Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
efx.c
Go to the documentation of this file.
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
17 #include <linux/ip.h>
18 #include <linux/tcp.h>
19 #include <linux/in.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include <linux/gfp.h>
24 #include <linux/cpu_rmap.h>
25 #include "net_driver.h"
26 #include "efx.h"
27 #include "nic.h"
28 #include "selftest.h"
29 
30 #include "mcdi.h"
31 #include "workarounds.h"
32 
33 /**************************************************************************
34  *
35  * Type name strings
36  *
37  **************************************************************************
38  */
39 
40 /* Loopback mode names (see LOOPBACK_MODE()) */
41 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
42 const char *const efx_loopback_mode_names[] = {
43  [LOOPBACK_NONE] = "NONE",
44  [LOOPBACK_DATA] = "DATAPATH",
45  [LOOPBACK_GMAC] = "GMAC",
46  [LOOPBACK_XGMII] = "XGMII",
47  [LOOPBACK_XGXS] = "XGXS",
48  [LOOPBACK_XAUI] = "XAUI",
49  [LOOPBACK_GMII] = "GMII",
50  [LOOPBACK_SGMII] = "SGMII",
51  [LOOPBACK_XGBR] = "XGBR",
52  [LOOPBACK_XFI] = "XFI",
53  [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
54  [LOOPBACK_GMII_FAR] = "GMII_FAR",
55  [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
56  [LOOPBACK_XFI_FAR] = "XFI_FAR",
57  [LOOPBACK_GPHY] = "GPHY",
58  [LOOPBACK_PHYXS] = "PHYXS",
59  [LOOPBACK_PCS] = "PCS",
60  [LOOPBACK_PMAPMD] = "PMA/PMD",
61  [LOOPBACK_XPORT] = "XPORT",
62  [LOOPBACK_XGMII_WS] = "XGMII_WS",
63  [LOOPBACK_XAUI_WS] = "XAUI_WS",
64  [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
65  [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
66  [LOOPBACK_GMII_WS] = "GMII_WS",
67  [LOOPBACK_XFI_WS] = "XFI_WS",
68  [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
69  [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
70 };
71 
72 const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
73 const char *const efx_reset_type_names[] = {
74  [RESET_TYPE_INVISIBLE] = "INVISIBLE",
75  [RESET_TYPE_ALL] = "ALL",
76  [RESET_TYPE_WORLD] = "WORLD",
77  [RESET_TYPE_DISABLE] = "DISABLE",
78  [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
79  [RESET_TYPE_INT_ERROR] = "INT_ERROR",
80  [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
81  [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
82  [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
83  [RESET_TYPE_TX_SKIP] = "TX_SKIP",
84  [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
85 };
86 
87 #define EFX_MAX_MTU (9 * 1024)
88 
89 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
90  * queued onto this work queue. This is not a per-nic work queue, because
91  * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
92  */
93 static struct workqueue_struct *reset_workqueue;
94 
95 /**************************************************************************
96  *
97  * Configurable values
98  *
99  *************************************************************************/
100 
101 /*
102  * Use separate channels for TX and RX events
103  *
104  * Set this to 1 to use separate channels for TX and RX. It allows us
105  * to control interrupt affinity separately for TX and RX.
106  *
107  * This is only used in MSI-X interrupt mode
108  */
109 static unsigned int separate_tx_channels;
110 module_param(separate_tx_channels, uint, 0444);
111 MODULE_PARM_DESC(separate_tx_channels,
112  "Use separate channels for TX and RX");
113 
114 /* This is the weight assigned to each of the (per-channel) virtual
115  * NAPI devices.
116  */
117 static int napi_weight = 64;
118 
119 /* This is the time (in jiffies) between invocations of the hardware
120  * monitor. On Falcon-based NICs, this will:
121  * - Check the on-board hardware monitor;
122  * - Poll the link state and reconfigure the hardware as necessary.
123  */
124 static unsigned int efx_monitor_interval = 1 * HZ;
125 
126 /* Initial interrupt moderation settings. They can be modified after
127  * module load with ethtool.
128  *
129  * The default for RX should strike a balance between increasing the
130  * round-trip latency and reducing overhead.
131  */
132 static unsigned int rx_irq_mod_usec = 60;
133 
134 /* Initial interrupt moderation settings. They can be modified after
135  * module load with ethtool.
136  *
137  * This default is chosen to ensure that a 10G link does not go idle
138  * while a TX queue is stopped after it has become full. A queue is
139  * restarted when it drops below half full. The time this takes (assuming
140  * worst case 3 descriptors per packet and 1024 descriptors) is
141  * 512 / 3 * 1.2 = 205 usec.
142  */
143 static unsigned int tx_irq_mod_usec = 150;
144 
145 /* This is the first interrupt mode to try out of:
146  * 0 => MSI-X
147  * 1 => MSI
148  * 2 => legacy
149  */
150 static unsigned int interrupt_mode;
151 
152 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
153  * i.e. the number of CPUs among which we may distribute simultaneous
154  * interrupt handling.
155  *
156  * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
157  * The default (0) means to assign an interrupt to each core.
158  */
159 static unsigned int rss_cpus;
160 module_param(rss_cpus, uint, 0444);
161 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
162 
163 static int phy_flash_cfg;
164 module_param(phy_flash_cfg, int, 0644);
165 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
166 
167 static unsigned irq_adapt_low_thresh = 8000;
168 module_param(irq_adapt_low_thresh, uint, 0644);
169 MODULE_PARM_DESC(irq_adapt_low_thresh,
170  "Threshold score for reducing IRQ moderation");
171 
172 static unsigned irq_adapt_high_thresh = 16000;
173 module_param(irq_adapt_high_thresh, uint, 0644);
174 MODULE_PARM_DESC(irq_adapt_high_thresh,
175  "Threshold score for increasing IRQ moderation");
176 
177 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
181 module_param(debug, uint, 0);
182 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
183 
184 /**************************************************************************
185  *
186  * Utility functions and prototypes
187  *
188  *************************************************************************/
189 
190 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
191 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
192 static void efx_remove_channel(struct efx_channel *channel);
193 static void efx_remove_channels(struct efx_nic *efx);
194 static const struct efx_channel_type efx_default_channel_type;
195 static void efx_remove_port(struct efx_nic *efx);
196 static void efx_init_napi_channel(struct efx_channel *channel);
197 static void efx_fini_napi(struct efx_nic *efx);
198 static void efx_fini_napi_channel(struct efx_channel *channel);
199 static void efx_fini_struct(struct efx_nic *efx);
200 static void efx_start_all(struct efx_nic *efx);
201 static void efx_stop_all(struct efx_nic *efx);
202 
203 #define EFX_ASSERT_RESET_SERIALISED(efx) \
204  do { \
205  if ((efx->state == STATE_READY) || \
206  (efx->state == STATE_DISABLED)) \
207  ASSERT_RTNL(); \
208  } while (0)
209 
210 static int efx_check_disabled(struct efx_nic *efx)
211 {
212  if (efx->state == STATE_DISABLED) {
213  netif_err(efx, drv, efx->net_dev,
214  "device is disabled due to earlier errors\n");
215  return -EIO;
216  }
217  return 0;
218 }
219 
220 /**************************************************************************
221  *
222  * Event queue processing
223  *
224  *************************************************************************/
225 
226 /* Process channel's event queue
227  *
228  * This function is responsible for processing the event queue of a
229  * single channel. The caller must guarantee that this function will
230  * never be concurrently called more than once on the same channel,
231  * though different channels may be being processed concurrently.
232  */
233 static int efx_process_channel(struct efx_channel *channel, int budget)
234 {
235  int spent;
236 
237  if (unlikely(!channel->enabled))
238  return 0;
239 
240  spent = efx_nic_process_eventq(channel, budget);
241  if (spent && efx_channel_has_rx_queue(channel)) {
242  struct efx_rx_queue *rx_queue =
243  efx_channel_get_rx_queue(channel);
244 
245  /* Deliver last RX packet. */
246  if (channel->rx_pkt) {
247  __efx_rx_packet(channel, channel->rx_pkt);
248  channel->rx_pkt = NULL;
249  }
250  if (rx_queue->enabled) {
251  efx_rx_strategy(channel);
253  }
254  }
255 
256  return spent;
257 }
258 
259 /* Mark channel as finished processing
260  *
261  * Note that since we will not receive further interrupts for this
262  * channel before we finish processing and call the eventq_read_ack()
263  * method, there is no need to use the interrupt hold-off timers.
264  */
265 static inline void efx_channel_processed(struct efx_channel *channel)
266 {
267  /* The interrupt handler for this channel may set work_pending
268  * as soon as we acknowledge the events we've seen. Make sure
269  * it's cleared before then. */
270  channel->work_pending = false;
271  smp_wmb();
272 
273  efx_nic_eventq_read_ack(channel);
274 }
275 
276 /* NAPI poll handler
277  *
278  * NAPI guarantees serialisation of polls of the same device, which
279  * provides the guarantee required by efx_process_channel().
280  */
281 static int efx_poll(struct napi_struct *napi, int budget)
282 {
283  struct efx_channel *channel =
284  container_of(napi, struct efx_channel, napi_str);
285  struct efx_nic *efx = channel->efx;
286  int spent;
287 
288  netif_vdbg(efx, intr, efx->net_dev,
289  "channel %d NAPI poll executing on CPU %d\n",
290  channel->channel, raw_smp_processor_id());
291 
292  spent = efx_process_channel(channel, budget);
293 
294  if (spent < budget) {
295  if (efx_channel_has_rx_queue(channel) &&
296  efx->irq_rx_adaptive &&
297  unlikely(++channel->irq_count == 1000)) {
298  if (unlikely(channel->irq_mod_score <
299  irq_adapt_low_thresh)) {
300  if (channel->irq_moderation > 1) {
301  channel->irq_moderation -= 1;
302  efx->type->push_irq_moderation(channel);
303  }
304  } else if (unlikely(channel->irq_mod_score >
305  irq_adapt_high_thresh)) {
306  if (channel->irq_moderation <
307  efx->irq_rx_moderation) {
308  channel->irq_moderation += 1;
309  efx->type->push_irq_moderation(channel);
310  }
311  }
312  channel->irq_count = 0;
313  channel->irq_mod_score = 0;
314  }
315 
316  efx_filter_rfs_expire(channel);
317 
318  /* There is no race here; although napi_disable() will
319  * only wait for napi_complete(), this isn't a problem
320  * since efx_channel_processed() will have no effect if
321  * interrupts have already been disabled.
322  */
323  napi_complete(napi);
324  efx_channel_processed(channel);
325  }
326 
327  return spent;
328 }
329 
330 /* Process the eventq of the specified channel immediately on this CPU
331  *
332  * Disable hardware generated interrupts, wait for any existing
333  * processing to finish, then directly poll (and ack ) the eventq.
334  * Finally reenable NAPI and interrupts.
335  *
336  * This is for use only during a loopback self-test. It must not
337  * deliver any packets up the stack as this can result in deadlock.
338  */
340 {
341  struct efx_nic *efx = channel->efx;
342 
343  BUG_ON(channel->channel >= efx->n_channels);
344  BUG_ON(!channel->enabled);
345  BUG_ON(!efx->loopback_selftest);
346 
347  /* Disable interrupts and wait for ISRs to complete */
349  if (efx->legacy_irq) {
351  efx->legacy_irq_enabled = false;
352  }
353  if (channel->irq)
354  synchronize_irq(channel->irq);
355 
356  /* Wait for any NAPI processing to complete */
357  napi_disable(&channel->napi_str);
358 
359  /* Poll the channel */
360  efx_process_channel(channel, channel->eventq_mask + 1);
361 
362  /* Ack the eventq. This may cause an interrupt to be generated
363  * when they are reenabled */
364  efx_channel_processed(channel);
365 
366  napi_enable(&channel->napi_str);
367  if (efx->legacy_irq)
368  efx->legacy_irq_enabled = true;
370 }
371 
372 /* Create event queue
373  * Event queue memory allocations are done only once. If the channel
374  * is reset, the memory buffer will be reused; this guards against
375  * errors during channel reset and also simplifies interrupt handling.
376  */
377 static int efx_probe_eventq(struct efx_channel *channel)
378 {
379  struct efx_nic *efx = channel->efx;
380  unsigned long entries;
381 
382  netif_dbg(efx, probe, efx->net_dev,
383  "chan %d create event queue\n", channel->channel);
384 
385  /* Build an event queue with room for one event per tx and rx buffer,
386  * plus some extra for link state events and MCDI completions. */
387  entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
389  channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
390 
391  return efx_nic_probe_eventq(channel);
392 }
393 
394 /* Prepare channel's event queue */
395 static void efx_init_eventq(struct efx_channel *channel)
396 {
397  netif_dbg(channel->efx, drv, channel->efx->net_dev,
398  "chan %d init event queue\n", channel->channel);
399 
400  channel->eventq_read_ptr = 0;
401 
402  efx_nic_init_eventq(channel);
403 }
404 
405 /* Enable event queue processing and NAPI */
406 static void efx_start_eventq(struct efx_channel *channel)
407 {
408  netif_dbg(channel->efx, ifup, channel->efx->net_dev,
409  "chan %d start event queue\n", channel->channel);
410 
411  /* The interrupt handler for this channel may set work_pending
412  * as soon as we enable it. Make sure it's cleared before
413  * then. Similarly, make sure it sees the enabled flag set.
414  */
415  channel->work_pending = false;
416  channel->enabled = true;
417  smp_wmb();
418 
419  napi_enable(&channel->napi_str);
420  efx_nic_eventq_read_ack(channel);
421 }
422 
423 /* Disable event queue processing and NAPI */
424 static void efx_stop_eventq(struct efx_channel *channel)
425 {
426  if (!channel->enabled)
427  return;
428 
429  napi_disable(&channel->napi_str);
430  channel->enabled = false;
431 }
432 
433 static void efx_fini_eventq(struct efx_channel *channel)
434 {
435  netif_dbg(channel->efx, drv, channel->efx->net_dev,
436  "chan %d fini event queue\n", channel->channel);
437 
438  efx_nic_fini_eventq(channel);
439 }
440 
441 static void efx_remove_eventq(struct efx_channel *channel)
442 {
443  netif_dbg(channel->efx, drv, channel->efx->net_dev,
444  "chan %d remove event queue\n", channel->channel);
445 
446  efx_nic_remove_eventq(channel);
447 }
448 
449 /**************************************************************************
450  *
451  * Channel handling
452  *
453  *************************************************************************/
454 
455 /* Allocate and initialise a channel structure. */
456 static struct efx_channel *
457 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
458 {
459  struct efx_channel *channel;
460  struct efx_rx_queue *rx_queue;
461  struct efx_tx_queue *tx_queue;
462  int j;
463 
464  channel = kzalloc(sizeof(*channel), GFP_KERNEL);
465  if (!channel)
466  return NULL;
467 
468  channel->efx = efx;
469  channel->channel = i;
470  channel->type = &efx_default_channel_type;
471 
472  for (j = 0; j < EFX_TXQ_TYPES; j++) {
473  tx_queue = &channel->tx_queue[j];
474  tx_queue->efx = efx;
475  tx_queue->queue = i * EFX_TXQ_TYPES + j;
476  tx_queue->channel = channel;
477  }
478 
479  rx_queue = &channel->rx_queue;
480  rx_queue->efx = efx;
482  (unsigned long)rx_queue);
483 
484  return channel;
485 }
486 
487 /* Allocate and initialise a channel structure, copying parameters
488  * (but not resources) from an old channel structure.
489  */
490 static struct efx_channel *
491 efx_copy_channel(const struct efx_channel *old_channel)
492 {
493  struct efx_channel *channel;
494  struct efx_rx_queue *rx_queue;
495  struct efx_tx_queue *tx_queue;
496  int j;
497 
498  channel = kmalloc(sizeof(*channel), GFP_KERNEL);
499  if (!channel)
500  return NULL;
501 
502  *channel = *old_channel;
503 
504  channel->napi_dev = NULL;
505  memset(&channel->eventq, 0, sizeof(channel->eventq));
506 
507  for (j = 0; j < EFX_TXQ_TYPES; j++) {
508  tx_queue = &channel->tx_queue[j];
509  if (tx_queue->channel)
510  tx_queue->channel = channel;
511  tx_queue->buffer = NULL;
512  memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
513  }
514 
515  rx_queue = &channel->rx_queue;
516  rx_queue->buffer = NULL;
517  memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
519  (unsigned long)rx_queue);
520 
521  return channel;
522 }
523 
524 static int efx_probe_channel(struct efx_channel *channel)
525 {
526  struct efx_tx_queue *tx_queue;
527  struct efx_rx_queue *rx_queue;
528  int rc;
529 
530  netif_dbg(channel->efx, probe, channel->efx->net_dev,
531  "creating channel %d\n", channel->channel);
532 
533  rc = channel->type->pre_probe(channel);
534  if (rc)
535  goto fail;
536 
537  rc = efx_probe_eventq(channel);
538  if (rc)
539  goto fail;
540 
541  efx_for_each_channel_tx_queue(tx_queue, channel) {
542  rc = efx_probe_tx_queue(tx_queue);
543  if (rc)
544  goto fail;
545  }
546 
547  efx_for_each_channel_rx_queue(rx_queue, channel) {
548  rc = efx_probe_rx_queue(rx_queue);
549  if (rc)
550  goto fail;
551  }
552 
553  channel->n_rx_frm_trunc = 0;
554 
555  return 0;
556 
557 fail:
558  efx_remove_channel(channel);
559  return rc;
560 }
561 
562 static void
563 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
564 {
565  struct efx_nic *efx = channel->efx;
566  const char *type;
567  int number;
568 
569  number = channel->channel;
570  if (efx->tx_channel_offset == 0) {
571  type = "";
572  } else if (channel->channel < efx->tx_channel_offset) {
573  type = "-rx";
574  } else {
575  type = "-tx";
576  number -= efx->tx_channel_offset;
577  }
578  snprintf(buf, len, "%s%s-%d", efx->name, type, number);
579 }
580 
581 static void efx_set_channel_names(struct efx_nic *efx)
582 {
583  struct efx_channel *channel;
584 
585  efx_for_each_channel(channel, efx)
586  channel->type->get_name(channel,
587  efx->channel_name[channel->channel],
588  sizeof(efx->channel_name[0]));
589 }
590 
591 static int efx_probe_channels(struct efx_nic *efx)
592 {
593  struct efx_channel *channel;
594  int rc;
595 
596  /* Restart special buffer allocation */
597  efx->next_buffer_table = 0;
598 
599  /* Probe channels in reverse, so that any 'extra' channels
600  * use the start of the buffer table. This allows the traffic
601  * channels to be resized without moving them or wasting the
602  * entries before them.
603  */
604  efx_for_each_channel_rev(channel, efx) {
605  rc = efx_probe_channel(channel);
606  if (rc) {
607  netif_err(efx, probe, efx->net_dev,
608  "failed to create channel %d\n",
609  channel->channel);
610  goto fail;
611  }
612  }
613  efx_set_channel_names(efx);
614 
615  return 0;
616 
617 fail:
618  efx_remove_channels(efx);
619  return rc;
620 }
621 
622 /* Channels are shutdown and reinitialised whilst the NIC is running
623  * to propagate configuration changes (mtu, checksum offload), or
624  * to clear hardware error conditions
625  */
626 static void efx_start_datapath(struct efx_nic *efx)
627 {
628  struct efx_tx_queue *tx_queue;
629  struct efx_rx_queue *rx_queue;
630  struct efx_channel *channel;
631 
632  /* Calculate the rx buffer allocation parameters required to
633  * support the current MTU, including padding for header
634  * alignment and overruns.
635  */
637  EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
638  efx->type->rx_buffer_hash_size +
639  efx->type->rx_buffer_padding);
641  sizeof(struct efx_rx_page_state));
642 
643  /* We must keep at least one descriptor in a TX ring empty.
644  * We could avoid this when the queue size does not exactly
645  * match the hardware ring size, but it's not that important.
646  * Therefore we stop the queue when one more skb might fill
647  * the ring completely. We wake it when half way back to
648  * empty.
649  */
651  efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
652 
653  /* Initialise the channels */
654  efx_for_each_channel(channel, efx) {
655  efx_for_each_channel_tx_queue(tx_queue, channel)
656  efx_init_tx_queue(tx_queue);
657 
658  /* The rx buffer allocation strategy is MTU dependent */
659  efx_rx_strategy(channel);
660 
661  efx_for_each_channel_rx_queue(rx_queue, channel) {
662  efx_init_rx_queue(rx_queue);
663  efx_nic_generate_fill_event(rx_queue);
664  }
665 
666  WARN_ON(channel->rx_pkt != NULL);
667  efx_rx_strategy(channel);
668  }
669 
670  if (netif_device_present(efx->net_dev))
671  netif_tx_wake_all_queues(efx->net_dev);
672 }
673 
674 static void efx_stop_datapath(struct efx_nic *efx)
675 {
676  struct efx_channel *channel;
677  struct efx_tx_queue *tx_queue;
678  struct efx_rx_queue *rx_queue;
679  struct pci_dev *dev = efx->pci_dev;
680  int rc;
681 
683  BUG_ON(efx->port_enabled);
684 
685  /* Only perform flush if dma is enabled */
686  if (dev->is_busmaster) {
687  rc = efx_nic_flush_queues(efx);
688 
689  if (rc && EFX_WORKAROUND_7803(efx)) {
690  /* Schedule a reset to recover from the flush failure. The
691  * descriptor caches reference memory we're about to free,
692  * but falcon_reconfigure_mac_wrapper() won't reconnect
693  * the MACs because of the pending reset. */
694  netif_err(efx, drv, efx->net_dev,
695  "Resetting to recover from flush failure\n");
697  } else if (rc) {
698  netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
699  } else {
700  netif_dbg(efx, drv, efx->net_dev,
701  "successfully flushed all queues\n");
702  }
703  }
704 
705  efx_for_each_channel(channel, efx) {
706  /* RX packet processing is pipelined, so wait for the
707  * NAPI handler to complete. At least event queue 0
708  * might be kept active by non-data events, so don't
709  * use napi_synchronize() but actually disable NAPI
710  * temporarily.
711  */
712  if (efx_channel_has_rx_queue(channel)) {
713  efx_stop_eventq(channel);
714  efx_start_eventq(channel);
715  }
716 
717  efx_for_each_channel_rx_queue(rx_queue, channel)
718  efx_fini_rx_queue(rx_queue);
719  efx_for_each_possible_channel_tx_queue(tx_queue, channel)
720  efx_fini_tx_queue(tx_queue);
721  }
722 }
723 
724 static void efx_remove_channel(struct efx_channel *channel)
725 {
726  struct efx_tx_queue *tx_queue;
727  struct efx_rx_queue *rx_queue;
728 
729  netif_dbg(channel->efx, drv, channel->efx->net_dev,
730  "destroy chan %d\n", channel->channel);
731 
732  efx_for_each_channel_rx_queue(rx_queue, channel)
733  efx_remove_rx_queue(rx_queue);
734  efx_for_each_possible_channel_tx_queue(tx_queue, channel)
735  efx_remove_tx_queue(tx_queue);
736  efx_remove_eventq(channel);
737  channel->type->post_remove(channel);
738 }
739 
740 static void efx_remove_channels(struct efx_nic *efx)
741 {
742  struct efx_channel *channel;
743 
744  efx_for_each_channel(channel, efx)
745  efx_remove_channel(channel);
746 }
747 
748 int
749 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
750 {
751  struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
752  u32 old_rxq_entries, old_txq_entries;
753  unsigned i, next_buffer_table = 0;
754  int rc;
755 
756  rc = efx_check_disabled(efx);
757  if (rc)
758  return rc;
759 
760  /* Not all channels should be reallocated. We must avoid
761  * reallocating their buffer table entries.
762  */
763  efx_for_each_channel(channel, efx) {
764  struct efx_rx_queue *rx_queue;
765  struct efx_tx_queue *tx_queue;
766 
767  if (channel->type->copy)
768  continue;
769  next_buffer_table = max(next_buffer_table,
770  channel->eventq.index +
771  channel->eventq.entries);
772  efx_for_each_channel_rx_queue(rx_queue, channel)
773  next_buffer_table = max(next_buffer_table,
774  rx_queue->rxd.index +
775  rx_queue->rxd.entries);
776  efx_for_each_channel_tx_queue(tx_queue, channel)
777  next_buffer_table = max(next_buffer_table,
778  tx_queue->txd.index +
779  tx_queue->txd.entries);
780  }
781 
782  efx_stop_all(efx);
783  efx_stop_interrupts(efx, true);
784 
785  /* Clone channels (where possible) */
786  memset(other_channel, 0, sizeof(other_channel));
787  for (i = 0; i < efx->n_channels; i++) {
788  channel = efx->channel[i];
789  if (channel->type->copy)
790  channel = channel->type->copy(channel);
791  if (!channel) {
792  rc = -ENOMEM;
793  goto out;
794  }
795  other_channel[i] = channel;
796  }
797 
798  /* Swap entry counts and channel pointers */
799  old_rxq_entries = efx->rxq_entries;
800  old_txq_entries = efx->txq_entries;
801  efx->rxq_entries = rxq_entries;
802  efx->txq_entries = txq_entries;
803  for (i = 0; i < efx->n_channels; i++) {
804  channel = efx->channel[i];
805  efx->channel[i] = other_channel[i];
806  other_channel[i] = channel;
807  }
808 
809  /* Restart buffer table allocation */
810  efx->next_buffer_table = next_buffer_table;
811 
812  for (i = 0; i < efx->n_channels; i++) {
813  channel = efx->channel[i];
814  if (!channel->type->copy)
815  continue;
816  rc = efx_probe_channel(channel);
817  if (rc)
818  goto rollback;
819  efx_init_napi_channel(efx->channel[i]);
820  }
821 
822 out:
823  /* Destroy unused channel structures */
824  for (i = 0; i < efx->n_channels; i++) {
825  channel = other_channel[i];
826  if (channel && channel->type->copy) {
827  efx_fini_napi_channel(channel);
828  efx_remove_channel(channel);
829  kfree(channel);
830  }
831  }
832 
833  efx_start_interrupts(efx, true);
834  efx_start_all(efx);
835  return rc;
836 
837 rollback:
838  /* Swap back */
839  efx->rxq_entries = old_rxq_entries;
840  efx->txq_entries = old_txq_entries;
841  for (i = 0; i < efx->n_channels; i++) {
842  channel = efx->channel[i];
843  efx->channel[i] = other_channel[i];
844  other_channel[i] = channel;
845  }
846  goto out;
847 }
848 
849 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
850 {
851  mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
852 }
853 
854 static const struct efx_channel_type efx_default_channel_type = {
855  .pre_probe = efx_channel_dummy_op_int,
856  .post_remove = efx_channel_dummy_op_void,
857  .get_name = efx_get_channel_name,
858  .copy = efx_copy_channel,
859  .keep_eventq = false,
860 };
861 
863 {
864  return 0;
865 }
866 
868 {
869 }
870 
871 /**************************************************************************
872  *
873  * Port handling
874  *
875  **************************************************************************/
876 
877 /* This ensures that the kernel is kept informed (via
878  * netif_carrier_on/off) of the link status, and also maintains the
879  * link status's stop on the port's TX queue.
880  */
882 {
883  struct efx_link_state *link_state = &efx->link_state;
884 
885  /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
886  * that no events are triggered between unregister_netdev() and the
887  * driver unloading. A more general condition is that NETDEV_CHANGE
888  * can only be generated between NETDEV_UP and NETDEV_DOWN */
889  if (!netif_running(efx->net_dev))
890  return;
891 
892  if (link_state->up != netif_carrier_ok(efx->net_dev)) {
893  efx->n_link_state_changes++;
894 
895  if (link_state->up)
897  else
899  }
900 
901  /* Status message for kernel log */
902  if (link_state->up)
903  netif_info(efx, link, efx->net_dev,
904  "link up at %uMbps %s-duplex (MTU %d)%s\n",
905  link_state->speed, link_state->fd ? "full" : "half",
906  efx->net_dev->mtu,
907  (efx->promiscuous ? " [PROMISC]" : ""));
908  else
909  netif_info(efx, link, efx->net_dev, "link down\n");
910 }
911 
912 void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
913 {
914  efx->link_advertising = advertising;
915  if (advertising) {
916  if (advertising & ADVERTISED_Pause)
917  efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
918  else
919  efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
920  if (advertising & ADVERTISED_Asym_Pause)
921  efx->wanted_fc ^= EFX_FC_TX;
922  }
923 }
924 
925 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
926 {
927  efx->wanted_fc = wanted_fc;
928  if (efx->link_advertising) {
929  if (wanted_fc & EFX_FC_RX)
932  else
935  if (wanted_fc & EFX_FC_TX)
937  }
938 }
939 
940 static void efx_fini_port(struct efx_nic *efx);
941 
942 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
943  * the MAC appropriately. All other PHY configuration changes are pushed
944  * through phy_op->set_settings(), and pushed asynchronously to the MAC
945  * through efx_monitor().
946  *
947  * Callers must hold the mac_lock
948  */
950 {
951  enum efx_phy_mode phy_mode;
952  int rc;
953 
954  WARN_ON(!mutex_is_locked(&efx->mac_lock));
955 
956  /* Serialise the promiscuous flag with efx_set_rx_mode. */
957  netif_addr_lock_bh(efx->net_dev);
958  netif_addr_unlock_bh(efx->net_dev);
959 
960  /* Disable PHY transmit in mac level loopbacks */
961  phy_mode = efx->phy_mode;
962  if (LOOPBACK_INTERNAL(efx))
964  else
966 
967  rc = efx->type->reconfigure_port(efx);
968 
969  if (rc)
970  efx->phy_mode = phy_mode;
971 
972  return rc;
973 }
974 
975 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
976  * disabled. */
978 {
979  int rc;
980 
982 
983  mutex_lock(&efx->mac_lock);
984  rc = __efx_reconfigure_port(efx);
985  mutex_unlock(&efx->mac_lock);
986 
987  return rc;
988 }
989 
990 /* Asynchronous work item for changing MAC promiscuity and multicast
991  * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
992  * MAC directly. */
993 static void efx_mac_work(struct work_struct *data)
994 {
995  struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
996 
997  mutex_lock(&efx->mac_lock);
998  if (efx->port_enabled)
999  efx->type->reconfigure_mac(efx);
1000  mutex_unlock(&efx->mac_lock);
1001 }
1002 
1003 static int efx_probe_port(struct efx_nic *efx)
1004 {
1005  int rc;
1006 
1007  netif_dbg(efx, probe, efx->net_dev, "create port\n");
1008 
1009  if (phy_flash_cfg)
1010  efx->phy_mode = PHY_MODE_SPECIAL;
1011 
1012  /* Connect up MAC/PHY operations table */
1013  rc = efx->type->probe_port(efx);
1014  if (rc)
1015  return rc;
1016 
1017  /* Initialise MAC address to permanent address */
1018  memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
1019 
1020  return 0;
1021 }
1022 
1023 static int efx_init_port(struct efx_nic *efx)
1024 {
1025  int rc;
1026 
1027  netif_dbg(efx, drv, efx->net_dev, "init port\n");
1028 
1029  mutex_lock(&efx->mac_lock);
1030 
1031  rc = efx->phy_op->init(efx);
1032  if (rc)
1033  goto fail1;
1034 
1035  efx->port_initialized = true;
1036 
1037  /* Reconfigure the MAC before creating dma queues (required for
1038  * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
1039  efx->type->reconfigure_mac(efx);
1040 
1041  /* Ensure the PHY advertises the correct flow control settings */
1042  rc = efx->phy_op->reconfigure(efx);
1043  if (rc)
1044  goto fail2;
1045 
1046  mutex_unlock(&efx->mac_lock);
1047  return 0;
1048 
1049 fail2:
1050  efx->phy_op->fini(efx);
1051 fail1:
1052  mutex_unlock(&efx->mac_lock);
1053  return rc;
1054 }
1055 
1056 static void efx_start_port(struct efx_nic *efx)
1057 {
1058  netif_dbg(efx, ifup, efx->net_dev, "start port\n");
1059  BUG_ON(efx->port_enabled);
1060 
1061  mutex_lock(&efx->mac_lock);
1062  efx->port_enabled = true;
1063 
1064  /* efx_mac_work() might have been scheduled after efx_stop_port(),
1065  * and then cancelled by efx_flush_all() */
1066  efx->type->reconfigure_mac(efx);
1067 
1068  mutex_unlock(&efx->mac_lock);
1069 }
1070 
1071 /* Prevent efx_mac_work() and efx_monitor() from working */
1072 static void efx_stop_port(struct efx_nic *efx)
1073 {
1074  netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
1075 
1076  mutex_lock(&efx->mac_lock);
1077  efx->port_enabled = false;
1078  mutex_unlock(&efx->mac_lock);
1079 
1080  /* Serialise against efx_set_multicast_list() */
1081  netif_addr_lock_bh(efx->net_dev);
1082  netif_addr_unlock_bh(efx->net_dev);
1083 }
1084 
1085 static void efx_fini_port(struct efx_nic *efx)
1086 {
1087  netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
1088 
1089  if (!efx->port_initialized)
1090  return;
1091 
1092  efx->phy_op->fini(efx);
1093  efx->port_initialized = false;
1094 
1095  efx->link_state.up = false;
1097 }
1098 
1099 static void efx_remove_port(struct efx_nic *efx)
1100 {
1101  netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
1102 
1103  efx->type->remove_port(efx);
1104 }
1105 
1106 /**************************************************************************
1107  *
1108  * NIC handling
1109  *
1110  **************************************************************************/
1111 
1112 /* This configures the PCI device to enable I/O and DMA. */
1113 static int efx_init_io(struct efx_nic *efx)
1114 {
1115  struct pci_dev *pci_dev = efx->pci_dev;
1116  dma_addr_t dma_mask = efx->type->max_dma_mask;
1117  int rc;
1118 
1119  netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
1120 
1121  rc = pci_enable_device(pci_dev);
1122  if (rc) {
1123  netif_err(efx, probe, efx->net_dev,
1124  "failed to enable PCI device\n");
1125  goto fail1;
1126  }
1127 
1128  pci_set_master(pci_dev);
1129 
1130  /* Set the PCI DMA mask. Try all possibilities from our
1131  * genuine mask down to 32 bits, because some architectures
1132  * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
1133  * masks event though they reject 46 bit masks.
1134  */
1135  while (dma_mask > 0x7fffffffUL) {
1136  if (dma_supported(&pci_dev->dev, dma_mask)) {
1137  rc = dma_set_mask(&pci_dev->dev, dma_mask);
1138  if (rc == 0)
1139  break;
1140  }
1141  dma_mask >>= 1;
1142  }
1143  if (rc) {
1144  netif_err(efx, probe, efx->net_dev,
1145  "could not find a suitable DMA mask\n");
1146  goto fail2;
1147  }
1148  netif_dbg(efx, probe, efx->net_dev,
1149  "using DMA mask %llx\n", (unsigned long long) dma_mask);
1150  rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
1151  if (rc) {
1152  /* dma_set_coherent_mask() is not *allowed* to
1153  * fail with a mask that dma_set_mask() accepted,
1154  * but just in case...
1155  */
1156  netif_err(efx, probe, efx->net_dev,
1157  "failed to set consistent DMA mask\n");
1158  goto fail2;
1159  }
1160 
1162  rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
1163  if (rc) {
1164  netif_err(efx, probe, efx->net_dev,
1165  "request for memory BAR failed\n");
1166  rc = -EIO;
1167  goto fail3;
1168  }
1169  efx->membase = ioremap_nocache(efx->membase_phys,
1170  efx->type->mem_map_size);
1171  if (!efx->membase) {
1172  netif_err(efx, probe, efx->net_dev,
1173  "could not map memory BAR at %llx+%x\n",
1174  (unsigned long long)efx->membase_phys,
1175  efx->type->mem_map_size);
1176  rc = -ENOMEM;
1177  goto fail4;
1178  }
1179  netif_dbg(efx, probe, efx->net_dev,
1180  "memory BAR at %llx+%x (virtual %p)\n",
1181  (unsigned long long)efx->membase_phys,
1182  efx->type->mem_map_size, efx->membase);
1183 
1184  return 0;
1185 
1186  fail4:
1188  fail3:
1189  efx->membase_phys = 0;
1190  fail2:
1192  fail1:
1193  return rc;
1194 }
1195 
1196 static void efx_fini_io(struct efx_nic *efx)
1197 {
1198  netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
1199 
1200  if (efx->membase) {
1201  iounmap(efx->membase);
1202  efx->membase = NULL;
1203  }
1204 
1205  if (efx->membase_phys) {
1207  efx->membase_phys = 0;
1208  }
1209 
1211 }
1212 
1213 static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
1214 {
1215  cpumask_var_t thread_mask;
1216  unsigned int count;
1217  int cpu;
1218 
1219  if (rss_cpus) {
1220  count = rss_cpus;
1221  } else {
1222  if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
1223  netif_warn(efx, probe, efx->net_dev,
1224  "RSS disabled due to allocation failure\n");
1225  return 1;
1226  }
1227 
1228  count = 0;
1229  for_each_online_cpu(cpu) {
1230  if (!cpumask_test_cpu(cpu, thread_mask)) {
1231  ++count;
1232  cpumask_or(thread_mask, thread_mask,
1234  }
1235  }
1236 
1237  free_cpumask_var(thread_mask);
1238  }
1239 
1240  /* If RSS is requested for the PF *and* VFs then we can't write RSS
1241  * table entries that are inaccessible to VFs
1242  */
1243  if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
1244  count > efx_vf_size(efx)) {
1245  netif_warn(efx, probe, efx->net_dev,
1246  "Reducing number of RSS channels from %u to %u for "
1247  "VF support. Increase vf-msix-limit to use more "
1248  "channels on the PF.\n",
1249  count, efx_vf_size(efx));
1250  count = efx_vf_size(efx);
1251  }
1252 
1253  return count;
1254 }
1255 
1256 static int
1257 efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries)
1258 {
1259 #ifdef CONFIG_RFS_ACCEL
1260  unsigned int i;
1261  int rc;
1262 
1263  efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels);
1264  if (!efx->net_dev->rx_cpu_rmap)
1265  return -ENOMEM;
1266  for (i = 0; i < efx->n_rx_channels; i++) {
1267  rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap,
1268  xentries[i].vector);
1269  if (rc) {
1270  free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
1271  efx->net_dev->rx_cpu_rmap = NULL;
1272  return rc;
1273  }
1274  }
1275 #endif
1276  return 0;
1277 }
1278 
1279 /* Probe the number and type of interrupts we are able to obtain, and
1280  * the resulting numbers of channels and RX queues.
1281  */
1282 static int efx_probe_interrupts(struct efx_nic *efx)
1283 {
1284  unsigned int max_channels =
1285  min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
1286  unsigned int extra_channels = 0;
1287  unsigned int i, j;
1288  int rc;
1289 
1290  for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
1291  if (efx->extra_channel_type[i])
1292  ++extra_channels;
1293 
1294  if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
1295  struct msix_entry xentries[EFX_MAX_CHANNELS];
1296  unsigned int n_channels;
1297 
1298  n_channels = efx_wanted_parallelism(efx);
1299  if (separate_tx_channels)
1300  n_channels *= 2;
1301  n_channels += extra_channels;
1302  n_channels = min(n_channels, max_channels);
1303 
1304  for (i = 0; i < n_channels; i++)
1305  xentries[i].entry = i;
1306  rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
1307  if (rc > 0) {
1308  netif_err(efx, drv, efx->net_dev,
1309  "WARNING: Insufficient MSI-X vectors"
1310  " available (%d < %u).\n", rc, n_channels);
1311  netif_err(efx, drv, efx->net_dev,
1312  "WARNING: Performance may be reduced.\n");
1313  EFX_BUG_ON_PARANOID(rc >= n_channels);
1314  n_channels = rc;
1315  rc = pci_enable_msix(efx->pci_dev, xentries,
1316  n_channels);
1317  }
1318 
1319  if (rc == 0) {
1320  efx->n_channels = n_channels;
1321  if (n_channels > extra_channels)
1322  n_channels -= extra_channels;
1323  if (separate_tx_channels) {
1324  efx->n_tx_channels = max(n_channels / 2, 1U);
1325  efx->n_rx_channels = max(n_channels -
1326  efx->n_tx_channels,
1327  1U);
1328  } else {
1329  efx->n_tx_channels = n_channels;
1330  efx->n_rx_channels = n_channels;
1331  }
1332  rc = efx_init_rx_cpu_rmap(efx, xentries);
1333  if (rc) {
1334  pci_disable_msix(efx->pci_dev);
1335  return rc;
1336  }
1337  for (i = 0; i < efx->n_channels; i++)
1338  efx_get_channel(efx, i)->irq =
1339  xentries[i].vector;
1340  } else {
1341  /* Fall back to single channel MSI */
1343  netif_err(efx, drv, efx->net_dev,
1344  "could not enable MSI-X\n");
1345  }
1346  }
1347 
1348  /* Try single interrupt MSI */
1349  if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
1350  efx->n_channels = 1;
1351  efx->n_rx_channels = 1;
1352  efx->n_tx_channels = 1;
1353  rc = pci_enable_msi(efx->pci_dev);
1354  if (rc == 0) {
1355  efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
1356  } else {
1357  netif_err(efx, drv, efx->net_dev,
1358  "could not enable MSI\n");
1360  }
1361  }
1362 
1363  /* Assume legacy interrupts */
1364  if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
1365  efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
1366  efx->n_rx_channels = 1;
1367  efx->n_tx_channels = 1;
1368  efx->legacy_irq = efx->pci_dev->irq;
1369  }
1370 
1371  /* Assign extra channels if possible */
1372  j = efx->n_channels;
1373  for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
1374  if (!efx->extra_channel_type[i])
1375  continue;
1376  if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
1377  efx->n_channels <= extra_channels) {
1378  efx->extra_channel_type[i]->handle_no_channel(efx);
1379  } else {
1380  --j;
1381  efx_get_channel(efx, j)->type =
1382  efx->extra_channel_type[i];
1383  }
1384  }
1385 
1386  /* RSS might be usable on VFs even if it is disabled on the PF */
1387  efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
1388  efx->n_rx_channels : efx_vf_size(efx));
1389 
1390  return 0;
1391 }
1392 
1393 /* Enable interrupts, then probe and start the event queues */
1394 static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1395 {
1396  struct efx_channel *channel;
1397 
1398  BUG_ON(efx->state == STATE_DISABLED);
1399 
1400  if (efx->legacy_irq)
1401  efx->legacy_irq_enabled = true;
1403 
1404  efx_for_each_channel(channel, efx) {
1405  if (!channel->type->keep_eventq || !may_keep_eventq)
1406  efx_init_eventq(channel);
1407  efx_start_eventq(channel);
1408  }
1409 
1410  efx_mcdi_mode_event(efx);
1411 }
1412 
1413 static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
1414 {
1415  struct efx_channel *channel;
1416 
1417  if (efx->state == STATE_DISABLED)
1418  return;
1419 
1420  efx_mcdi_mode_poll(efx);
1421 
1423  if (efx->legacy_irq) {
1425  efx->legacy_irq_enabled = false;
1426  }
1427 
1428  efx_for_each_channel(channel, efx) {
1429  if (channel->irq)
1430  synchronize_irq(channel->irq);
1431 
1432  efx_stop_eventq(channel);
1433  if (!channel->type->keep_eventq || !may_keep_eventq)
1434  efx_fini_eventq(channel);
1435  }
1436 }
1437 
1438 static void efx_remove_interrupts(struct efx_nic *efx)
1439 {
1440  struct efx_channel *channel;
1441 
1442  /* Remove MSI/MSI-X interrupts */
1443  efx_for_each_channel(channel, efx)
1444  channel->irq = 0;
1445  pci_disable_msi(efx->pci_dev);
1446  pci_disable_msix(efx->pci_dev);
1447 
1448  /* Remove legacy interrupt */
1449  efx->legacy_irq = 0;
1450 }
1451 
1452 static void efx_set_channels(struct efx_nic *efx)
1453 {
1454  struct efx_channel *channel;
1455  struct efx_tx_queue *tx_queue;
1456 
1457  efx->tx_channel_offset =
1458  separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
1459 
1460  /* We need to mark which channels really have RX and TX
1461  * queues, and adjust the TX queue numbers if we have separate
1462  * RX-only and TX-only channels.
1463  */
1464  efx_for_each_channel(channel, efx) {
1465  if (channel->channel < efx->n_rx_channels)
1466  channel->rx_queue.core_index = channel->channel;
1467  else
1468  channel->rx_queue.core_index = -1;
1469 
1470  efx_for_each_channel_tx_queue(tx_queue, channel)
1471  tx_queue->queue -= (efx->tx_channel_offset *
1472  EFX_TXQ_TYPES);
1473  }
1474 }
1475 
1476 static int efx_probe_nic(struct efx_nic *efx)
1477 {
1478  size_t i;
1479  int rc;
1480 
1481  netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
1482 
1483  /* Carry out hardware-type specific initialisation */
1484  rc = efx->type->probe(efx);
1485  if (rc)
1486  return rc;
1487 
1488  /* Determine the number of channels and queues by trying to hook
1489  * in MSI-X interrupts. */
1490  rc = efx_probe_interrupts(efx);
1491  if (rc)
1492  goto fail;
1493 
1494  efx->type->dimension_resources(efx);
1495 
1496  if (efx->n_channels > 1)
1497  get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
1498  for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
1499  efx->rx_indir_table[i] =
1500  ethtool_rxfh_indir_default(i, efx->rss_spread);
1501 
1502  efx_set_channels(efx);
1503  netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
1504  netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
1505 
1506  /* Initialise the interrupt moderation settings */
1507  efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
1508  true);
1509 
1510  return 0;
1511 
1512 fail:
1513  efx->type->remove(efx);
1514  return rc;
1515 }
1516 
1517 static void efx_remove_nic(struct efx_nic *efx)
1518 {
1519  netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
1520 
1521  efx_remove_interrupts(efx);
1522  efx->type->remove(efx);
1523 }
1524 
1525 /**************************************************************************
1526  *
1527  * NIC startup/shutdown
1528  *
1529  *************************************************************************/
1530 
1531 static int efx_probe_all(struct efx_nic *efx)
1532 {
1533  int rc;
1534 
1535  rc = efx_probe_nic(efx);
1536  if (rc) {
1537  netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
1538  goto fail1;
1539  }
1540 
1541  rc = efx_probe_port(efx);
1542  if (rc) {
1543  netif_err(efx, probe, efx->net_dev, "failed to create port\n");
1544  goto fail2;
1545  }
1546 
1549  rc = -EINVAL;
1550  goto fail3;
1551  }
1553 
1554  rc = efx_probe_filters(efx);
1555  if (rc) {
1556  netif_err(efx, probe, efx->net_dev,
1557  "failed to create filter tables\n");
1558  goto fail3;
1559  }
1560 
1561  rc = efx_probe_channels(efx);
1562  if (rc)
1563  goto fail4;
1564 
1565  return 0;
1566 
1567  fail4:
1568  efx_remove_filters(efx);
1569  fail3:
1570  efx_remove_port(efx);
1571  fail2:
1572  efx_remove_nic(efx);
1573  fail1:
1574  return rc;
1575 }
1576 
1577 /* If the interface is supposed to be running but is not, start
1578  * the hardware and software data path, regular activity for the port
1579  * (MAC statistics, link polling, etc.) and schedule the port to be
1580  * reconfigured. Interrupts must already be enabled. This function
1581  * is safe to call multiple times, so long as the NIC is not disabled.
1582  * Requires the RTNL lock.
1583  */
1584 static void efx_start_all(struct efx_nic *efx)
1585 {
1587  BUG_ON(efx->state == STATE_DISABLED);
1588 
1589  /* Check that it is appropriate to restart the interface. All
1590  * of these flags are safe to read under just the rtnl lock */
1591  if (efx->port_enabled || !netif_running(efx->net_dev))
1592  return;
1593 
1594  efx_start_port(efx);
1595  efx_start_datapath(efx);
1596 
1597  /* Start the hardware monitor if there is one. Otherwise (we're link
1598  * event driven), we have to poll the PHY because after an event queue
1599  * flush, we could have a missed a link state change */
1600  if (efx->type->monitor != NULL) {
1601  queue_delayed_work(efx->workqueue, &efx->monitor_work,
1602  efx_monitor_interval);
1603  } else {
1604  mutex_lock(&efx->mac_lock);
1605  if (efx->phy_op->poll(efx))
1607  mutex_unlock(&efx->mac_lock);
1608  }
1609 
1610  efx->type->start_stats(efx);
1611 }
1612 
1613 /* Flush all delayed work. Should only be called when no more delayed work
1614  * will be scheduled. This doesn't flush pending online resets (efx_reset),
1615  * since we're holding the rtnl_lock at this point. */
1616 static void efx_flush_all(struct efx_nic *efx)
1617 {
1618  /* Make sure the hardware monitor and event self-test are stopped */
1619  cancel_delayed_work_sync(&efx->monitor_work);
1621  /* Stop scheduled port reconfigurations */
1622  cancel_work_sync(&efx->mac_work);
1623 }
1624 
1625 /* Quiesce the hardware and software data path, and regular activity
1626  * for the port without bringing the link down. Safe to call multiple
1627  * times with the NIC in almost any state, but interrupts should be
1628  * enabled. Requires the RTNL lock.
1629  */
1630 static void efx_stop_all(struct efx_nic *efx)
1631 {
1633 
1634  /* port_enabled can be read safely under the rtnl lock */
1635  if (!efx->port_enabled)
1636  return;
1637 
1638  efx->type->stop_stats(efx);
1639  efx_stop_port(efx);
1640 
1641  /* Flush efx_mac_work(), refill_workqueue, monitor_work */
1642  efx_flush_all(efx);
1643 
1644  /* Stop the kernel transmit interface late, so the watchdog
1645  * timer isn't ticking over the flush */
1646  netif_tx_disable(efx->net_dev);
1647 
1648  efx_stop_datapath(efx);
1649 }
1650 
1651 static void efx_remove_all(struct efx_nic *efx)
1652 {
1653  efx_remove_channels(efx);
1654  efx_remove_filters(efx);
1655  efx_remove_port(efx);
1656  efx_remove_nic(efx);
1657 }
1658 
1659 /**************************************************************************
1660  *
1661  * Interrupt moderation
1662  *
1663  **************************************************************************/
1664 
1665 static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
1666 {
1667  if (usecs == 0)
1668  return 0;
1669  if (usecs * 1000 < quantum_ns)
1670  return 1; /* never round down to 0 */
1671  return usecs * 1000 / quantum_ns;
1672 }
1673 
1674 /* Set interrupt moderation parameters */
1675 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
1676  unsigned int rx_usecs, bool rx_adaptive,
1677  bool rx_may_override_tx)
1678 {
1679  struct efx_channel *channel;
1680  unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
1681  efx->timer_quantum_ns,
1682  1000);
1683  unsigned int tx_ticks;
1684  unsigned int rx_ticks;
1685 
1687 
1688  if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
1689  return -EINVAL;
1690 
1691  tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
1692  rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
1693 
1694  if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
1695  !rx_may_override_tx) {
1696  netif_err(efx, drv, efx->net_dev, "Channels are shared. "
1697  "RX and TX IRQ moderation must be equal\n");
1698  return -EINVAL;
1699  }
1700 
1701  efx->irq_rx_adaptive = rx_adaptive;
1702  efx->irq_rx_moderation = rx_ticks;
1703  efx_for_each_channel(channel, efx) {
1704  if (efx_channel_has_rx_queue(channel))
1705  channel->irq_moderation = rx_ticks;
1706  else if (efx_channel_has_tx_queues(channel))
1707  channel->irq_moderation = tx_ticks;
1708  }
1709 
1710  return 0;
1711 }
1712 
1713 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
1714  unsigned int *rx_usecs, bool *rx_adaptive)
1715 {
1716  /* We must round up when converting ticks to microseconds
1717  * because we round down when converting the other way.
1718  */
1719 
1720  *rx_adaptive = efx->irq_rx_adaptive;
1721  *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
1722  efx->timer_quantum_ns,
1723  1000);
1724 
1725  /* If channels are shared between RX and TX, so is IRQ
1726  * moderation. Otherwise, IRQ moderation is the same for all
1727  * TX channels and is not adaptive.
1728  */
1729  if (efx->tx_channel_offset == 0)
1730  *tx_usecs = *rx_usecs;
1731  else
1732  *tx_usecs = DIV_ROUND_UP(
1733  efx->channel[efx->tx_channel_offset]->irq_moderation *
1734  efx->timer_quantum_ns,
1735  1000);
1736 }
1737 
1738 /**************************************************************************
1739  *
1740  * Hardware monitor
1741  *
1742  **************************************************************************/
1743 
1744 /* Run periodically off the general workqueue */
1745 static void efx_monitor(struct work_struct *data)
1746 {
1747  struct efx_nic *efx = container_of(data, struct efx_nic,
1748  monitor_work.work);
1749 
1750  netif_vdbg(efx, timer, efx->net_dev,
1751  "hardware monitor executing on CPU %d\n",
1753  BUG_ON(efx->type->monitor == NULL);
1754 
1755  /* If the mac_lock is already held then it is likely a port
1756  * reconfiguration is already in place, which will likely do
1757  * most of the work of monitor() anyway. */
1758  if (mutex_trylock(&efx->mac_lock)) {
1759  if (efx->port_enabled)
1760  efx->type->monitor(efx);
1761  mutex_unlock(&efx->mac_lock);
1762  }
1763 
1764  queue_delayed_work(efx->workqueue, &efx->monitor_work,
1765  efx_monitor_interval);
1766 }
1767 
1768 /**************************************************************************
1769  *
1770  * ioctls
1771  *
1772  *************************************************************************/
1773 
1774 /* Net device ioctl
1775  * Context: process, rtnl_lock() held.
1776  */
1777 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1778 {
1779  struct efx_nic *efx = netdev_priv(net_dev);
1780  struct mii_ioctl_data *data = if_mii(ifr);
1781 
1782  if (cmd == SIOCSHWTSTAMP)
1783  return efx_ptp_ioctl(efx, ifr, cmd);
1784 
1785  /* Convert phy_id from older PRTAD/DEVAD format */
1786  if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1787  (data->phy_id & 0xfc00) == 0x0400)
1788  data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1789 
1790  return mdio_mii_ioctl(&efx->mdio, data, cmd);
1791 }
1792 
1793 /**************************************************************************
1794  *
1795  * NAPI interface
1796  *
1797  **************************************************************************/
1798 
1799 static void efx_init_napi_channel(struct efx_channel *channel)
1800 {
1801  struct efx_nic *efx = channel->efx;
1802 
1803  channel->napi_dev = efx->net_dev;
1804  netif_napi_add(channel->napi_dev, &channel->napi_str,
1805  efx_poll, napi_weight);
1806 }
1807 
1808 static void efx_init_napi(struct efx_nic *efx)
1809 {
1810  struct efx_channel *channel;
1811 
1812  efx_for_each_channel(channel, efx)
1813  efx_init_napi_channel(channel);
1814 }
1815 
1816 static void efx_fini_napi_channel(struct efx_channel *channel)
1817 {
1818  if (channel->napi_dev)
1819  netif_napi_del(&channel->napi_str);
1820  channel->napi_dev = NULL;
1821 }
1822 
1823 static void efx_fini_napi(struct efx_nic *efx)
1824 {
1825  struct efx_channel *channel;
1826 
1827  efx_for_each_channel(channel, efx)
1828  efx_fini_napi_channel(channel);
1829 }
1830 
1831 /**************************************************************************
1832  *
1833  * Kernel netpoll interface
1834  *
1835  *************************************************************************/
1836 
1837 #ifdef CONFIG_NET_POLL_CONTROLLER
1838 
1839 /* Although in the common case interrupts will be disabled, this is not
1840  * guaranteed. However, all our work happens inside the NAPI callback,
1841  * so no locking is required.
1842  */
1843 static void efx_netpoll(struct net_device *net_dev)
1844 {
1845  struct efx_nic *efx = netdev_priv(net_dev);
1846  struct efx_channel *channel;
1847 
1848  efx_for_each_channel(channel, efx)
1849  efx_schedule_channel(channel);
1850 }
1851 
1852 #endif
1853 
1854 /**************************************************************************
1855  *
1856  * Kernel net device interface
1857  *
1858  *************************************************************************/
1859 
1860 /* Context: process, rtnl_lock() held. */
1861 static int efx_net_open(struct net_device *net_dev)
1862 {
1863  struct efx_nic *efx = netdev_priv(net_dev);
1864  int rc;
1865 
1866  netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
1868 
1869  rc = efx_check_disabled(efx);
1870  if (rc)
1871  return rc;
1872  if (efx->phy_mode & PHY_MODE_SPECIAL)
1873  return -EBUSY;
1874  if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1875  return -EIO;
1876 
1877  /* Notify the kernel of the link state polled during driver load,
1878  * before the monitor starts running */
1880 
1881  efx_start_all(efx);
1883  return 0;
1884 }
1885 
1886 /* Context: process, rtnl_lock() held.
1887  * Note that the kernel will ignore our return code; this method
1888  * should really be a void.
1889  */
1890 static int efx_net_stop(struct net_device *net_dev)
1891 {
1892  struct efx_nic *efx = netdev_priv(net_dev);
1893 
1894  netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
1896 
1897  /* Stop the device and flush all the channels */
1898  efx_stop_all(efx);
1899 
1900  return 0;
1901 }
1902 
1903 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1904 static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
1905  struct rtnl_link_stats64 *stats)
1906 {
1907  struct efx_nic *efx = netdev_priv(net_dev);
1908  struct efx_mac_stats *mac_stats = &efx->mac_stats;
1909 
1910  spin_lock_bh(&efx->stats_lock);
1911 
1912  efx->type->update_stats(efx);
1913 
1914  stats->rx_packets = mac_stats->rx_packets;
1915  stats->tx_packets = mac_stats->tx_packets;
1916  stats->rx_bytes = mac_stats->rx_bytes;
1917  stats->tx_bytes = mac_stats->tx_bytes;
1918  stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
1919  stats->multicast = mac_stats->rx_multicast;
1920  stats->collisions = mac_stats->tx_collision;
1921  stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1922  mac_stats->rx_length_error);
1923  stats->rx_crc_errors = mac_stats->rx_bad;
1924  stats->rx_frame_errors = mac_stats->rx_align_error;
1925  stats->rx_fifo_errors = mac_stats->rx_overflow;
1926  stats->rx_missed_errors = mac_stats->rx_missed;
1927  stats->tx_window_errors = mac_stats->tx_late_collision;
1928 
1929  stats->rx_errors = (stats->rx_length_errors +
1930  stats->rx_crc_errors +
1931  stats->rx_frame_errors +
1932  mac_stats->rx_symbol_error);
1933  stats->tx_errors = (stats->tx_window_errors +
1934  mac_stats->tx_bad);
1935 
1936  spin_unlock_bh(&efx->stats_lock);
1937 
1938  return stats;
1939 }
1940 
1941 /* Context: netif_tx_lock held, BHs disabled. */
1942 static void efx_watchdog(struct net_device *net_dev)
1943 {
1944  struct efx_nic *efx = netdev_priv(net_dev);
1945 
1946  netif_err(efx, tx_err, efx->net_dev,
1947  "TX stuck with port_enabled=%d: resetting channels\n",
1948  efx->port_enabled);
1949 
1951 }
1952 
1953 
1954 /* Context: process, rtnl_lock() held. */
1955 static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1956 {
1957  struct efx_nic *efx = netdev_priv(net_dev);
1958  int rc;
1959 
1960  rc = efx_check_disabled(efx);
1961  if (rc)
1962  return rc;
1963  if (new_mtu > EFX_MAX_MTU)
1964  return -EINVAL;
1965 
1966  efx_stop_all(efx);
1967 
1968  netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
1969 
1970  mutex_lock(&efx->mac_lock);
1971  net_dev->mtu = new_mtu;
1972  efx->type->reconfigure_mac(efx);
1973  mutex_unlock(&efx->mac_lock);
1974 
1975  efx_start_all(efx);
1976  return 0;
1977 }
1978 
1979 static int efx_set_mac_address(struct net_device *net_dev, void *data)
1980 {
1981  struct efx_nic *efx = netdev_priv(net_dev);
1982  struct sockaddr *addr = data;
1983  char *new_addr = addr->sa_data;
1984 
1985  if (!is_valid_ether_addr(new_addr)) {
1986  netif_err(efx, drv, efx->net_dev,
1987  "invalid ethernet MAC address requested: %pM\n",
1988  new_addr);
1989  return -EADDRNOTAVAIL;
1990  }
1991 
1992  memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1994 
1995  /* Reconfigure the MAC */
1996  mutex_lock(&efx->mac_lock);
1997  efx->type->reconfigure_mac(efx);
1998  mutex_unlock(&efx->mac_lock);
1999 
2000  return 0;
2001 }
2002 
2003 /* Context: netif_addr_lock held, BHs disabled. */
2004 static void efx_set_rx_mode(struct net_device *net_dev)
2005 {
2006  struct efx_nic *efx = netdev_priv(net_dev);
2007  struct netdev_hw_addr *ha;
2008  union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2009  u32 crc;
2010  int bit;
2011 
2012  efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
2013 
2014  /* Build multicast hash table */
2015  if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
2016  memset(mc_hash, 0xff, sizeof(*mc_hash));
2017  } else {
2018  memset(mc_hash, 0x00, sizeof(*mc_hash));
2019  netdev_for_each_mc_addr(ha, net_dev) {
2020  crc = ether_crc_le(ETH_ALEN, ha->addr);
2021  bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2022  __set_bit_le(bit, mc_hash);
2023  }
2024 
2025  /* Broadcast packets go through the multicast hash filter.
2026  * ether_crc_le() of the broadcast address is 0xbe2612ff
2027  * so we always add bit 0xff to the mask.
2028  */
2029  __set_bit_le(0xff, mc_hash);
2030  }
2031 
2032  if (efx->port_enabled)
2033  queue_work(efx->workqueue, &efx->mac_work);
2034  /* Otherwise efx_start_port() will do this */
2035 }
2036 
2037 static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
2038 {
2039  struct efx_nic *efx = netdev_priv(net_dev);
2040 
2041  /* If disabling RX n-tuple filtering, clear existing filters */
2042  if (net_dev->features & ~data & NETIF_F_NTUPLE)
2044 
2045  return 0;
2046 }
2047 
2048 static const struct net_device_ops efx_netdev_ops = {
2049  .ndo_open = efx_net_open,
2050  .ndo_stop = efx_net_stop,
2051  .ndo_get_stats64 = efx_net_stats,
2052  .ndo_tx_timeout = efx_watchdog,
2053  .ndo_start_xmit = efx_hard_start_xmit,
2054  .ndo_validate_addr = eth_validate_addr,
2055  .ndo_do_ioctl = efx_ioctl,
2056  .ndo_change_mtu = efx_change_mtu,
2057  .ndo_set_mac_address = efx_set_mac_address,
2058  .ndo_set_rx_mode = efx_set_rx_mode,
2059  .ndo_set_features = efx_set_features,
2060 #ifdef CONFIG_SFC_SRIOV
2061  .ndo_set_vf_mac = efx_sriov_set_vf_mac,
2062  .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
2063  .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
2064  .ndo_get_vf_config = efx_sriov_get_vf_config,
2065 #endif
2066 #ifdef CONFIG_NET_POLL_CONTROLLER
2067  .ndo_poll_controller = efx_netpoll,
2068 #endif
2069  .ndo_setup_tc = efx_setup_tc,
2070 #ifdef CONFIG_RFS_ACCEL
2071  .ndo_rx_flow_steer = efx_filter_rfs,
2072 #endif
2073 };
2074 
2075 static void efx_update_name(struct efx_nic *efx)
2076 {
2077  strcpy(efx->name, efx->net_dev->name);
2078  efx_mtd_rename(efx);
2079  efx_set_channel_names(efx);
2080 }
2081 
2082 static int efx_netdev_event(struct notifier_block *this,
2083  unsigned long event, void *ptr)
2084 {
2085  struct net_device *net_dev = ptr;
2086 
2087  if (net_dev->netdev_ops == &efx_netdev_ops &&
2088  event == NETDEV_CHANGENAME)
2089  efx_update_name(netdev_priv(net_dev));
2090 
2091  return NOTIFY_DONE;
2092 }
2093 
2094 static struct notifier_block efx_netdev_notifier = {
2095  .notifier_call = efx_netdev_event,
2096 };
2097 
2098 static ssize_t
2099 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
2100 {
2101  struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2102  return sprintf(buf, "%d\n", efx->phy_type);
2103 }
2104 static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
2105 
2106 static int efx_register_netdev(struct efx_nic *efx)
2107 {
2108  struct net_device *net_dev = efx->net_dev;
2109  struct efx_channel *channel;
2110  int rc;
2111 
2112  net_dev->watchdog_timeo = 5 * HZ;
2113  net_dev->irq = efx->pci_dev->irq;
2114  net_dev->netdev_ops = &efx_netdev_ops;
2115  SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
2116  net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
2117 
2118  rtnl_lock();
2119 
2120  /* Enable resets to be scheduled and check whether any were
2121  * already requested. If so, the NIC is probably hosed so we
2122  * abort.
2123  */
2124  efx->state = STATE_READY;
2125  smp_mb(); /* ensure we change state before checking reset_pending */
2126  if (efx->reset_pending) {
2127  netif_err(efx, probe, efx->net_dev,
2128  "aborting probe due to scheduled reset\n");
2129  rc = -EIO;
2130  goto fail_locked;
2131  }
2132 
2133  rc = dev_alloc_name(net_dev, net_dev->name);
2134  if (rc < 0)
2135  goto fail_locked;
2136  efx_update_name(efx);
2137 
2138  /* Always start with carrier off; PHY events will detect the link */
2139  netif_carrier_off(net_dev);
2140 
2141  rc = register_netdevice(net_dev);
2142  if (rc)
2143  goto fail_locked;
2144 
2145  efx_for_each_channel(channel, efx) {
2146  struct efx_tx_queue *tx_queue;
2147  efx_for_each_channel_tx_queue(tx_queue, channel)
2148  efx_init_tx_queue_core_txq(tx_queue);
2149  }
2150 
2151  rtnl_unlock();
2152 
2153  rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2154  if (rc) {
2155  netif_err(efx, drv, efx->net_dev,
2156  "failed to init net dev attributes\n");
2157  goto fail_registered;
2158  }
2159 
2160  return 0;
2161 
2162 fail_registered:
2163  rtnl_lock();
2164  unregister_netdevice(net_dev);
2165 fail_locked:
2166  efx->state = STATE_UNINIT;
2167  rtnl_unlock();
2168  netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
2169  return rc;
2170 }
2171 
2172 static void efx_unregister_netdev(struct efx_nic *efx)
2173 {
2174  struct efx_channel *channel;
2175  struct efx_tx_queue *tx_queue;
2176 
2177  if (!efx->net_dev)
2178  return;
2179 
2180  BUG_ON(netdev_priv(efx->net_dev) != efx);
2181 
2182  /* Free up any skbs still remaining. This has to happen before
2183  * we try to unregister the netdev as running their destructors
2184  * may be needed to get the device ref. count to 0. */
2185  efx_for_each_channel(channel, efx) {
2186  efx_for_each_channel_tx_queue(tx_queue, channel)
2187  efx_release_tx_buffers(tx_queue);
2188  }
2189 
2190  strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
2191  device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
2192 
2193  rtnl_lock();
2194  unregister_netdevice(efx->net_dev);
2195  efx->state = STATE_UNINIT;
2196  rtnl_unlock();
2197 }
2198 
2199 /**************************************************************************
2200  *
2201  * Device reset and suspend
2202  *
2203  **************************************************************************/
2204 
2205 /* Tears down the entire software state and most of the hardware state
2206  * before reset. */
2208 {
2210 
2211  efx_stop_all(efx);
2212  efx_stop_interrupts(efx, false);
2213 
2214  mutex_lock(&efx->mac_lock);
2215  if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
2216  efx->phy_op->fini(efx);
2217  efx->type->fini(efx);
2218 }
2219 
2220 /* This function will always ensure that the locks acquired in
2221  * efx_reset_down() are released. A failure return code indicates
2222  * that we were unable to reinitialise the hardware, and the
2223  * driver should be disabled. If ok is false, then the rx and tx
2224  * engines are not restarted, pending a RESET_DISABLE. */
2225 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
2226 {
2227  int rc;
2228 
2230 
2231  rc = efx->type->init(efx);
2232  if (rc) {
2233  netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
2234  goto fail;
2235  }
2236 
2237  if (!ok)
2238  goto fail;
2239 
2240  if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
2241  rc = efx->phy_op->init(efx);
2242  if (rc)
2243  goto fail;
2244  if (efx->phy_op->reconfigure(efx))
2245  netif_err(efx, drv, efx->net_dev,
2246  "could not restore PHY settings\n");
2247  }
2248 
2249  efx->type->reconfigure_mac(efx);
2250 
2251  efx_start_interrupts(efx, false);
2252  efx_restore_filters(efx);
2253  efx_sriov_reset(efx);
2254 
2255  mutex_unlock(&efx->mac_lock);
2256 
2257  efx_start_all(efx);
2258 
2259  return 0;
2260 
2261 fail:
2262  efx->port_initialized = false;
2263 
2264  mutex_unlock(&efx->mac_lock);
2265 
2266  return rc;
2267 }
2268 
2269 /* Reset the NIC using the specified method. Note that the reset may
2270  * fail, in which case the card will be left in an unusable state.
2271  *
2272  * Caller must hold the rtnl_lock.
2273  */
2274 int efx_reset(struct efx_nic *efx, enum reset_type method)
2275 {
2276  int rc, rc2;
2277  bool disabled;
2278 
2279  netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
2280  RESET_TYPE(method));
2281 
2283  efx_reset_down(efx, method);
2284 
2285  rc = efx->type->reset(efx, method);
2286  if (rc) {
2287  netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
2288  goto out;
2289  }
2290 
2291  /* Clear flags for the scopes we covered. We assume the NIC and
2292  * driver are now quiescent so that there is no race here.
2293  */
2294  efx->reset_pending &= -(1 << (method + 1));
2295 
2296  /* Reinitialise bus-mastering, which may have been turned off before
2297  * the reset was scheduled. This is still appropriate, even in the
2298  * RESET_TYPE_DISABLE since this driver generally assumes the hardware
2299  * can respond to requests. */
2300  pci_set_master(efx->pci_dev);
2301 
2302 out:
2303  /* Leave device stopped if necessary */
2304  disabled = rc || method == RESET_TYPE_DISABLE;
2305  rc2 = efx_reset_up(efx, method, !disabled);
2306  if (rc2) {
2307  disabled = true;
2308  if (!rc)
2309  rc = rc2;
2310  }
2311 
2312  if (disabled) {
2313  dev_close(efx->net_dev);
2314  netif_err(efx, drv, efx->net_dev, "has been disabled\n");
2315  efx->state = STATE_DISABLED;
2316  } else {
2317  netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
2319  }
2320  return rc;
2321 }
2322 
2323 /* The worker thread exists so that code that cannot sleep can
2324  * schedule a reset for later.
2325  */
2326 static void efx_reset_work(struct work_struct *data)
2327 {
2328  struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
2329  unsigned long pending = ACCESS_ONCE(efx->reset_pending);
2330 
2331  if (!pending)
2332  return;
2333 
2334  rtnl_lock();
2335 
2336  /* We checked the state in efx_schedule_reset() but it may
2337  * have changed by now. Now that we have the RTNL lock,
2338  * it cannot change again.
2339  */
2340  if (efx->state == STATE_READY)
2341  (void)efx_reset(efx, fls(pending) - 1);
2342 
2343  rtnl_unlock();
2344 }
2345 
2346 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
2347 {
2348  enum reset_type method;
2349 
2350  switch (type) {
2351  case RESET_TYPE_INVISIBLE:
2352  case RESET_TYPE_ALL:
2353  case RESET_TYPE_WORLD:
2354  case RESET_TYPE_DISABLE:
2355  method = type;
2356  netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
2357  RESET_TYPE(method));
2358  break;
2359  default:
2360  method = efx->type->map_reset_reason(type);
2361  netif_dbg(efx, drv, efx->net_dev,
2362  "scheduling %s reset for %s\n",
2363  RESET_TYPE(method), RESET_TYPE(type));
2364  break;
2365  }
2366 
2367  set_bit(method, &efx->reset_pending);
2368  smp_mb(); /* ensure we change reset_pending before checking state */
2369 
2370  /* If we're not READY then just leave the flags set as the cue
2371  * to abort probing or reschedule the reset later.
2372  */
2373  if (ACCESS_ONCE(efx->state) != STATE_READY)
2374  return;
2375 
2376  /* efx_process_channel() will no longer read events once a
2377  * reset is scheduled. So switch back to poll'd MCDI completions. */
2378  efx_mcdi_mode_poll(efx);
2379 
2380  queue_work(reset_workqueue, &efx->reset_work);
2381 }
2382 
2383 /**************************************************************************
2384  *
2385  * List of NICs we support
2386  *
2387  **************************************************************************/
2388 
2389 /* PCI device ID table */
2390 static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
2393  .driver_data = (unsigned long) &falcon_a1_nic_type},
2396  .driver_data = (unsigned long) &falcon_b0_nic_type},
2397  {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
2398  .driver_data = (unsigned long) &siena_a0_nic_type},
2399  {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
2400  .driver_data = (unsigned long) &siena_a0_nic_type},
2401  {0} /* end of list */
2402 };
2403 
2404 /**************************************************************************
2405  *
2406  * Dummy PHY/MAC operations
2407  *
2408  * Can be used for some unimplemented operations
2409  * Needed so all function pointers are valid and do not have to be tested
2410  * before use
2411  *
2412  **************************************************************************/
2414 {
2415  return 0;
2416 }
2417 void efx_port_dummy_op_void(struct efx_nic *efx) {}
2418 
2419 static bool efx_port_dummy_op_poll(struct efx_nic *efx)
2420 {
2421  return false;
2422 }
2423 
2424 static const struct efx_phy_operations efx_dummy_phy_operations = {
2425  .init = efx_port_dummy_op_int,
2426  .reconfigure = efx_port_dummy_op_int,
2427  .poll = efx_port_dummy_op_poll,
2428  .fini = efx_port_dummy_op_void,
2429 };
2430 
2431 /**************************************************************************
2432  *
2433  * Data housekeeping
2434  *
2435  **************************************************************************/
2436 
2437 /* This zeroes out and then fills in the invariants in a struct
2438  * efx_nic (including all sub-structures).
2439  */
2440 static int efx_init_struct(struct efx_nic *efx,
2441  struct pci_dev *pci_dev, struct net_device *net_dev)
2442 {
2443  int i;
2444 
2445  /* Initialise common structures */
2446  spin_lock_init(&efx->biu_lock);
2447 #ifdef CONFIG_SFC_MTD
2448  INIT_LIST_HEAD(&efx->mtd_list);
2449 #endif
2450  INIT_WORK(&efx->reset_work, efx_reset_work);
2451  INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2453  efx->pci_dev = pci_dev;
2454  efx->msg_enable = debug;
2455  efx->state = STATE_UNINIT;
2456  strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
2457 
2458  efx->net_dev = net_dev;
2459  spin_lock_init(&efx->stats_lock);
2460  mutex_init(&efx->mac_lock);
2461  efx->phy_op = &efx_dummy_phy_operations;
2462  efx->mdio.dev = net_dev;
2463  INIT_WORK(&efx->mac_work, efx_mac_work);
2465 
2466  for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2467  efx->channel[i] = efx_alloc_channel(efx, i, NULL);
2468  if (!efx->channel[i])
2469  goto fail;
2470  }
2471 
2472  EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2473 
2474  /* Higher numbered interrupt modes are less capable! */
2475  efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2476  interrupt_mode);
2477 
2478  /* Would be good to use the net_dev name, but we're too early */
2479  snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2480  pci_name(pci_dev));
2482  if (!efx->workqueue)
2483  goto fail;
2484 
2485  return 0;
2486 
2487 fail:
2488  efx_fini_struct(efx);
2489  return -ENOMEM;
2490 }
2491 
2492 static void efx_fini_struct(struct efx_nic *efx)
2493 {
2494  int i;
2495 
2496  for (i = 0; i < EFX_MAX_CHANNELS; i++)
2497  kfree(efx->channel[i]);
2498 
2499  if (efx->workqueue) {
2501  efx->workqueue = NULL;
2502  }
2503 }
2504 
2505 /**************************************************************************
2506  *
2507  * PCI interface
2508  *
2509  **************************************************************************/
2510 
2511 /* Main body of final NIC shutdown code
2512  * This is called only at module unload (or hotplug removal).
2513  */
2514 static void efx_pci_remove_main(struct efx_nic *efx)
2515 {
2516  /* Flush reset_work. It can no longer be scheduled since we
2517  * are not READY.
2518  */
2519  BUG_ON(efx->state == STATE_READY);
2521 
2522 #ifdef CONFIG_RFS_ACCEL
2523  free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap);
2524  efx->net_dev->rx_cpu_rmap = NULL;
2525 #endif
2526  efx_stop_interrupts(efx, false);
2528  efx_fini_port(efx);
2529  efx->type->fini(efx);
2530  efx_fini_napi(efx);
2531  efx_remove_all(efx);
2532 }
2533 
2534 /* Final NIC shutdown
2535  * This is called only at module unload (or hotplug removal).
2536  */
2537 static void efx_pci_remove(struct pci_dev *pci_dev)
2538 {
2539  struct efx_nic *efx;
2540 
2541  efx = pci_get_drvdata(pci_dev);
2542  if (!efx)
2543  return;
2544 
2545  /* Mark the NIC as fini, then stop the interface */
2546  rtnl_lock();
2547  dev_close(efx->net_dev);
2548  efx_stop_interrupts(efx, false);
2549  rtnl_unlock();
2550 
2551  efx_sriov_fini(efx);
2552  efx_unregister_netdev(efx);
2553 
2554  efx_mtd_remove(efx);
2555 
2556  efx_pci_remove_main(efx);
2557 
2558  efx_fini_io(efx);
2559  netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
2560 
2561  efx_fini_struct(efx);
2562  pci_set_drvdata(pci_dev, NULL);
2563  free_netdev(efx->net_dev);
2564 };
2565 
2566 /* NIC VPD information
2567  * Called during probe to display the part number of the
2568  * installed NIC. VPD is potentially very large but this should
2569  * always appear within the first 512 bytes.
2570  */
2571 #define SFC_VPD_LEN 512
2572 static void efx_print_product_vpd(struct efx_nic *efx)
2573 {
2574  struct pci_dev *dev = efx->pci_dev;
2575  char vpd_data[SFC_VPD_LEN];
2576  ssize_t vpd_size;
2577  int i, j;
2578 
2579  /* Get the vpd data from the device */
2580  vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
2581  if (vpd_size <= 0) {
2582  netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
2583  return;
2584  }
2585 
2586  /* Get the Read only section */
2587  i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
2588  if (i < 0) {
2589  netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
2590  return;
2591  }
2592 
2593  j = pci_vpd_lrdt_size(&vpd_data[i]);
2594  i += PCI_VPD_LRDT_TAG_SIZE;
2595  if (i + j > vpd_size)
2596  j = vpd_size - i;
2597 
2598  /* Get the Part number */
2599  i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
2600  if (i < 0) {
2601  netif_err(efx, drv, efx->net_dev, "Part number not found\n");
2602  return;
2603  }
2604 
2605  j = pci_vpd_info_field_size(&vpd_data[i]);
2607  if (i + j > vpd_size) {
2608  netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
2609  return;
2610  }
2611 
2612  netif_info(efx, drv, efx->net_dev,
2613  "Part Number : %.*s\n", j, &vpd_data[i]);
2614 }
2615 
2616 
2617 /* Main body of NIC initialisation
2618  * This is called at module load (or hotplug insertion, theoretically).
2619  */
2620 static int efx_pci_probe_main(struct efx_nic *efx)
2621 {
2622  int rc;
2623 
2624  /* Do start-of-day initialisation */
2625  rc = efx_probe_all(efx);
2626  if (rc)
2627  goto fail1;
2628 
2629  efx_init_napi(efx);
2630 
2631  rc = efx->type->init(efx);
2632  if (rc) {
2633  netif_err(efx, probe, efx->net_dev,
2634  "failed to initialise NIC\n");
2635  goto fail3;
2636  }
2637 
2638  rc = efx_init_port(efx);
2639  if (rc) {
2640  netif_err(efx, probe, efx->net_dev,
2641  "failed to initialise port\n");
2642  goto fail4;
2643  }
2644 
2645  rc = efx_nic_init_interrupt(efx);
2646  if (rc)
2647  goto fail5;
2648  efx_start_interrupts(efx, false);
2649 
2650  return 0;
2651 
2652  fail5:
2653  efx_fini_port(efx);
2654  fail4:
2655  efx->type->fini(efx);
2656  fail3:
2657  efx_fini_napi(efx);
2658  efx_remove_all(efx);
2659  fail1:
2660  return rc;
2661 }
2662 
2663 /* NIC initialisation
2664  *
2665  * This is called at module load (or hotplug insertion,
2666  * theoretically). It sets up PCI mappings, resets the NIC,
2667  * sets up and registers the network devices with the kernel and hooks
2668  * the interrupt service routine. It does not prepare the device for
2669  * transmission; this is left to the first time one of the network
2670  * interfaces is brought up (i.e. efx_net_open).
2671  */
2672 static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2673  const struct pci_device_id *entry)
2674 {
2675  struct net_device *net_dev;
2676  struct efx_nic *efx;
2677  int rc;
2678 
2679  /* Allocate and initialise a struct net_device and struct efx_nic */
2680  net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
2682  if (!net_dev)
2683  return -ENOMEM;
2684  efx = netdev_priv(net_dev);
2685  efx->type = (const struct efx_nic_type *) entry->driver_data;
2686  net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
2688  NETIF_F_RXCSUM);
2689  if (efx->type->offload_features & NETIF_F_V6_CSUM)
2690  net_dev->features |= NETIF_F_TSO6;
2691  /* Mask for features that also apply to VLAN devices */
2692  net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2694  NETIF_F_RXCSUM);
2695  /* All offloads can be toggled */
2696  net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
2697  pci_set_drvdata(pci_dev, efx);
2698  SET_NETDEV_DEV(net_dev, &pci_dev->dev);
2699  rc = efx_init_struct(efx, pci_dev, net_dev);
2700  if (rc)
2701  goto fail1;
2702 
2703  netif_info(efx, probe, efx->net_dev,
2704  "Solarflare NIC detected\n");
2705 
2706  efx_print_product_vpd(efx);
2707 
2708  /* Set up basic I/O (BAR mappings etc) */
2709  rc = efx_init_io(efx);
2710  if (rc)
2711  goto fail2;
2712 
2713  rc = efx_pci_probe_main(efx);
2714  if (rc)
2715  goto fail3;
2716 
2717  rc = efx_register_netdev(efx);
2718  if (rc)
2719  goto fail4;
2720 
2721  rc = efx_sriov_init(efx);
2722  if (rc)
2723  netif_err(efx, probe, efx->net_dev,
2724  "SR-IOV can't be enabled rc %d\n", rc);
2725 
2726  netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
2727 
2728  /* Try to create MTDs, but allow this to fail */
2729  rtnl_lock();
2730  rc = efx_mtd_probe(efx);
2731  rtnl_unlock();
2732  if (rc)
2733  netif_warn(efx, probe, efx->net_dev,
2734  "failed to create MTDs (%d)\n", rc);
2735 
2736  return 0;
2737 
2738  fail4:
2739  efx_pci_remove_main(efx);
2740  fail3:
2741  efx_fini_io(efx);
2742  fail2:
2743  efx_fini_struct(efx);
2744  fail1:
2745  pci_set_drvdata(pci_dev, NULL);
2746  WARN_ON(rc > 0);
2747  netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
2748  free_netdev(net_dev);
2749  return rc;
2750 }
2751 
2752 static int efx_pm_freeze(struct device *dev)
2753 {
2754  struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2755 
2756  rtnl_lock();
2757 
2758  if (efx->state != STATE_DISABLED) {
2759  efx->state = STATE_UNINIT;
2760 
2762 
2763  efx_stop_all(efx);
2764  efx_stop_interrupts(efx, false);
2765  }
2766 
2767  rtnl_unlock();
2768 
2769  return 0;
2770 }
2771 
2772 static int efx_pm_thaw(struct device *dev)
2773 {
2774  struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2775 
2776  rtnl_lock();
2777 
2778  if (efx->state != STATE_DISABLED) {
2779  efx_start_interrupts(efx, false);
2780 
2781  mutex_lock(&efx->mac_lock);
2782  efx->phy_op->reconfigure(efx);
2783  mutex_unlock(&efx->mac_lock);
2784 
2785  efx_start_all(efx);
2786 
2788 
2789  efx->state = STATE_READY;
2790 
2791  efx->type->resume_wol(efx);
2792  }
2793 
2794  rtnl_unlock();
2795 
2796  /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
2797  queue_work(reset_workqueue, &efx->reset_work);
2798 
2799  return 0;
2800 }
2801 
2802 static int efx_pm_poweroff(struct device *dev)
2803 {
2804  struct pci_dev *pci_dev = to_pci_dev(dev);
2805  struct efx_nic *efx = pci_get_drvdata(pci_dev);
2806 
2807  efx->type->fini(efx);
2808 
2809  efx->reset_pending = 0;
2810 
2811  pci_save_state(pci_dev);
2812  return pci_set_power_state(pci_dev, PCI_D3hot);
2813 }
2814 
2815 /* Used for both resume and restore */
2816 static int efx_pm_resume(struct device *dev)
2817 {
2818  struct pci_dev *pci_dev = to_pci_dev(dev);
2819  struct efx_nic *efx = pci_get_drvdata(pci_dev);
2820  int rc;
2821 
2822  rc = pci_set_power_state(pci_dev, PCI_D0);
2823  if (rc)
2824  return rc;
2825  pci_restore_state(pci_dev);
2826  rc = pci_enable_device(pci_dev);
2827  if (rc)
2828  return rc;
2829  pci_set_master(efx->pci_dev);
2830  rc = efx->type->reset(efx, RESET_TYPE_ALL);
2831  if (rc)
2832  return rc;
2833  rc = efx->type->init(efx);
2834  if (rc)
2835  return rc;
2836  efx_pm_thaw(dev);
2837  return 0;
2838 }
2839 
2840 static int efx_pm_suspend(struct device *dev)
2841 {
2842  int rc;
2843 
2844  efx_pm_freeze(dev);
2845  rc = efx_pm_poweroff(dev);
2846  if (rc)
2847  efx_pm_resume(dev);
2848  return rc;
2849 }
2850 
2851 static const struct dev_pm_ops efx_pm_ops = {
2852  .suspend = efx_pm_suspend,
2853  .resume = efx_pm_resume,
2854  .freeze = efx_pm_freeze,
2855  .thaw = efx_pm_thaw,
2856  .poweroff = efx_pm_poweroff,
2857  .restore = efx_pm_resume,
2858 };
2859 
2860 static struct pci_driver efx_pci_driver = {
2861  .name = KBUILD_MODNAME,
2862  .id_table = efx_pci_table,
2863  .probe = efx_pci_probe,
2864  .remove = efx_pci_remove,
2865  .driver.pm = &efx_pm_ops,
2866 };
2867 
2868 /**************************************************************************
2869  *
2870  * Kernel module interface
2871  *
2872  *************************************************************************/
2873 
2874 module_param(interrupt_mode, uint, 0444);
2875 MODULE_PARM_DESC(interrupt_mode,
2876  "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2877 
2878 static int __init efx_init_module(void)
2879 {
2880  int rc;
2881 
2882  printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2883 
2884  rc = register_netdevice_notifier(&efx_netdev_notifier);
2885  if (rc)
2886  goto err_notifier;
2887 
2888  rc = efx_init_sriov();
2889  if (rc)
2890  goto err_sriov;
2891 
2892  reset_workqueue = create_singlethread_workqueue("sfc_reset");
2893  if (!reset_workqueue) {
2894  rc = -ENOMEM;
2895  goto err_reset;
2896  }
2897 
2898  rc = pci_register_driver(&efx_pci_driver);
2899  if (rc < 0)
2900  goto err_pci;
2901 
2902  return 0;
2903 
2904  err_pci:
2905  destroy_workqueue(reset_workqueue);
2906  err_reset:
2907  efx_fini_sriov();
2908  err_sriov:
2909  unregister_netdevice_notifier(&efx_netdev_notifier);
2910  err_notifier:
2911  return rc;
2912 }
2913 
2914 static void __exit efx_exit_module(void)
2915 {
2916  printk(KERN_INFO "Solarflare NET driver unloading\n");
2917 
2918  pci_unregister_driver(&efx_pci_driver);
2919  destroy_workqueue(reset_workqueue);
2920  efx_fini_sriov();
2921  unregister_netdevice_notifier(&efx_netdev_notifier);
2922 
2923 }
2924 
2925 module_init(efx_init_module);
2926 module_exit(efx_exit_module);
2927 
2928 MODULE_AUTHOR("Solarflare Communications and "
2929  "Michael Brown <[email protected]>");
2930 MODULE_DESCRIPTION("Solarflare Communications network driver");
2931 MODULE_LICENSE("GPL");
2932 MODULE_DEVICE_TABLE(pci, efx_pci_table);