1998  if (aty128fb_check_var(&var, info)) {
1999  printk(KERN_ERR "aty128fb: Cannot set default mode.\n");
2000  return 0;
2001  }
2002 
2003  /* setup the DAC the way we like it */
2004  dac = aty_ld_le32(DAC_CNTL);
2005  dac |= (DAC_8BIT_EN | DAC_RANGE_CNTL);
2006  dac |= DAC_MASK;
2007  if (par->chip_gen == rage_M3)
2008  dac |= DAC_PALETTE2_SNOOP_EN;
2009  aty_st_le32(DAC_CNTL, dac);
2010 
2011  /* turn off bus mastering, just in case */
2013 
2014  info->var = var;
2015  fb_alloc_cmap(&info->cmap, 256, 0);
2016 
2017  var.activate = FB_ACTIVATE_NOW;
2018 
2019  aty128_init_engine(par);
2020 
2022  par->pdev = pdev;
2023  par->asleep = 0;
2024  par->lock_blank = 0;
2025 
2026 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2027  if (backlight)
2028  aty128_bl_init(par);
2029 #endif
2030 
2031  if (register_framebuffer(info) < 0)
2032  return 0;
2033 
2034  printk(KERN_INFO "fb%d: %s frame buffer device on %s\n",
2035  info->node, info->fix.id, video_card);
2036 
2037  return 1; /* success! */
2038 }
2039 
2040 #ifdef CONFIG_PCI
2041 /* register a card ++ajoshi */
2042 static int __devinit aty128_probe(struct pci_dev *pdev,
2043  const struct pci_device_id *ent)
2044 {
2045  unsigned long fb_addr, reg_addr;
2046  struct aty128fb_par *par;
2047  struct fb_info *info;
2048  int err;
2049 #ifndef __sparc__
2050  void __iomem *bios = NULL;
2051 #endif
2052 
2053  /* Enable device in PCI config */
2054  if ((err = pci_enable_device(pdev))) {
2055  printk(KERN_ERR "aty128fb: Cannot enable PCI device: %d\n",
2056  err);
2057  return -ENODEV;
2058  }
2059 
2060  fb_addr = pci_resource_start(pdev, 0);
2061  if (!request_mem_region(fb_addr, pci_resource_len(pdev, 0),
2062  "aty128fb FB")) {
2063  printk(KERN_ERR "aty128fb: cannot reserve frame "
2064  "buffer memory\n");
2065  return -ENODEV;
2066  }
2067 
2068  reg_addr = pci_resource_start(pdev, 2);
2069  if (!request_mem_region(reg_addr, pci_resource_len(pdev, 2),
2070  "aty128fb MMIO")) {
2071  printk(KERN_ERR "aty128fb: cannot reserve MMIO region\n");
2072  goto err_free_fb;
2073  }
2074 
2075  /* We have the resources. Now virtualize them */
2076  info = framebuffer_alloc(sizeof(struct aty128fb_par), &pdev->dev);
2077  if (info == NULL) {
2078  printk(KERN_ERR "aty128fb: can't alloc fb_info_aty128\n");
2079  goto err_free_mmio;
2080  }
2081  par = info->par;
2082 
2083  info->pseudo_palette = par->pseudo_palette;
2084 
2085  /* Virtualize mmio region */
2086  info->fix.mmio_start = reg_addr;
2087  par->regbase = pci_ioremap_bar(pdev, 2);
2088  if (!par->regbase)
2089  goto err_free_info;
2090 
2091  /* Grab memory size from the card */
2092  // How does this relate to the resource length from the PCI hardware?
2093  par->vram_size = aty_ld_le32(CNFG_MEMSIZE) & 0x03FFFFFF;
2094 
2095  /* Virtualize the framebuffer */
2096  info->screen_base = ioremap(fb_addr, par->vram_size);
2097  if (!info->screen_base)
2098  goto err_unmap_out;
2099 
2100  /* Set up info->fix */
2101  info->fix = aty128fb_fix;
2102  info->fix.smem_start = fb_addr;
2103  info->fix.smem_len = par->vram_size;
2104  info->fix.mmio_start = reg_addr;
2105 
2106  /* If we can't test scratch registers, something is seriously wrong */
2107  if (!register_test(par)) {
2108  printk(KERN_ERR "aty128fb: Can't write to video register!\n");
2109  goto err_out;
2110  }
2111 
2112 #ifndef __sparc__
2113  bios = aty128_map_ROM(par, pdev);
2114 #ifdef CONFIG_X86
2115  if (bios == NULL)
2116  bios = aty128_find_mem_vbios(par);
2117 #endif
2118  if (bios == NULL)
2119  printk(KERN_INFO "aty128fb: BIOS not located, guessing timings.\n");
2120  else {
2121  printk(KERN_INFO "aty128fb: Rage128 BIOS located\n");
2122  aty128_get_pllinfo(par, bios);
2123  pci_unmap_rom(pdev, bios);
2124  }
2125 #endif /* __sparc__ */
2126 
2127  aty128_timings(par);
2128  pci_set_drvdata(pdev, info);
2129 
2130  if (!aty128_init(pdev, ent))
2131  goto err_out;
2132 
2133 #ifdef CONFIG_MTRR
2134  if (mtrr) {
2135  par->mtrr.vram = mtrr_add(info->fix.smem_start,
2136  par->vram_size, MTRR_TYPE_WRCOMB, 1);
2137  par->mtrr.vram_valid = 1;
2138  /* let there be speed */
2139  printk(KERN_INFO "aty128fb: Rage128 MTRR set to ON\n");
2140  }
2141 #endif /* CONFIG_MTRR */
2142  return 0;
2143 
2144 err_out:
2145  iounmap(info->screen_base);
2146 err_unmap_out:
2147  iounmap(par->regbase);
2148 err_free_info:
2149  framebuffer_release(info);
2150 err_free_mmio:
2152  pci_resource_len(pdev, 2));
2153 err_free_fb:
2155  pci_resource_len(pdev, 0));
2156  return -ENODEV;
2157 }
2158 
2159 static void __devexit aty128_remove(struct pci_dev *pdev)
2160 {
2161  struct fb_info *info = pci_get_drvdata(pdev);
2162  struct aty128fb_par *par;
2163 
2164  if (!info)
2165  return;
2166 
2167  par = info->par;
2168 
2169  unregister_framebuffer(info);
2170 
2171 #ifdef CONFIG_FB_ATY128_BACKLIGHT
2172  aty128_bl_exit(info->bl_dev);
2173 #endif
2174 
2175 #ifdef CONFIG_MTRR
2176  if (par->mtrr.vram_valid)
2177  mtrr_del(par->mtrr.vram, info->fix.smem_start,
2178  par->vram_size);
2179 #endif /* CONFIG_MTRR */
2180  iounmap(par->regbase);
2181  iounmap(info->screen_base);
2182 
2184  pci_resource_len(pdev, 0));
2186  pci_resource_len(pdev, 2));
2187  framebuffer_release(info);
2188 }
2189 #endif /* CONFIG_PCI */
2190 
2191 
2192 
2193  /*
2194  * Blank the display.
2195  */
2196 static int aty128fb_blank(int blank, struct fb_info *fb)
2197 {
2198  struct aty128fb_par *par = fb->par;
2199  u8 state;
2200 
2201  if (par->lock_blank || par->asleep)
2202  return 0;
2203 
2204  switch (blank) {
2205  case FB_BLANK_NORMAL:
2206  state = 4;
2207  break;
2209  state = 6;
2210  break;
2212  state = 5;
2213  break;
2214  case FB_BLANK_POWERDOWN:
2215  state = 7;
2216  break;
2217  case FB_BLANK_UNBLANK:
2218  default:
2219  state = 0;
2220  break;
2221  }
2222  aty_st_8(CRTC_EXT_CNTL+1, state);
2223 
2224  if (par->chip_gen == rage_M3) {
2225  aty128_set_crt_enable(par, par->crt_on && !blank);
2226  aty128_set_lcd_enable(par, par->lcd_on && !blank);
2227  }
2228 
2229  return 0;
2230 }
2231 
2232 /*
2233  * Set a single color register. The values supplied are already
2234  * rounded down to the hardware's capabilities (according to the
2235  * entries in the var structure). Return != 0 for invalid regno.
2236  */
2237 static int aty128fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
2238  u_int transp, struct fb_info *info)
2239 {
2240  struct aty128fb_par *par = info->par;
2241 
2242  if (regno > 255
2243  || (par->crtc.depth == 16 && regno > 63)
2244  || (par->crtc.depth == 15 && regno > 31))
2245  return 1;
2246 
2247  red >>= 8;
2248  green >>= 8;
2249  blue >>= 8;
2250 
2251  if (regno < 16) {
2252  int i;
2253  u32 *pal = info->pseudo_palette;
2254 
2255  switch (par->crtc.depth) {
2256  case 15:
2257  pal[regno] = (regno << 10) | (regno << 5) | regno;
2258  break;
2259  case 16:
2260  pal[regno] = (regno << 11) | (regno << 6) | regno;
2261  break;
2262  case 24:
2263  pal[regno] = (regno << 16) | (regno << 8) | regno;
2264  break;
2265  case 32:
2266  i = (regno << 8) | regno;
2267  pal[regno] = (i << 16) | i;
2268  break;
2269  }
2270  }
2271 
2272  if (par->crtc.depth == 16 && regno > 0) {
2273  /*
2274  * With the 5-6-5 split of bits for RGB at 16 bits/pixel, we
2275  * have 32 slots for R and B values but 64 slots for G values.
2276  * Thus the R and B values go in one slot but the G value
2277  * goes in a different slot, and we have to avoid disturbing
2278  * the other fields in the slots we touch.
2279  */
2280  par->green[regno] = green;
2281  if (regno < 32) {
2282  par->red[regno] = red;
2283  par->blue[regno] = blue;
2284  aty128_st_pal(regno * 8, red, par->green[regno*2],
2285  blue, par);
2286  }
2287  red = par->red[regno/2];
2288  blue = par->blue[regno/2];
2289  regno <<= 2;
2290  } else if (par->crtc.bpp == 16)
2291  regno <<= 3;
2292  aty128_st_pal(regno, red, green, blue, par);
2293 
2294  return 0;
2295 }
2296 
2297 #define ATY_MIRROR_LCD_ON 0x00000001
2298 #define ATY_MIRROR_CRT_ON 0x00000002
2299 
2300 /* out param: u32* backlight value: 0 to 15 */
2301 #define FBIO_ATY128_GET_MIRROR _IOR('@', 1, __u32)
2302 /* in param: u32* backlight value: 0 to 15 */
2303 #define FBIO_ATY128_SET_MIRROR _IOW('@', 2, __u32)
2304 
2305 static int aty128fb_ioctl(struct fb_info *info, u_int cmd, u_long arg)
2306 {
2307  struct aty128fb_par *par = info->par;
2308  u32 value;
2309  int rc;
2310 
2311  switch (cmd) {
2313  if (par->chip_gen != rage_M3)
2314  return -EINVAL;
2315  rc = get_user(value, (__u32 __user *)arg);
2316  if (rc)
2317  return rc;
2318  par->lcd_on = (value & 0x01) != 0;
2319  par->crt_on = (value & 0x02) != 0;
2320  if (!par->crt_on && !par->lcd_on)
2321  par->lcd_on = 1;
2322  aty128_set_crt_enable(par, par->crt_on);
2323  aty128_set_lcd_enable(par, par->lcd_on);
2324  return 0;
2326  if (par->chip_gen != rage_M3)
2327  return -EINVAL;
2328  value = (par->crt_on << 1) | par->lcd_on;
2329  return put_user(value, (__u32 __user *)arg);
2330  }
2331  return -EINVAL;
2332 }
2333 
2334 #if 0
2335  /*
2336  * Accelerated functions
2337  */
2338 
2339 static inline void aty128_rectcopy(int srcx, int srcy, int dstx, int dsty,
2341  struct fb_info_aty128 *par)
2342 {
2343  u32 save_dp_datatype, save_dp_cntl, dstval;
2344 
2345  if (!width || !height)
2346  return;
2347 
2348  dstval = depth_to_dst(par->current_par.crtc.depth);
2349  if (dstval == DST_24BPP) {
2350  srcx *= 3;
2351  dstx *= 3;
2352  width *= 3;
2353  } else if (dstval == -EINVAL) {
2354  printk("aty128fb: invalid depth or RGBA\n");
2355  return;
2356  }
2357 
2358  wait_for_fifo(2, par);
2359  save_dp_datatype = aty_ld_le32(DP_DATATYPE);
2360  save_dp_cntl = aty_ld_le32(DP_CNTL);
2361 
2362  wait_for_fifo(6, par);
2363  aty_st_le32(SRC_Y_X, (srcy << 16) | srcx);
2366  aty_st_le32(DP_DATATYPE, save_dp_datatype | dstval | SRC_DSTCOLOR);
2367 
2368  aty_st_le32(DST_Y_X, (dsty << 16) | dstx);
2369  aty_st_le32(DST_HEIGHT_WIDTH, (height << 16) | width);
2370 
2371  par->blitter_may_be_busy = 1;
2372 
2373  wait_for_fifo(2, par);
2374  aty_st_le32(DP_DATATYPE, save_dp_datatype);
2375  aty_st_le32(DP_CNTL, save_dp_cntl);
2376 }
2377 
2378 
2379  /*
2380  * Text mode accelerated functions
2381  */
2382 
2383 static void fbcon_aty128_bmove(struct display *p, int sy, int sx, int dy,
2384  int dx, int height, int width)
2385 {
2386  sx *= fontwidth(p);
2387  sy *= fontheight(p);
2388  dx *= fontwidth(p);
2389  dy *= fontheight(p);
2390  width *= fontwidth(p);
2391  height *= fontheight(p);
2392 
2393  aty128_rectcopy(sx, sy, dx, dy, width, height,
2394  (struct fb_info_aty128 *)p->fb_info);
2395 }
2396 #endif /* 0 */
2397 
2398 static void aty128_set_suspend(struct aty128fb_par *par, int suspend)
2399 {
2400  u32 pmgt;
2401  struct pci_dev *pdev = par->pdev;
2402 
2403  if (!par->pm_reg)
2404  return;
2405 
2406  /* Set the chip into the appropriate suspend mode (we use D2,
2407  * D3 would require a complete re-initialisation of the chip,
2408  * including PCI config registers, clocks, AGP configuration, ...)
2409  *
2410  * For resume, the core will have already brought us back to D0
2411  */
2412  if (suspend) {
2413  /* Make sure CRTC2 is reset. Remove that the day we decide to
2414  * actually use CRTC2 and replace it with real code for disabling
2415  * the CRTC2 output during sleep
2416  */
2418  ~(CRTC2_EN));
2419 
2420  /* Set the power management mode to be PCI based */
2421  /* Use this magic value for now */
2422  pmgt = 0x0c005407;
2425  aty_st_le32(BUS_CNTL1, 0x00000010);
2426  aty_st_le32(MEM_POWER_MISC, 0x0c830000);
2427  mdelay(100);
2428 
2429  /* Switch PCI power management to D2 */
2430  pci_set_power_state(pdev, PCI_D2);
2431  }
2432 }
2433 
2434 static int aty128_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2435 {
2436  struct fb_info *info = pci_get_drvdata(pdev);
2437  struct aty128fb_par *par = info->par;
2438 
2439  /* Because we may change PCI D state ourselves, we need to
2440  * first save the config space content so the core can
2441  * restore it properly on resume.
2442  */
2443  pci_save_state(pdev);
2444 
2445  /* We don't do anything but D2, for now we return 0, but
2446  * we may want to change that. How do we know if the BIOS
2447  * can properly take care of D3 ? Also, with swsusp, we
2448  * know we'll be rebooted, ...
2449  */
2450 #ifndef CONFIG_PPC_PMAC
2451  /* HACK ALERT ! Once I find a proper way to say to each driver
2452  * individually what will happen with it's PCI slot, I'll change
2453  * that. On laptops, the AGP slot is just unclocked, so D2 is
2454  * expected, while on desktops, the card is powered off
2455  */
2456  return 0;
2457 #endif /* CONFIG_PPC_PMAC */
2458 
2459  if (state.event == pdev->dev.power.power_state.event)
2460  return 0;
2461 
2462  printk(KERN_DEBUG "aty128fb: suspending...\n");
2463 
2464  console_lock();
2465 
2466  fb_set_suspend(info, 1);
2467 
2468  /* Make sure engine is reset */
2469  wait_for_idle(par);
2470  aty128_reset_engine(par);
2471  wait_for_idle(par);
2472 
2473  /* Blank display and LCD */
2474  aty128fb_blank(FB_BLANK_POWERDOWN, info);
2475 
2476  /* Sleep */
2477  par->asleep = 1;
2478  par->lock_blank = 1;
2479 
2480 #ifdef CONFIG_PPC_PMAC
2481  /* On powermac, we have hooks to properly suspend/resume AGP now,
2482  * use them here. We'll ultimately need some generic support here,
2483  * but the generic code isn't quite ready for that yet
2484  */
2486 #endif /* CONFIG_PPC_PMAC */
2487 
2488  /* We need a way to make sure the fbdev layer will _not_ touch the
2489  * framebuffer before we put the chip to suspend state. On 2.4, I
2490  * used dummy fb ops, 2.5 need proper support for this at the
2491  * fbdev level
2492  */
2493  if (state.event != PM_EVENT_ON)
2494  aty128_set_suspend(par, 1);
2495 
2496  console_unlock();
2497 
2498  pdev->dev.power.power_state = state;
2499 
2500  return 0;
2501 }
2502 
2503 static int aty128_do_resume(struct pci_dev *pdev)
2504 {
2505  struct fb_info *info = pci_get_drvdata(pdev);
2506  struct aty128fb_par *par = info->par;
2507 
2508  if (pdev->dev.power.power_state.event == PM_EVENT_ON)
2509  return 0;
2510 
2511  /* PCI state will have been restored by the core, so
2512  * we should be in D0 now with our config space fully
2513  * restored
2514  */
2515 
2516  /* Wakeup chip */
2517  aty128_set_suspend(par, 0);
2518  par->asleep = 0;
2519 
2520  /* Restore display & engine */
2521  aty128_reset_engine(par);
2522  wait_for_idle(par);
2523  aty128fb_set_par(info);
2524  fb_pan_display(info, &info->var);
2525  fb_set_cmap(&info->cmap, info);
2526 
2527  /* Refresh */
2528  fb_set_suspend(info, 0);
2529 
2530  /* Unblank */
2531  par->lock_blank = 0;
2532  aty128fb_blank(0, info);
2533 
2534 #ifdef CONFIG_PPC_PMAC
2535  /* On powermac, we have hooks to properly suspend/resume AGP now,
2536  * use them here. We'll ultimately need some generic support here,
2537  * but the generic code isn't quite ready for that yet
2538  */
2540 #endif /* CONFIG_PPC_PMAC */
2541 
2542  pdev->dev.power.power_state = PMSG_ON;
2543 
2544  printk(KERN_DEBUG "aty128fb: resumed !\n");
2545 
2546  return 0;
2547 }
2548 
2549 static int aty128_pci_resume(struct pci_dev *pdev)
2550 {
2551  int rc;
2552 
2553  console_lock();
2554  rc = aty128_do_resume(pdev);
2555  console_unlock();
2556 
2557  return rc;
2558 }
2559 
2560 
2561 static int __devinit aty128fb_init(void)
2562 {
2563 #ifndef MODULE
2564  char *option = NULL;
2565 
2566  if (fb_get_options("aty128fb", &option))
2567  return -ENODEV;
2568  aty128fb_setup(option);
2569 #endif
2570 
2571  return pci_register_driver(&aty128fb_driver);
2572 }
2573 
2574 static void __exit aty128fb_exit(void)
2575 {
2576  pci_unregister_driver(&aty128fb_driver);
2577 }
2578 
2579 module_init(aty128fb_init);
2580 
2581 module_exit(aty128fb_exit);
2582 
2583 MODULE_AUTHOR("(c)1999-2003 Brad Douglas <[email protected]>");
2584 MODULE_DESCRIPTION("FBDev driver for ATI Rage128 / Pro cards");
2585 MODULE_LICENSE("GPL");
2586 module_param(mode_option, charp, 0);
2587 MODULE_PARM_DESC(mode_option, "Specify resolution as \"<xres>x<yres>[-<bpp>][@<refresh>]\" ");
2588 #ifdef CONFIG_MTRR
2589 module_param_named(nomtrr, mtrr, invbool, 0);
2590 MODULE_PARM_DESC(nomtrr, "bool: Disable MTRR support (0 or 1=disabled) (default=0)");
2591 #endif
2592