Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hpsa.c
Go to the documentation of this file.
1 /*
2  * Disk Array driver for HP Smart Array SAS controllers
3  * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; version 2 of the License.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12  * NON INFRINGEMENT. See the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17  *
18  * Questions/Comments/Bugfixes to [email protected]
19  *
20  */
21 
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/pci-aspm.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/fs.h>
31 #include <linux/timer.h>
32 #include <linux/seq_file.h>
33 #include <linux/init.h>
34 #include <linux/spinlock.h>
35 #include <linux/compat.h>
36 #include <linux/blktrace_api.h>
37 #include <linux/uaccess.h>
38 #include <linux/io.h>
39 #include <linux/dma-mapping.h>
40 #include <linux/completion.h>
41 #include <linux/moduleparam.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_device.h>
45 #include <scsi/scsi_host.h>
46 #include <scsi/scsi_tcq.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/kthread.h>
52 #include <linux/jiffies.h>
53 #include "hpsa_cmd.h"
54 #include "hpsa.h"
55 
56 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
57 #define HPSA_DRIVER_VERSION "2.0.2-1"
58 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
59 #define HPSA "hpsa"
60 
61 /* How long to wait (in milliseconds) for board to go into simple mode */
62 #define MAX_CONFIG_WAIT 30000
63 #define MAX_IOCTL_CONFIG_WAIT 1000
64 
65 /*define how many times we will try a command because of bus resets */
66 #define MAX_CMD_RETRIES 3
67 
68 /* Embedded module documentation macros - see modules.h */
69 MODULE_AUTHOR("Hewlett-Packard Company");
70 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
72 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
74 MODULE_LICENSE("GPL");
75 
76 static int hpsa_allow_any;
77 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
78 MODULE_PARM_DESC(hpsa_allow_any,
79  "Allow hpsa driver to access unknown HP Smart Array hardware");
80 static int hpsa_simple_mode;
81 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
82 MODULE_PARM_DESC(hpsa_simple_mode,
83  "Use 'simple mode' rather than 'performant mode'");
84 
85 /* define the PCI info for the cards we can control */
86 static const struct pci_device_id hpsa_pci_device_id[] = {
87  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
88  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
89  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
90  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
91  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
92  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
93  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
94  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
95  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3350},
96  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3351},
97  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3352},
98  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3353},
99  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3354},
100  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3355},
101  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x3356},
102  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1920},
103  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1921},
104  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1922},
105  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1923},
106  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1924},
107  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1925},
108  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1926},
109  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSH, 0x103C, 0x1928},
110  {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSF, 0x103C, 0x334d},
112  PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
113  {0,}
114 };
115 
116 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
117 
118 /* board_id = Subsystem Device ID & Vendor ID
119  * product = Marketing Name for the board
120  * access = Address of the struct of function pointers
121  */
122 static struct board_type products[] = {
123  {0x3241103C, "Smart Array P212", &SA5_access},
124  {0x3243103C, "Smart Array P410", &SA5_access},
125  {0x3245103C, "Smart Array P410i", &SA5_access},
126  {0x3247103C, "Smart Array P411", &SA5_access},
127  {0x3249103C, "Smart Array P812", &SA5_access},
128  {0x324a103C, "Smart Array P712m", &SA5_access},
129  {0x324b103C, "Smart Array P711m", &SA5_access},
130  {0x3350103C, "Smart Array P222", &SA5_access},
131  {0x3351103C, "Smart Array P420", &SA5_access},
132  {0x3352103C, "Smart Array P421", &SA5_access},
133  {0x3353103C, "Smart Array P822", &SA5_access},
134  {0x3354103C, "Smart Array P420i", &SA5_access},
135  {0x3355103C, "Smart Array P220i", &SA5_access},
136  {0x3356103C, "Smart Array P721m", &SA5_access},
137  {0x1920103C, "Smart Array", &SA5_access},
138  {0x1921103C, "Smart Array", &SA5_access},
139  {0x1922103C, "Smart Array", &SA5_access},
140  {0x1923103C, "Smart Array", &SA5_access},
141  {0x1924103C, "Smart Array", &SA5_access},
142  {0x1925103C, "Smart Array", &SA5_access},
143  {0x1926103C, "Smart Array", &SA5_access},
144  {0x1928103C, "Smart Array", &SA5_access},
145  {0x334d103C, "Smart Array P822se", &SA5_access},
146  {0xFFFF103C, "Unknown Smart Array", &SA5_access},
147 };
148 
149 static int number_of_controllers;
150 
151 static struct list_head hpsa_ctlr_list = LIST_HEAD_INIT(hpsa_ctlr_list);
152 static spinlock_t lockup_detector_lock;
153 static struct task_struct *hpsa_lockup_detector;
154 
155 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
156 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
157 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
158 static void start_io(struct ctlr_info *h);
159 
160 #ifdef CONFIG_COMPAT
161 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
162 #endif
163 
164 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
165 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
166 static struct CommandList *cmd_alloc(struct ctlr_info *h);
167 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
168 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
169  void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
170  int cmd_type);
171 
172 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
173 static void hpsa_scan_start(struct Scsi_Host *);
174 static int hpsa_scan_finished(struct Scsi_Host *sh,
175  unsigned long elapsed_time);
176 static int hpsa_change_queue_depth(struct scsi_device *sdev,
177  int qdepth, int reason);
178 
179 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
180 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
181 static int hpsa_slave_alloc(struct scsi_device *sdev);
182 static void hpsa_slave_destroy(struct scsi_device *sdev);
183 
184 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
185 static int check_for_unit_attention(struct ctlr_info *h,
186  struct CommandList *c);
187 static void check_ioctl_unit_attention(struct ctlr_info *h,
188  struct CommandList *c);
189 /* performant mode helper functions */
190 static void calc_bucket_map(int *bucket, int num_buckets,
191  int nsgs, int *bucket_map);
192 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
193 static inline u32 next_command(struct ctlr_info *h, u8 q);
194 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
195  void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
196  u64 *cfg_offset);
197 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
198  unsigned long *memory_bar);
199 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
200 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
201  void __iomem *vaddr, int wait_for_ready);
202 static inline void finish_cmd(struct CommandList *c);
203 #define BOARD_NOT_READY 0
204 #define BOARD_READY 1
205 
206 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
207 {
208  unsigned long *priv = shost_priv(sdev->host);
209  return (struct ctlr_info *) *priv;
210 }
211 
212 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
213 {
214  unsigned long *priv = shost_priv(sh);
215  return (struct ctlr_info *) *priv;
216 }
217 
218 static int check_for_unit_attention(struct ctlr_info *h,
219  struct CommandList *c)
220 {
221  if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
222  return 0;
223 
224  switch (c->err_info->SenseInfo[12]) {
225  case STATE_CHANGED:
226  dev_warn(&h->pdev->dev, HPSA "%d: a state change "
227  "detected, command retried\n", h->ctlr);
228  break;
229  case LUN_FAILED:
230  dev_warn(&h->pdev->dev, HPSA "%d: LUN failure "
231  "detected, action required\n", h->ctlr);
232  break;
233  case REPORT_LUNS_CHANGED:
234  dev_warn(&h->pdev->dev, HPSA "%d: report LUN data "
235  "changed, action required\n", h->ctlr);
236  /*
237  * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
238  * target (array) devices.
239  */
240  break;
241  case POWER_OR_RESET:
242  dev_warn(&h->pdev->dev, HPSA "%d: a power on "
243  "or device reset detected\n", h->ctlr);
244  break;
246  dev_warn(&h->pdev->dev, HPSA "%d: unit attention "
247  "cleared by another initiator\n", h->ctlr);
248  break;
249  default:
250  dev_warn(&h->pdev->dev, HPSA "%d: unknown "
251  "unit attention detected\n", h->ctlr);
252  break;
253  }
254  return 1;
255 }
256 
257 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
258 {
259  if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
260  (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
261  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
262  return 0;
263  dev_warn(&h->pdev->dev, HPSA "device busy");
264  return 1;
265 }
266 
267 static ssize_t host_store_rescan(struct device *dev,
268  struct device_attribute *attr,
269  const char *buf, size_t count)
270 {
271  struct ctlr_info *h;
272  struct Scsi_Host *shost = class_to_shost(dev);
273  h = shost_to_hba(shost);
274  hpsa_scan_start(h->scsi_host);
275  return count;
276 }
277 
278 static ssize_t host_show_firmware_revision(struct device *dev,
279  struct device_attribute *attr, char *buf)
280 {
281  struct ctlr_info *h;
282  struct Scsi_Host *shost = class_to_shost(dev);
283  unsigned char *fwrev;
284 
285  h = shost_to_hba(shost);
286  if (!h->hba_inquiry_data)
287  return 0;
288  fwrev = &h->hba_inquiry_data[32];
289  return snprintf(buf, 20, "%c%c%c%c\n",
290  fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
291 }
292 
293 static ssize_t host_show_commands_outstanding(struct device *dev,
294  struct device_attribute *attr, char *buf)
295 {
296  struct Scsi_Host *shost = class_to_shost(dev);
297  struct ctlr_info *h = shost_to_hba(shost);
298 
299  return snprintf(buf, 20, "%d\n", h->commands_outstanding);
300 }
301 
302 static ssize_t host_show_transport_mode(struct device *dev,
303  struct device_attribute *attr, char *buf)
304 {
305  struct ctlr_info *h;
306  struct Scsi_Host *shost = class_to_shost(dev);
307 
308  h = shost_to_hba(shost);
309  return snprintf(buf, 20, "%s\n",
311  "performant" : "simple");
312 }
313 
314 /* List of controllers which cannot be hard reset on kexec with reset_devices */
315 static u32 unresettable_controller[] = {
316  0x324a103C, /* Smart Array P712m */
317  0x324b103C, /* SmartArray P711m */
318  0x3223103C, /* Smart Array P800 */
319  0x3234103C, /* Smart Array P400 */
320  0x3235103C, /* Smart Array P400i */
321  0x3211103C, /* Smart Array E200i */
322  0x3212103C, /* Smart Array E200 */
323  0x3213103C, /* Smart Array E200i */
324  0x3214103C, /* Smart Array E200i */
325  0x3215103C, /* Smart Array E200i */
326  0x3237103C, /* Smart Array E500 */
327  0x323D103C, /* Smart Array P700m */
328  0x40800E11, /* Smart Array 5i */
329  0x409C0E11, /* Smart Array 6400 */
330  0x409D0E11, /* Smart Array 6400 EM */
331  0x40700E11, /* Smart Array 5300 */
332  0x40820E11, /* Smart Array 532 */
333  0x40830E11, /* Smart Array 5312 */
334  0x409A0E11, /* Smart Array 641 */
335  0x409B0E11, /* Smart Array 642 */
336  0x40910E11, /* Smart Array 6i */
337 };
338 
339 /* List of controllers which cannot even be soft reset */
340 static u32 soft_unresettable_controller[] = {
341  0x40800E11, /* Smart Array 5i */
342  0x40700E11, /* Smart Array 5300 */
343  0x40820E11, /* Smart Array 532 */
344  0x40830E11, /* Smart Array 5312 */
345  0x409A0E11, /* Smart Array 641 */
346  0x409B0E11, /* Smart Array 642 */
347  0x40910E11, /* Smart Array 6i */
348  /* Exclude 640x boards. These are two pci devices in one slot
349  * which share a battery backed cache module. One controls the
350  * cache, the other accesses the cache through the one that controls
351  * it. If we reset the one controlling the cache, the other will
352  * likely not be happy. Just forbid resetting this conjoined mess.
353  * The 640x isn't really supported by hpsa anyway.
354  */
355  0x409C0E11, /* Smart Array 6400 */
356  0x409D0E11, /* Smart Array 6400 EM */
357 };
358 
359 static int ctlr_is_hard_resettable(u32 board_id)
360 {
361  int i;
362 
363  for (i = 0; i < ARRAY_SIZE(unresettable_controller); i++)
364  if (unresettable_controller[i] == board_id)
365  return 0;
366  return 1;
367 }
368 
369 static int ctlr_is_soft_resettable(u32 board_id)
370 {
371  int i;
372 
373  for (i = 0; i < ARRAY_SIZE(soft_unresettable_controller); i++)
374  if (soft_unresettable_controller[i] == board_id)
375  return 0;
376  return 1;
377 }
378 
379 static int ctlr_is_resettable(u32 board_id)
380 {
381  return ctlr_is_hard_resettable(board_id) ||
382  ctlr_is_soft_resettable(board_id);
383 }
384 
385 static ssize_t host_show_resettable(struct device *dev,
386  struct device_attribute *attr, char *buf)
387 {
388  struct ctlr_info *h;
389  struct Scsi_Host *shost = class_to_shost(dev);
390 
391  h = shost_to_hba(shost);
392  return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
393 }
394 
395 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
396 {
397  return (scsi3addr[3] & 0xC0) == 0x40;
398 }
399 
400 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
401  "1(ADM)", "UNKNOWN"
402 };
403 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
404 
405 static ssize_t raid_level_show(struct device *dev,
406  struct device_attribute *attr, char *buf)
407 {
408  ssize_t l = 0;
409  unsigned char rlevel;
410  struct ctlr_info *h;
411  struct scsi_device *sdev;
412  struct hpsa_scsi_dev_t *hdev;
413  unsigned long flags;
414 
415  sdev = to_scsi_device(dev);
416  h = sdev_to_hba(sdev);
417  spin_lock_irqsave(&h->lock, flags);
418  hdev = sdev->hostdata;
419  if (!hdev) {
420  spin_unlock_irqrestore(&h->lock, flags);
421  return -ENODEV;
422  }
423 
424  /* Is this even a logical drive? */
425  if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
426  spin_unlock_irqrestore(&h->lock, flags);
427  l = snprintf(buf, PAGE_SIZE, "N/A\n");
428  return l;
429  }
430 
431  rlevel = hdev->raid_level;
432  spin_unlock_irqrestore(&h->lock, flags);
433  if (rlevel > RAID_UNKNOWN)
434  rlevel = RAID_UNKNOWN;
435  l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
436  return l;
437 }
438 
439 static ssize_t lunid_show(struct device *dev,
440  struct device_attribute *attr, char *buf)
441 {
442  struct ctlr_info *h;
443  struct scsi_device *sdev;
444  struct hpsa_scsi_dev_t *hdev;
445  unsigned long flags;
446  unsigned char lunid[8];
447 
448  sdev = to_scsi_device(dev);
449  h = sdev_to_hba(sdev);
450  spin_lock_irqsave(&h->lock, flags);
451  hdev = sdev->hostdata;
452  if (!hdev) {
453  spin_unlock_irqrestore(&h->lock, flags);
454  return -ENODEV;
455  }
456  memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
457  spin_unlock_irqrestore(&h->lock, flags);
458  return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
459  lunid[0], lunid[1], lunid[2], lunid[3],
460  lunid[4], lunid[5], lunid[6], lunid[7]);
461 }
462 
463 static ssize_t unique_id_show(struct device *dev,
464  struct device_attribute *attr, char *buf)
465 {
466  struct ctlr_info *h;
467  struct scsi_device *sdev;
468  struct hpsa_scsi_dev_t *hdev;
469  unsigned long flags;
470  unsigned char sn[16];
471 
472  sdev = to_scsi_device(dev);
473  h = sdev_to_hba(sdev);
474  spin_lock_irqsave(&h->lock, flags);
475  hdev = sdev->hostdata;
476  if (!hdev) {
477  spin_unlock_irqrestore(&h->lock, flags);
478  return -ENODEV;
479  }
480  memcpy(sn, hdev->device_id, sizeof(sn));
481  spin_unlock_irqrestore(&h->lock, flags);
482  return snprintf(buf, 16 * 2 + 2,
483  "%02X%02X%02X%02X%02X%02X%02X%02X"
484  "%02X%02X%02X%02X%02X%02X%02X%02X\n",
485  sn[0], sn[1], sn[2], sn[3],
486  sn[4], sn[5], sn[6], sn[7],
487  sn[8], sn[9], sn[10], sn[11],
488  sn[12], sn[13], sn[14], sn[15]);
489 }
490 
491 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
492 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
493 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
494 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
496  host_show_firmware_revision, NULL);
497 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
498  host_show_commands_outstanding, NULL);
499 static DEVICE_ATTR(transport_mode, S_IRUGO,
500  host_show_transport_mode, NULL);
501 static DEVICE_ATTR(resettable, S_IRUGO,
502  host_show_resettable, NULL);
503 
504 static struct device_attribute *hpsa_sdev_attrs[] = {
505  &dev_attr_raid_level,
506  &dev_attr_lunid,
507  &dev_attr_unique_id,
508  NULL,
509 };
510 
511 static struct device_attribute *hpsa_shost_attrs[] = {
512  &dev_attr_rescan,
513  &dev_attr_firmware_revision,
514  &dev_attr_commands_outstanding,
515  &dev_attr_transport_mode,
516  &dev_attr_resettable,
517  NULL,
518 };
519 
520 static struct scsi_host_template hpsa_driver_template = {
521  .module = THIS_MODULE,
522  .name = HPSA,
523  .proc_name = HPSA,
524  .queuecommand = hpsa_scsi_queue_command,
525  .scan_start = hpsa_scan_start,
526  .scan_finished = hpsa_scan_finished,
527  .change_queue_depth = hpsa_change_queue_depth,
528  .this_id = -1,
529  .use_clustering = ENABLE_CLUSTERING,
530  .eh_abort_handler = hpsa_eh_abort_handler,
531  .eh_device_reset_handler = hpsa_eh_device_reset_handler,
532  .ioctl = hpsa_ioctl,
533  .slave_alloc = hpsa_slave_alloc,
534  .slave_destroy = hpsa_slave_destroy,
535 #ifdef CONFIG_COMPAT
536  .compat_ioctl = hpsa_compat_ioctl,
537 #endif
538  .sdev_attrs = hpsa_sdev_attrs,
539  .shost_attrs = hpsa_shost_attrs,
540  .max_sectors = 8192,
541 };
542 
543 
544 /* Enqueuing and dequeuing functions for cmdlists. */
545 static inline void addQ(struct list_head *list, struct CommandList *c)
546 {
547  list_add_tail(&c->list, list);
548 }
549 
550 static inline u32 next_command(struct ctlr_info *h, u8 q)
551 {
552  u32 a;
553  struct reply_pool *rq = &h->reply_queue[q];
554  unsigned long flags;
555 
557  return h->access.command_completed(h, q);
558 
559  if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
560  a = rq->head[rq->current_entry];
561  rq->current_entry++;
562  spin_lock_irqsave(&h->lock, flags);
564  spin_unlock_irqrestore(&h->lock, flags);
565  } else {
566  a = FIFO_EMPTY;
567  }
568  /* Check for wraparound */
569  if (rq->current_entry == h->max_commands) {
570  rq->current_entry = 0;
571  rq->wraparound ^= 1;
572  }
573  return a;
574 }
575 
576 /* set_performant_mode: Modify the tag for cciss performant
577  * set bit 0 for pull model, bits 3-1 for block fetch
578  * register number
579  */
580 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
581 {
583  c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
584  if (likely(h->msix_vector))
585  c->Header.ReplyQueue =
587  }
588 }
589 
590 static int is_firmware_flash_cmd(u8 *cdb)
591 {
592  return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
593 }
594 
595 /*
596  * During firmware flash, the heartbeat register may not update as frequently
597  * as it should. So we dial down lockup detection during firmware flash. and
598  * dial it back up when firmware flash completes.
599  */
600 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
601 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
602 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
603  struct CommandList *c)
604 {
605  if (!is_firmware_flash_cmd(c->Request.CDB))
606  return;
609 }
610 
611 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
612  struct CommandList *c)
613 {
614  if (is_firmware_flash_cmd(c->Request.CDB) &&
617 }
618 
619 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
620  struct CommandList *c)
621 {
622  unsigned long flags;
623 
624  set_performant_mode(h, c);
625  dial_down_lockup_detection_during_fw_flash(h, c);
626  spin_lock_irqsave(&h->lock, flags);
627  addQ(&h->reqQ, c);
628  h->Qdepth++;
629  spin_unlock_irqrestore(&h->lock, flags);
630  start_io(h);
631 }
632 
633 static inline void removeQ(struct CommandList *c)
634 {
635  if (WARN_ON(list_empty(&c->list)))
636  return;
637  list_del_init(&c->list);
638 }
639 
640 static inline int is_hba_lunid(unsigned char scsi3addr[])
641 {
642  return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
643 }
644 
645 static inline int is_scsi_rev_5(struct ctlr_info *h)
646 {
647  if (!h->hba_inquiry_data)
648  return 0;
649  if ((h->hba_inquiry_data[2] & 0x07) == 5)
650  return 1;
651  return 0;
652 }
653 
654 static int hpsa_find_target_lun(struct ctlr_info *h,
655  unsigned char scsi3addr[], int bus, int *target, int *lun)
656 {
657  /* finds an unused bus, target, lun for a new physical device
658  * assumes h->devlock is held
659  */
660  int i, found = 0;
661  DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
662 
663  bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
664 
665  for (i = 0; i < h->ndevices; i++) {
666  if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
667  __set_bit(h->dev[i]->target, lun_taken);
668  }
669 
670  i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
671  if (i < HPSA_MAX_DEVICES) {
672  /* *bus = 1; */
673  *target = i;
674  *lun = 0;
675  found = 1;
676  }
677  return !found;
678 }
679 
680 /* Add an entry into h->dev[] array. */
681 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
682  struct hpsa_scsi_dev_t *device,
683  struct hpsa_scsi_dev_t *added[], int *nadded)
684 {
685  /* assumes h->devlock is held */
686  int n = h->ndevices;
687  int i;
688  unsigned char addr1[8], addr2[8];
689  struct hpsa_scsi_dev_t *sd;
690 
691  if (n >= HPSA_MAX_DEVICES) {
692  dev_err(&h->pdev->dev, "too many devices, some will be "
693  "inaccessible.\n");
694  return -1;
695  }
696 
697  /* physical devices do not have lun or target assigned until now. */
698  if (device->lun != -1)
699  /* Logical device, lun is already assigned. */
700  goto lun_assigned;
701 
702  /* If this device a non-zero lun of a multi-lun device
703  * byte 4 of the 8-byte LUN addr will contain the logical
704  * unit no, zero otherise.
705  */
706  if (device->scsi3addr[4] == 0) {
707  /* This is not a non-zero lun of a multi-lun device */
708  if (hpsa_find_target_lun(h, device->scsi3addr,
709  device->bus, &device->target, &device->lun) != 0)
710  return -1;
711  goto lun_assigned;
712  }
713 
714  /* This is a non-zero lun of a multi-lun device.
715  * Search through our list and find the device which
716  * has the same 8 byte LUN address, excepting byte 4.
717  * Assign the same bus and target for this new LUN.
718  * Use the logical unit number from the firmware.
719  */
720  memcpy(addr1, device->scsi3addr, 8);
721  addr1[4] = 0;
722  for (i = 0; i < n; i++) {
723  sd = h->dev[i];
724  memcpy(addr2, sd->scsi3addr, 8);
725  addr2[4] = 0;
726  /* differ only in byte 4? */
727  if (memcmp(addr1, addr2, 8) == 0) {
728  device->bus = sd->bus;
729  device->target = sd->target;
730  device->lun = device->scsi3addr[4];
731  break;
732  }
733  }
734  if (device->lun == -1) {
735  dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
736  " suspect firmware bug or unsupported hardware "
737  "configuration.\n");
738  return -1;
739  }
740 
741 lun_assigned:
742 
743  h->dev[n] = device;
744  h->ndevices++;
745  added[*nadded] = device;
746  (*nadded)++;
747 
748  /* initially, (before registering with scsi layer) we don't
749  * know our hostno and we don't want to print anything first
750  * time anyway (the scsi layer's inquiries will show that info)
751  */
752  /* if (hostno != -1) */
753  dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
754  scsi_device_type(device->devtype), hostno,
755  device->bus, device->target, device->lun);
756  return 0;
757 }
758 
759 /* Update an entry in h->dev[] array. */
760 static void hpsa_scsi_update_entry(struct ctlr_info *h, int hostno,
761  int entry, struct hpsa_scsi_dev_t *new_entry)
762 {
763  /* assumes h->devlock is held */
765 
766  /* Raid level changed. */
767  h->dev[entry]->raid_level = new_entry->raid_level;
768  dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d updated.\n",
769  scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
770  new_entry->target, new_entry->lun);
771 }
772 
773 /* Replace an entry from h->dev[] array. */
774 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
775  int entry, struct hpsa_scsi_dev_t *new_entry,
776  struct hpsa_scsi_dev_t *added[], int *nadded,
777  struct hpsa_scsi_dev_t *removed[], int *nremoved)
778 {
779  /* assumes h->devlock is held */
781  removed[*nremoved] = h->dev[entry];
782  (*nremoved)++;
783 
784  /*
785  * New physical devices won't have target/lun assigned yet
786  * so we need to preserve the values in the slot we are replacing.
787  */
788  if (new_entry->target == -1) {
789  new_entry->target = h->dev[entry]->target;
790  new_entry->lun = h->dev[entry]->lun;
791  }
792 
793  h->dev[entry] = new_entry;
794  added[*nadded] = new_entry;
795  (*nadded)++;
796  dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
797  scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
798  new_entry->target, new_entry->lun);
799 }
800 
801 /* Remove an entry from h->dev[] array. */
802 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
803  struct hpsa_scsi_dev_t *removed[], int *nremoved)
804 {
805  /* assumes h->devlock is held */
806  int i;
807  struct hpsa_scsi_dev_t *sd;
808 
810 
811  sd = h->dev[entry];
812  removed[*nremoved] = h->dev[entry];
813  (*nremoved)++;
814 
815  for (i = entry; i < h->ndevices-1; i++)
816  h->dev[i] = h->dev[i+1];
817  h->ndevices--;
818  dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
819  scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
820  sd->lun);
821 }
822 
823 #define SCSI3ADDR_EQ(a, b) ( \
824  (a)[7] == (b)[7] && \
825  (a)[6] == (b)[6] && \
826  (a)[5] == (b)[5] && \
827  (a)[4] == (b)[4] && \
828  (a)[3] == (b)[3] && \
829  (a)[2] == (b)[2] && \
830  (a)[1] == (b)[1] && \
831  (a)[0] == (b)[0])
832 
833 static void fixup_botched_add(struct ctlr_info *h,
834  struct hpsa_scsi_dev_t *added)
835 {
836  /* called when scsi_add_device fails in order to re-adjust
837  * h->dev[] to match the mid layer's view.
838  */
839  unsigned long flags;
840  int i, j;
841 
842  spin_lock_irqsave(&h->lock, flags);
843  for (i = 0; i < h->ndevices; i++) {
844  if (h->dev[i] == added) {
845  for (j = i; j < h->ndevices-1; j++)
846  h->dev[j] = h->dev[j+1];
847  h->ndevices--;
848  break;
849  }
850  }
851  spin_unlock_irqrestore(&h->lock, flags);
852  kfree(added);
853 }
854 
855 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
856  struct hpsa_scsi_dev_t *dev2)
857 {
858  /* we compare everything except lun and target as these
859  * are not yet assigned. Compare parts likely
860  * to differ first
861  */
862  if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
863  sizeof(dev1->scsi3addr)) != 0)
864  return 0;
865  if (memcmp(dev1->device_id, dev2->device_id,
866  sizeof(dev1->device_id)) != 0)
867  return 0;
868  if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
869  return 0;
870  if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
871  return 0;
872  if (dev1->devtype != dev2->devtype)
873  return 0;
874  if (dev1->bus != dev2->bus)
875  return 0;
876  return 1;
877 }
878 
879 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
880  struct hpsa_scsi_dev_t *dev2)
881 {
882  /* Device attributes that can change, but don't mean
883  * that the device is a different device, nor that the OS
884  * needs to be told anything about the change.
885  */
886  if (dev1->raid_level != dev2->raid_level)
887  return 1;
888  return 0;
889 }
890 
891 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
892  * and return needle location in *index. If scsi3addr matches, but not
893  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
894  * location in *index.
895  * In the case of a minor device attribute change, such as RAID level, just
896  * return DEVICE_UPDATED, along with the updated device's location in index.
897  * If needle not found, return DEVICE_NOT_FOUND.
898  */
899 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
900  struct hpsa_scsi_dev_t *haystack[], int haystack_size,
901  int *index)
902 {
903  int i;
904 #define DEVICE_NOT_FOUND 0
905 #define DEVICE_CHANGED 1
906 #define DEVICE_SAME 2
907 #define DEVICE_UPDATED 3
908  for (i = 0; i < haystack_size; i++) {
909  if (haystack[i] == NULL) /* previously removed. */
910  continue;
911  if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
912  *index = i;
913  if (device_is_the_same(needle, haystack[i])) {
914  if (device_updated(needle, haystack[i]))
915  return DEVICE_UPDATED;
916  return DEVICE_SAME;
917  } else {
918  return DEVICE_CHANGED;
919  }
920  }
921  }
922  *index = -1;
923  return DEVICE_NOT_FOUND;
924 }
925 
926 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
927  struct hpsa_scsi_dev_t *sd[], int nsds)
928 {
929  /* sd contains scsi3 addresses and devtypes, and inquiry
930  * data. This function takes what's in sd to be the current
931  * reality and updates h->dev[] to reflect that reality.
932  */
933  int i, entry, device_change, changes = 0;
934  struct hpsa_scsi_dev_t *csd;
935  unsigned long flags;
936  struct hpsa_scsi_dev_t **added, **removed;
937  int nadded, nremoved;
938  struct Scsi_Host *sh = NULL;
939 
940  added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
941  removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
942 
943  if (!added || !removed) {
944  dev_warn(&h->pdev->dev, "out of memory in "
945  "adjust_hpsa_scsi_table\n");
946  goto free_and_out;
947  }
948 
949  spin_lock_irqsave(&h->devlock, flags);
950 
951  /* find any devices in h->dev[] that are not in
952  * sd[] and remove them from h->dev[], and for any
953  * devices which have changed, remove the old device
954  * info and add the new device info.
955  * If minor device attributes change, just update
956  * the existing device structure.
957  */
958  i = 0;
959  nremoved = 0;
960  nadded = 0;
961  while (i < h->ndevices) {
962  csd = h->dev[i];
963  device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
964  if (device_change == DEVICE_NOT_FOUND) {
965  changes++;
966  hpsa_scsi_remove_entry(h, hostno, i,
967  removed, &nremoved);
968  continue; /* remove ^^^, hence i not incremented */
969  } else if (device_change == DEVICE_CHANGED) {
970  changes++;
971  hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
972  added, &nadded, removed, &nremoved);
973  /* Set it to NULL to prevent it from being freed
974  * at the bottom of hpsa_update_scsi_devices()
975  */
976  sd[entry] = NULL;
977  } else if (device_change == DEVICE_UPDATED) {
978  hpsa_scsi_update_entry(h, hostno, i, sd[entry]);
979  }
980  i++;
981  }
982 
983  /* Now, make sure every device listed in sd[] is also
984  * listed in h->dev[], adding them if they aren't found
985  */
986 
987  for (i = 0; i < nsds; i++) {
988  if (!sd[i]) /* if already added above. */
989  continue;
990  device_change = hpsa_scsi_find_entry(sd[i], h->dev,
991  h->ndevices, &entry);
992  if (device_change == DEVICE_NOT_FOUND) {
993  changes++;
994  if (hpsa_scsi_add_entry(h, hostno, sd[i],
995  added, &nadded) != 0)
996  break;
997  sd[i] = NULL; /* prevent from being freed later. */
998  } else if (device_change == DEVICE_CHANGED) {
999  /* should never happen... */
1000  changes++;
1001  dev_warn(&h->pdev->dev,
1002  "device unexpectedly changed.\n");
1003  /* but if it does happen, we just ignore that device */
1004  }
1005  }
1006  spin_unlock_irqrestore(&h->devlock, flags);
1007 
1008  /* Don't notify scsi mid layer of any changes the first time through
1009  * (or if there are no changes) scsi_scan_host will do it later the
1010  * first time through.
1011  */
1012  if (hostno == -1 || !changes)
1013  goto free_and_out;
1014 
1015  sh = h->scsi_host;
1016  /* Notify scsi mid layer of any removed devices */
1017  for (i = 0; i < nremoved; i++) {
1018  struct scsi_device *sdev =
1019  scsi_device_lookup(sh, removed[i]->bus,
1020  removed[i]->target, removed[i]->lun);
1021  if (sdev != NULL) {
1022  scsi_remove_device(sdev);
1023  scsi_device_put(sdev);
1024  } else {
1025  /* We don't expect to get here.
1026  * future cmds to this device will get selection
1027  * timeout as if the device was gone.
1028  */
1029  dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
1030  " for removal.", hostno, removed[i]->bus,
1031  removed[i]->target, removed[i]->lun);
1032  }
1033  kfree(removed[i]);
1034  removed[i] = NULL;
1035  }
1036 
1037  /* Notify scsi mid layer of any added devices */
1038  for (i = 0; i < nadded; i++) {
1039  if (scsi_add_device(sh, added[i]->bus,
1040  added[i]->target, added[i]->lun) == 0)
1041  continue;
1042  dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
1043  "device not added.\n", hostno, added[i]->bus,
1044  added[i]->target, added[i]->lun);
1045  /* now we have to remove it from h->dev,
1046  * since it didn't get added to scsi mid layer
1047  */
1048  fixup_botched_add(h, added[i]);
1049  }
1050 
1051 free_and_out:
1052  kfree(added);
1053  kfree(removed);
1054 }
1055 
1056 /*
1057  * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
1058  * Assume's h->devlock is held.
1059  */
1060 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1061  int bus, int target, int lun)
1062 {
1063  int i;
1064  struct hpsa_scsi_dev_t *sd;
1065 
1066  for (i = 0; i < h->ndevices; i++) {
1067  sd = h->dev[i];
1068  if (sd->bus == bus && sd->target == target && sd->lun == lun)
1069  return sd;
1070  }
1071  return NULL;
1072 }
1073 
1074 /* link sdev->hostdata to our per-device structure. */
1075 static int hpsa_slave_alloc(struct scsi_device *sdev)
1076 {
1077  struct hpsa_scsi_dev_t *sd;
1078  unsigned long flags;
1079  struct ctlr_info *h;
1080 
1081  h = sdev_to_hba(sdev);
1082  spin_lock_irqsave(&h->devlock, flags);
1083  sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1084  sdev_id(sdev), sdev->lun);
1085  if (sd != NULL)
1086  sdev->hostdata = sd;
1087  spin_unlock_irqrestore(&h->devlock, flags);
1088  return 0;
1089 }
1090 
1091 static void hpsa_slave_destroy(struct scsi_device *sdev)
1092 {
1093  /* nothing to do. */
1094 }
1095 
1096 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
1097 {
1098  int i;
1099 
1100  if (!h->cmd_sg_list)
1101  return;
1102  for (i = 0; i < h->nr_cmds; i++) {
1103  kfree(h->cmd_sg_list[i]);
1104  h->cmd_sg_list[i] = NULL;
1105  }
1106  kfree(h->cmd_sg_list);
1107  h->cmd_sg_list = NULL;
1108 }
1109 
1110 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
1111 {
1112  int i;
1113 
1114  if (h->chainsize <= 0)
1115  return 0;
1116 
1117  h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
1118  GFP_KERNEL);
1119  if (!h->cmd_sg_list)
1120  return -ENOMEM;
1121  for (i = 0; i < h->nr_cmds; i++) {
1122  h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
1123  h->chainsize, GFP_KERNEL);
1124  if (!h->cmd_sg_list[i])
1125  goto clean;
1126  }
1127  return 0;
1128 
1129 clean:
1130  hpsa_free_sg_chain_blocks(h);
1131  return -ENOMEM;
1132 }
1133 
1134 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
1135  struct CommandList *c)
1136 {
1137  struct SGDescriptor *chain_sg, *chain_block;
1138  u64 temp64;
1139 
1140  chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1141  chain_block = h->cmd_sg_list[c->cmdindex];
1142  chain_sg->Ext = HPSA_SG_CHAIN;
1143  chain_sg->Len = sizeof(*chain_sg) *
1144  (c->Header.SGTotal - h->max_cmd_sg_entries);
1145  temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
1147  chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
1148  chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
1149 }
1150 
1151 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
1152  struct CommandList *c)
1153 {
1154  struct SGDescriptor *chain_sg;
1155  union u64bit temp64;
1156 
1157  if (c->Header.SGTotal <= h->max_cmd_sg_entries)
1158  return;
1159 
1160  chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
1161  temp64.val32.lower = chain_sg->Addr.lower;
1162  temp64.val32.upper = chain_sg->Addr.upper;
1163  pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
1164 }
1165 
1166 static void complete_scsi_command(struct CommandList *cp)
1167 {
1168  struct scsi_cmnd *cmd;
1169  struct ctlr_info *h;
1170  struct ErrorInfo *ei;
1171 
1172  unsigned char sense_key;
1173  unsigned char asc; /* additional sense code */
1174  unsigned char ascq; /* additional sense code qualifier */
1175  unsigned long sense_data_size;
1176 
1177  ei = cp->err_info;
1178  cmd = (struct scsi_cmnd *) cp->scsi_cmd;
1179  h = cp->h;
1180 
1181  scsi_dma_unmap(cmd); /* undo the DMA mappings */
1182  if (cp->Header.SGTotal > h->max_cmd_sg_entries)
1183  hpsa_unmap_sg_chain_block(h, cp);
1184 
1185  cmd->result = (DID_OK << 16); /* host byte */
1186  cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
1187  cmd->result |= ei->ScsiStatus;
1188 
1189  /* copy the sense data whether we need to or not. */
1190  if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
1191  sense_data_size = SCSI_SENSE_BUFFERSIZE;
1192  else
1193  sense_data_size = sizeof(ei->SenseInfo);
1194  if (ei->SenseLen < sense_data_size)
1195  sense_data_size = ei->SenseLen;
1196 
1197  memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
1198  scsi_set_resid(cmd, ei->ResidualCnt);
1199 
1200  if (ei->CommandStatus == 0) {
1201  cmd->scsi_done(cmd);
1202  cmd_free(h, cp);
1203  return;
1204  }
1205 
1206  /* an error has occurred */
1207  switch (ei->CommandStatus) {
1208 
1209  case CMD_TARGET_STATUS:
1210  if (ei->ScsiStatus) {
1211  /* Get sense key */
1212  sense_key = 0xf & ei->SenseInfo[2];
1213  /* Get additional sense code */
1214  asc = ei->SenseInfo[12];
1215  /* Get addition sense code qualifier */
1216  ascq = ei->SenseInfo[13];
1217  }
1218 
1219  if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
1220  if (check_for_unit_attention(h, cp)) {
1221  cmd->result = DID_SOFT_ERROR << 16;
1222  break;
1223  }
1224  if (sense_key == ILLEGAL_REQUEST) {
1225  /*
1226  * SCSI REPORT_LUNS is commonly unsupported on
1227  * Smart Array. Suppress noisy complaint.
1228  */
1229  if (cp->Request.CDB[0] == REPORT_LUNS)
1230  break;
1231 
1232  /* If ASC/ASCQ indicate Logical Unit
1233  * Not Supported condition,
1234  */
1235  if ((asc == 0x25) && (ascq == 0x0)) {
1236  dev_warn(&h->pdev->dev, "cp %p "
1237  "has check condition\n", cp);
1238  break;
1239  }
1240  }
1241 
1242  if (sense_key == NOT_READY) {
1243  /* If Sense is Not Ready, Logical Unit
1244  * Not ready, Manual Intervention
1245  * required
1246  */
1247  if ((asc == 0x04) && (ascq == 0x03)) {
1248  dev_warn(&h->pdev->dev, "cp %p "
1249  "has check condition: unit "
1250  "not ready, manual "
1251  "intervention required\n", cp);
1252  break;
1253  }
1254  }
1255  if (sense_key == ABORTED_COMMAND) {
1256  /* Aborted command is retryable */
1257  dev_warn(&h->pdev->dev, "cp %p "
1258  "has check condition: aborted command: "
1259  "ASC: 0x%x, ASCQ: 0x%x\n",
1260  cp, asc, ascq);
1261  cmd->result = DID_SOFT_ERROR << 16;
1262  break;
1263  }
1264  /* Must be some other type of check condition */
1265  dev_dbg(&h->pdev->dev, "cp %p has check condition: "
1266  "unknown type: "
1267  "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1268  "Returning result: 0x%x, "
1269  "cmd=[%02x %02x %02x %02x %02x "
1270  "%02x %02x %02x %02x %02x %02x "
1271  "%02x %02x %02x %02x %02x]\n",
1272  cp, sense_key, asc, ascq,
1273  cmd->result,
1274  cmd->cmnd[0], cmd->cmnd[1],
1275  cmd->cmnd[2], cmd->cmnd[3],
1276  cmd->cmnd[4], cmd->cmnd[5],
1277  cmd->cmnd[6], cmd->cmnd[7],
1278  cmd->cmnd[8], cmd->cmnd[9],
1279  cmd->cmnd[10], cmd->cmnd[11],
1280  cmd->cmnd[12], cmd->cmnd[13],
1281  cmd->cmnd[14], cmd->cmnd[15]);
1282  break;
1283  }
1284 
1285 
1286  /* Problem was not a check condition
1287  * Pass it up to the upper layers...
1288  */
1289  if (ei->ScsiStatus) {
1290  dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1291  "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1292  "Returning result: 0x%x\n",
1293  cp, ei->ScsiStatus,
1294  sense_key, asc, ascq,
1295  cmd->result);
1296  } else { /* scsi status is zero??? How??? */
1297  dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1298  "Returning no connection.\n", cp),
1299 
1300  /* Ordinarily, this case should never happen,
1301  * but there is a bug in some released firmware
1302  * revisions that allows it to happen if, for
1303  * example, a 4100 backplane loses power and
1304  * the tape drive is in it. We assume that
1305  * it's a fatal error of some kind because we
1306  * can't show that it wasn't. We will make it
1307  * look like selection timeout since that is
1308  * the most common reason for this to occur,
1309  * and it's severe enough.
1310  */
1311 
1312  cmd->result = DID_NO_CONNECT << 16;
1313  }
1314  break;
1315 
1316  case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1317  break;
1318  case CMD_DATA_OVERRUN:
1319  dev_warn(&h->pdev->dev, "cp %p has"
1320  " completed with data overrun "
1321  "reported\n", cp);
1322  break;
1323  case CMD_INVALID: {
1324  /* print_bytes(cp, sizeof(*cp), 1, 0);
1325  print_cmd(cp); */
1326  /* We get CMD_INVALID if you address a non-existent device
1327  * instead of a selection timeout (no response). You will
1328  * see this if you yank out a drive, then try to access it.
1329  * This is kind of a shame because it means that any other
1330  * CMD_INVALID (e.g. driver bug) will get interpreted as a
1331  * missing target. */
1332  cmd->result = DID_NO_CONNECT << 16;
1333  }
1334  break;
1335  case CMD_PROTOCOL_ERR:
1336  cmd->result = DID_ERROR << 16;
1337  dev_warn(&h->pdev->dev, "cp %p has "
1338  "protocol error\n", cp);
1339  break;
1340  case CMD_HARDWARE_ERR:
1341  cmd->result = DID_ERROR << 16;
1342  dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1343  break;
1344  case CMD_CONNECTION_LOST:
1345  cmd->result = DID_ERROR << 16;
1346  dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1347  break;
1348  case CMD_ABORTED:
1349  cmd->result = DID_ABORT << 16;
1350  dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1351  cp, ei->ScsiStatus);
1352  break;
1353  case CMD_ABORT_FAILED:
1354  cmd->result = DID_ERROR << 16;
1355  dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1356  break;
1357  case CMD_UNSOLICITED_ABORT:
1358  cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
1359  dev_warn(&h->pdev->dev, "cp %p aborted due to an unsolicited "
1360  "abort\n", cp);
1361  break;
1362  case CMD_TIMEOUT:
1363  cmd->result = DID_TIME_OUT << 16;
1364  dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1365  break;
1366  case CMD_UNABORTABLE:
1367  cmd->result = DID_ERROR << 16;
1368  dev_warn(&h->pdev->dev, "Command unabortable\n");
1369  break;
1370  default:
1371  cmd->result = DID_ERROR << 16;
1372  dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1373  cp, ei->CommandStatus);
1374  }
1375  cmd->scsi_done(cmd);
1376  cmd_free(h, cp);
1377 }
1378 
1379 static void hpsa_pci_unmap(struct pci_dev *pdev,
1380  struct CommandList *c, int sg_used, int data_direction)
1381 {
1382  int i;
1383  union u64bit addr64;
1384 
1385  for (i = 0; i < sg_used; i++) {
1386  addr64.val32.lower = c->SG[i].Addr.lower;
1387  addr64.val32.upper = c->SG[i].Addr.upper;
1388  pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1389  data_direction);
1390  }
1391 }
1392 
1393 static void hpsa_map_one(struct pci_dev *pdev,
1394  struct CommandList *cp,
1395  unsigned char *buf,
1396  size_t buflen,
1397  int data_direction)
1398 {
1399  u64 addr64;
1400 
1401  if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1402  cp->Header.SGList = 0;
1403  cp->Header.SGTotal = 0;
1404  return;
1405  }
1406 
1407  addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1408  cp->SG[0].Addr.lower =
1409  (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1410  cp->SG[0].Addr.upper =
1411  (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1412  cp->SG[0].Len = buflen;
1413  cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1414  cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1415 }
1416 
1417 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1418  struct CommandList *c)
1419 {
1421 
1422  c->waiting = &wait;
1423  enqueue_cmd_and_start_io(h, c);
1425 }
1426 
1427 static void hpsa_scsi_do_simple_cmd_core_if_no_lockup(struct ctlr_info *h,
1428  struct CommandList *c)
1429 {
1430  unsigned long flags;
1431 
1432  /* If controller lockup detected, fake a hardware error. */
1433  spin_lock_irqsave(&h->lock, flags);
1434  if (unlikely(h->lockup_detected)) {
1435  spin_unlock_irqrestore(&h->lock, flags);
1436  c->err_info->CommandStatus = CMD_HARDWARE_ERR;
1437  } else {
1438  spin_unlock_irqrestore(&h->lock, flags);
1439  hpsa_scsi_do_simple_cmd_core(h, c);
1440  }
1441 }
1442 
1443 #define MAX_DRIVER_CMD_RETRIES 25
1444 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1445  struct CommandList *c, int data_direction)
1446 {
1447  int backoff_time = 10, retry_count = 0;
1448 
1449  do {
1450  memset(c->err_info, 0, sizeof(*c->err_info));
1451  hpsa_scsi_do_simple_cmd_core(h, c);
1452  retry_count++;
1453  if (retry_count > 3) {
1454  msleep(backoff_time);
1455  if (backoff_time < 1000)
1456  backoff_time *= 2;
1457  }
1458  } while ((check_for_unit_attention(h, c) ||
1459  check_for_busy(h, c)) &&
1461  hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1462 }
1463 
1464 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1465 {
1466  struct ErrorInfo *ei;
1467  struct device *d = &cp->h->pdev->dev;
1468 
1469  ei = cp->err_info;
1470  switch (ei->CommandStatus) {
1471  case CMD_TARGET_STATUS:
1472  dev_warn(d, "cmd %p has completed with errors\n", cp);
1473  dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1474  ei->ScsiStatus);
1475  if (ei->ScsiStatus == 0)
1476  dev_warn(d, "SCSI status is abnormally zero. "
1477  "(probably indicates selection timeout "
1478  "reported incorrectly due to a known "
1479  "firmware bug, circa July, 2001.)\n");
1480  break;
1481  case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1482  dev_info(d, "UNDERRUN\n");
1483  break;
1484  case CMD_DATA_OVERRUN:
1485  dev_warn(d, "cp %p has completed with data overrun\n", cp);
1486  break;
1487  case CMD_INVALID: {
1488  /* controller unfortunately reports SCSI passthru's
1489  * to non-existent targets as invalid commands.
1490  */
1491  dev_warn(d, "cp %p is reported invalid (probably means "
1492  "target device no longer present)\n", cp);
1493  /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1494  print_cmd(cp); */
1495  }
1496  break;
1497  case CMD_PROTOCOL_ERR:
1498  dev_warn(d, "cp %p has protocol error \n", cp);
1499  break;
1500  case CMD_HARDWARE_ERR:
1501  /* cmd->result = DID_ERROR << 16; */
1502  dev_warn(d, "cp %p had hardware error\n", cp);
1503  break;
1504  case CMD_CONNECTION_LOST:
1505  dev_warn(d, "cp %p had connection lost\n", cp);
1506  break;
1507  case CMD_ABORTED:
1508  dev_warn(d, "cp %p was aborted\n", cp);
1509  break;
1510  case CMD_ABORT_FAILED:
1511  dev_warn(d, "cp %p reports abort failed\n", cp);
1512  break;
1513  case CMD_UNSOLICITED_ABORT:
1514  dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1515  break;
1516  case CMD_TIMEOUT:
1517  dev_warn(d, "cp %p timed out\n", cp);
1518  break;
1519  case CMD_UNABORTABLE:
1520  dev_warn(d, "Command unabortable\n");
1521  break;
1522  default:
1523  dev_warn(d, "cp %p returned unknown status %x\n", cp,
1524  ei->CommandStatus);
1525  }
1526 }
1527 
1528 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1529  unsigned char page, unsigned char *buf,
1530  unsigned char bufsize)
1531 {
1532  int rc = IO_OK;
1533  struct CommandList *c;
1534  struct ErrorInfo *ei;
1535 
1536  c = cmd_special_alloc(h);
1537 
1538  if (c == NULL) { /* trouble... */
1539  dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1540  return -ENOMEM;
1541  }
1542 
1543  fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1544  hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1545  ei = c->err_info;
1546  if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1547  hpsa_scsi_interpret_error(c);
1548  rc = -1;
1549  }
1550  cmd_special_free(h, c);
1551  return rc;
1552 }
1553 
1554 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1555 {
1556  int rc = IO_OK;
1557  struct CommandList *c;
1558  struct ErrorInfo *ei;
1559 
1560  c = cmd_special_alloc(h);
1561 
1562  if (c == NULL) { /* trouble... */
1563  dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1564  return -ENOMEM;
1565  }
1566 
1567  fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1568  hpsa_scsi_do_simple_cmd_core(h, c);
1569  /* no unmap needed here because no data xfer. */
1570 
1571  ei = c->err_info;
1572  if (ei->CommandStatus != 0) {
1573  hpsa_scsi_interpret_error(c);
1574  rc = -1;
1575  }
1576  cmd_special_free(h, c);
1577  return rc;
1578 }
1579 
1580 static void hpsa_get_raid_level(struct ctlr_info *h,
1581  unsigned char *scsi3addr, unsigned char *raid_level)
1582 {
1583  int rc;
1584  unsigned char *buf;
1585 
1586  *raid_level = RAID_UNKNOWN;
1587  buf = kzalloc(64, GFP_KERNEL);
1588  if (!buf)
1589  return;
1590  rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1591  if (rc == 0)
1592  *raid_level = buf[8];
1593  if (*raid_level > RAID_UNKNOWN)
1594  *raid_level = RAID_UNKNOWN;
1595  kfree(buf);
1596  return;
1597 }
1598 
1599 /* Get the device id from inquiry page 0x83 */
1600 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1601  unsigned char *device_id, int buflen)
1602 {
1603  int rc;
1604  unsigned char *buf;
1605 
1606  if (buflen > 16)
1607  buflen = 16;
1608  buf = kzalloc(64, GFP_KERNEL);
1609  if (!buf)
1610  return -1;
1611  rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1612  if (rc == 0)
1613  memcpy(device_id, &buf[8], buflen);
1614  kfree(buf);
1615  return rc != 0;
1616 }
1617 
1618 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1619  struct ReportLUNdata *buf, int bufsize,
1620  int extended_response)
1621 {
1622  int rc = IO_OK;
1623  struct CommandList *c;
1624  unsigned char scsi3addr[8];
1625  struct ErrorInfo *ei;
1626 
1627  c = cmd_special_alloc(h);
1628  if (c == NULL) { /* trouble... */
1629  dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1630  return -1;
1631  }
1632  /* address the controller */
1633  memset(scsi3addr, 0, sizeof(scsi3addr));
1634  fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1635  buf, bufsize, 0, scsi3addr, TYPE_CMD);
1636  if (extended_response)
1637  c->Request.CDB[1] = extended_response;
1638  hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1639  ei = c->err_info;
1640  if (ei->CommandStatus != 0 &&
1642  hpsa_scsi_interpret_error(c);
1643  rc = -1;
1644  }
1645  cmd_special_free(h, c);
1646  return rc;
1647 }
1648 
1649 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1650  struct ReportLUNdata *buf,
1651  int bufsize, int extended_response)
1652 {
1653  return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1654 }
1655 
1656 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1657  struct ReportLUNdata *buf, int bufsize)
1658 {
1659  return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1660 }
1661 
1662 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1663  int bus, int target, int lun)
1664 {
1665  device->bus = bus;
1666  device->target = target;
1667  device->lun = lun;
1668 }
1669 
1670 static int hpsa_update_device_info(struct ctlr_info *h,
1671  unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
1672  unsigned char *is_OBDR_device)
1673 {
1674 
1675 #define OBDR_SIG_OFFSET 43
1676 #define OBDR_TAPE_SIG "$DR-10"
1677 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
1678 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
1679 
1680  unsigned char *inq_buff;
1681  unsigned char *obdr_sig;
1682 
1683  inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1684  if (!inq_buff)
1685  goto bail_out;
1686 
1687  /* Do an inquiry to the device to see what it is. */
1688  if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1689  (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1690  /* Inquiry failed (msg printed already) */
1691  dev_err(&h->pdev->dev,
1692  "hpsa_update_device_info: inquiry failed\n");
1693  goto bail_out;
1694  }
1695 
1696  this_device->devtype = (inq_buff[0] & 0x1f);
1697  memcpy(this_device->scsi3addr, scsi3addr, 8);
1698  memcpy(this_device->vendor, &inq_buff[8],
1699  sizeof(this_device->vendor));
1700  memcpy(this_device->model, &inq_buff[16],
1701  sizeof(this_device->model));
1702  memset(this_device->device_id, 0,
1703  sizeof(this_device->device_id));
1704  hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1705  sizeof(this_device->device_id));
1706 
1707  if (this_device->devtype == TYPE_DISK &&
1708  is_logical_dev_addr_mode(scsi3addr))
1709  hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1710  else
1711  this_device->raid_level = RAID_UNKNOWN;
1712 
1713  if (is_OBDR_device) {
1714  /* See if this is a One-Button-Disaster-Recovery device
1715  * by looking for "$DR-10" at offset 43 in inquiry data.
1716  */
1717  obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
1718  *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
1719  strncmp(obdr_sig, OBDR_TAPE_SIG,
1720  OBDR_SIG_LEN) == 0);
1721  }
1722 
1723  kfree(inq_buff);
1724  return 0;
1725 
1726 bail_out:
1727  kfree(inq_buff);
1728  return 1;
1729 }
1730 
1731 static unsigned char *ext_target_model[] = {
1732  "MSA2012",
1733  "MSA2024",
1734  "MSA2312",
1735  "MSA2324",
1736  "P2000 G3 SAS",
1737  NULL,
1738 };
1739 
1740 static int is_ext_target(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1741 {
1742  int i;
1743 
1744  for (i = 0; ext_target_model[i]; i++)
1745  if (strncmp(device->model, ext_target_model[i],
1746  strlen(ext_target_model[i])) == 0)
1747  return 1;
1748  return 0;
1749 }
1750 
1751 /* Helper function to assign bus, target, lun mapping of devices.
1752  * Puts non-external target logical volumes on bus 0, external target logical
1753  * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1754  * Logical drive target and lun are assigned at this time, but
1755  * physical device lun and target assignment are deferred (assigned
1756  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1757  */
1758 static void figure_bus_target_lun(struct ctlr_info *h,
1759  u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
1760 {
1761  u32 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1762 
1763  if (!is_logical_dev_addr_mode(lunaddrbytes)) {
1764  /* physical device, target and lun filled in later */
1765  if (is_hba_lunid(lunaddrbytes))
1766  hpsa_set_bus_target_lun(device, 3, 0, lunid & 0x3fff);
1767  else
1768  /* defer target, lun assignment for physical devices */
1769  hpsa_set_bus_target_lun(device, 2, -1, -1);
1770  return;
1771  }
1772  /* It's a logical device */
1773  if (is_ext_target(h, device)) {
1774  /* external target way, put logicals on bus 1
1775  * and match target/lun numbers box
1776  * reports, other smart array, bus 0, target 0, match lunid
1777  */
1778  hpsa_set_bus_target_lun(device,
1779  1, (lunid >> 16) & 0x3fff, lunid & 0x00ff);
1780  return;
1781  }
1782  hpsa_set_bus_target_lun(device, 0, 0, lunid & 0x3fff);
1783 }
1784 
1785 /*
1786  * If there is no lun 0 on a target, linux won't find any devices.
1787  * For the external targets (arrays), we have to manually detect the enclosure
1788  * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1789  * it for some reason. *tmpdevice is the target we're adding,
1790  * this_device is a pointer into the current element of currentsd[]
1791  * that we're building up in update_scsi_devices(), below.
1792  * lunzerobits is a bitmap that tracks which targets already have a
1793  * lun 0 assigned.
1794  * Returns 1 if an enclosure was added, 0 if not.
1795  */
1796 static int add_ext_target_dev(struct ctlr_info *h,
1797  struct hpsa_scsi_dev_t *tmpdevice,
1798  struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1799  unsigned long lunzerobits[], int *n_ext_target_devs)
1800 {
1801  unsigned char scsi3addr[8];
1802 
1803  if (test_bit(tmpdevice->target, lunzerobits))
1804  return 0; /* There is already a lun 0 on this target. */
1805 
1806  if (!is_logical_dev_addr_mode(lunaddrbytes))
1807  return 0; /* It's the logical targets that may lack lun 0. */
1808 
1809  if (!is_ext_target(h, tmpdevice))
1810  return 0; /* Only external target devices have this problem. */
1811 
1812  if (tmpdevice->lun == 0) /* if lun is 0, then we have a lun 0. */
1813  return 0;
1814 
1815  memset(scsi3addr, 0, 8);
1816  scsi3addr[3] = tmpdevice->target;
1817  if (is_hba_lunid(scsi3addr))
1818  return 0; /* Don't add the RAID controller here. */
1819 
1820  if (is_scsi_rev_5(h))
1821  return 0; /* p1210m doesn't need to do this. */
1822 
1823  if (*n_ext_target_devs >= MAX_EXT_TARGETS) {
1824  dev_warn(&h->pdev->dev, "Maximum number of external "
1825  "target devices exceeded. Check your hardware "
1826  "configuration.");
1827  return 0;
1828  }
1829 
1830  if (hpsa_update_device_info(h, scsi3addr, this_device, NULL))
1831  return 0;
1832  (*n_ext_target_devs)++;
1833  hpsa_set_bus_target_lun(this_device,
1834  tmpdevice->bus, tmpdevice->target, 0);
1835  set_bit(tmpdevice->target, lunzerobits);
1836  return 1;
1837 }
1838 
1839 /*
1840  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1841  * logdev. The number of luns in physdev and logdev are returned in
1842  * *nphysicals and *nlogicals, respectively.
1843  * Returns 0 on success, -1 otherwise.
1844  */
1845 static int hpsa_gather_lun_info(struct ctlr_info *h,
1846  int reportlunsize,
1847  struct ReportLUNdata *physdev, u32 *nphysicals,
1848  struct ReportLUNdata *logdev, u32 *nlogicals)
1849 {
1850  if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1851  dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1852  return -1;
1853  }
1854  *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1855  if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1856  dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1857  " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1858  *nphysicals - HPSA_MAX_PHYS_LUN);
1859  *nphysicals = HPSA_MAX_PHYS_LUN;
1860  }
1861  if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1862  dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1863  return -1;
1864  }
1865  *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1866  /* Reject Logicals in excess of our max capability. */
1867  if (*nlogicals > HPSA_MAX_LUN) {
1868  dev_warn(&h->pdev->dev,
1869  "maximum logical LUNs (%d) exceeded. "
1870  "%d LUNs ignored.\n", HPSA_MAX_LUN,
1871  *nlogicals - HPSA_MAX_LUN);
1872  *nlogicals = HPSA_MAX_LUN;
1873  }
1874  if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1875  dev_warn(&h->pdev->dev,
1876  "maximum logical + physical LUNs (%d) exceeded. "
1877  "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1878  *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1879  *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1880  }
1881  return 0;
1882 }
1883 
1884 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1885  int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1886  struct ReportLUNdata *logdev_list)
1887 {
1888  /* Helper function, figure out where the LUN ID info is coming from
1889  * given index i, lists of physical and logical devices, where in
1890  * the list the raid controller is supposed to appear (first or last)
1891  */
1892 
1893  int logicals_start = nphysicals + (raid_ctlr_position == 0);
1894  int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1895 
1896  if (i == raid_ctlr_position)
1897  return RAID_CTLR_LUNID;
1898 
1899  if (i < logicals_start)
1900  return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1901 
1902  if (i < last_device)
1903  return &logdev_list->LUN[i - nphysicals -
1904  (raid_ctlr_position == 0)][0];
1905  BUG();
1906  return NULL;
1907 }
1908 
1909 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1910 {
1911  /* the idea here is we could get notified
1912  * that some devices have changed, so we do a report
1913  * physical luns and report logical luns cmd, and adjust
1914  * our list of devices accordingly.
1915  *
1916  * The scsi3addr's of devices won't change so long as the
1917  * adapter is not reset. That means we can rescan and
1918  * tell which devices we already know about, vs. new
1919  * devices, vs. disappearing devices.
1920  */
1921  struct ReportLUNdata *physdev_list = NULL;
1922  struct ReportLUNdata *logdev_list = NULL;
1923  u32 nphysicals = 0;
1924  u32 nlogicals = 0;
1925  u32 ndev_allocated = 0;
1926  struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1927  int ncurrent = 0;
1928  int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1929  int i, n_ext_target_devs, ndevs_to_allocate;
1930  int raid_ctlr_position;
1931  DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
1932 
1933  currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
1934  physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1935  logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1936  tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1937 
1938  if (!currentsd || !physdev_list || !logdev_list || !tmpdevice) {
1939  dev_err(&h->pdev->dev, "out of memory\n");
1940  goto out;
1941  }
1942  memset(lunzerobits, 0, sizeof(lunzerobits));
1943 
1944  if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1945  logdev_list, &nlogicals))
1946  goto out;
1947 
1948  /* We might see up to the maximum number of logical and physical disks
1949  * plus external target devices, and a device for the local RAID
1950  * controller.
1951  */
1952  ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
1953 
1954  /* Allocate the per device structures */
1955  for (i = 0; i < ndevs_to_allocate; i++) {
1956  if (i >= HPSA_MAX_DEVICES) {
1957  dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
1958  " %d devices ignored.\n", HPSA_MAX_DEVICES,
1959  ndevs_to_allocate - HPSA_MAX_DEVICES);
1960  break;
1961  }
1962 
1963  currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1964  if (!currentsd[i]) {
1965  dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1966  __FILE__, __LINE__);
1967  goto out;
1968  }
1969  ndev_allocated++;
1970  }
1971 
1972  if (unlikely(is_scsi_rev_5(h)))
1973  raid_ctlr_position = 0;
1974  else
1975  raid_ctlr_position = nphysicals + nlogicals;
1976 
1977  /* adjust our table of devices */
1978  n_ext_target_devs = 0;
1979  for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1980  u8 *lunaddrbytes, is_OBDR = 0;
1981 
1982  /* Figure out where the LUN ID info is coming from */
1983  lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1984  i, nphysicals, nlogicals, physdev_list, logdev_list);
1985  /* skip masked physical devices. */
1986  if (lunaddrbytes[3] & 0xC0 &&
1987  i < nphysicals + (raid_ctlr_position == 0))
1988  continue;
1989 
1990  /* Get device type, vendor, model, device id */
1991  if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
1992  &is_OBDR))
1993  continue; /* skip it if we can't talk to it. */
1994  figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
1995  this_device = currentsd[ncurrent];
1996 
1997  /*
1998  * For external target devices, we have to insert a LUN 0 which
1999  * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
2000  * is nonetheless an enclosure device there. We have to
2001  * present that otherwise linux won't find anything if
2002  * there is no lun 0.
2003  */
2004  if (add_ext_target_dev(h, tmpdevice, this_device,
2005  lunaddrbytes, lunzerobits,
2006  &n_ext_target_devs)) {
2007  ncurrent++;
2008  this_device = currentsd[ncurrent];
2009  }
2010 
2011  *this_device = *tmpdevice;
2012 
2013  switch (this_device->devtype) {
2014  case TYPE_ROM:
2015  /* We don't *really* support actual CD-ROM devices,
2016  * just "One Button Disaster Recovery" tape drive
2017  * which temporarily pretends to be a CD-ROM drive.
2018  * So we check that the device is really an OBDR tape
2019  * device by checking for "$DR-10" in bytes 43-48 of
2020  * the inquiry data.
2021  */
2022  if (is_OBDR)
2023  ncurrent++;
2024  break;
2025  case TYPE_DISK:
2026  if (i < nphysicals)
2027  break;
2028  ncurrent++;
2029  break;
2030  case TYPE_TAPE:
2031  case TYPE_MEDIUM_CHANGER:
2032  ncurrent++;
2033  break;
2034  case TYPE_RAID:
2035  /* Only present the Smartarray HBA as a RAID controller.
2036  * If it's a RAID controller other than the HBA itself
2037  * (an external RAID controller, MSA500 or similar)
2038  * don't present it.
2039  */
2040  if (!is_hba_lunid(lunaddrbytes))
2041  break;
2042  ncurrent++;
2043  break;
2044  default:
2045  break;
2046  }
2047  if (ncurrent >= HPSA_MAX_DEVICES)
2048  break;
2049  }
2050  adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
2051 out:
2052  kfree(tmpdevice);
2053  for (i = 0; i < ndev_allocated; i++)
2054  kfree(currentsd[i]);
2055  kfree(currentsd);
2056  kfree(physdev_list);
2057  kfree(logdev_list);
2058 }
2059 
2060 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
2061  * dma mapping and fills in the scatter gather entries of the
2062  * hpsa command, cp.
2063  */
2064 static int hpsa_scatter_gather(struct ctlr_info *h,
2065  struct CommandList *cp,
2066  struct scsi_cmnd *cmd)
2067 {
2068  unsigned int len;
2069  struct scatterlist *sg;
2070  u64 addr64;
2071  int use_sg, i, sg_index, chained;
2072  struct SGDescriptor *curr_sg;
2073 
2074  BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
2075 
2076  use_sg = scsi_dma_map(cmd);
2077  if (use_sg < 0)
2078  return use_sg;
2079 
2080  if (!use_sg)
2081  goto sglist_finished;
2082 
2083  curr_sg = cp->SG;
2084  chained = 0;
2085  sg_index = 0;
2086  scsi_for_each_sg(cmd, sg, use_sg, i) {
2087  if (i == h->max_cmd_sg_entries - 1 &&
2088  use_sg > h->max_cmd_sg_entries) {
2089  chained = 1;
2090  curr_sg = h->cmd_sg_list[cp->cmdindex];
2091  sg_index = 0;
2092  }
2093  addr64 = (u64) sg_dma_address(sg);
2094  len = sg_dma_len(sg);
2095  curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
2096  curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
2097  curr_sg->Len = len;
2098  curr_sg->Ext = 0; /* we are not chaining */
2099  curr_sg++;
2100  }
2101 
2102  if (use_sg + chained > h->maxSG)
2103  h->maxSG = use_sg + chained;
2104 
2105  if (chained) {
2106  cp->Header.SGList = h->max_cmd_sg_entries;
2107  cp->Header.SGTotal = (u16) (use_sg + 1);
2108  hpsa_map_sg_chain_block(h, cp);
2109  return 0;
2110  }
2111 
2112 sglist_finished:
2113 
2114  cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
2115  cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
2116  return 0;
2117 }
2118 
2119 
2120 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
2121  void (*done)(struct scsi_cmnd *))
2122 {
2123  struct ctlr_info *h;
2124  struct hpsa_scsi_dev_t *dev;
2125  unsigned char scsi3addr[8];
2126  struct CommandList *c;
2127  unsigned long flags;
2128 
2129  /* Get the ptr to our adapter structure out of cmd->host. */
2130  h = sdev_to_hba(cmd->device);
2131  dev = cmd->device->hostdata;
2132  if (!dev) {
2133  cmd->result = DID_NO_CONNECT << 16;
2134  done(cmd);
2135  return 0;
2136  }
2137  memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
2138 
2139  spin_lock_irqsave(&h->lock, flags);
2140  if (unlikely(h->lockup_detected)) {
2141  spin_unlock_irqrestore(&h->lock, flags);
2142  cmd->result = DID_ERROR << 16;
2143  done(cmd);
2144  return 0;
2145  }
2146  spin_unlock_irqrestore(&h->lock, flags);
2147  c = cmd_alloc(h);
2148  if (c == NULL) { /* trouble... */
2149  dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
2150  return SCSI_MLQUEUE_HOST_BUSY;
2151  }
2152 
2153  /* Fill in the command list header */
2154 
2155  cmd->scsi_done = done; /* save this for use by completion code */
2156 
2157  /* save c in case we have to abort it */
2158  cmd->host_scribble = (unsigned char *) c;
2159 
2160  c->cmd_type = CMD_SCSI;
2161  c->scsi_cmd = cmd;
2162  c->Header.ReplyQueue = 0; /* unused in simple mode */
2163  memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
2164  c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
2165  c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
2166 
2167  /* Fill in the request block... */
2168 
2169  c->Request.Timeout = 0;
2170  memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
2171  BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
2172  c->Request.CDBLen = cmd->cmd_len;
2173  memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
2174  c->Request.Type.Type = TYPE_CMD;
2175  c->Request.Type.Attribute = ATTR_SIMPLE;
2176  switch (cmd->sc_data_direction) {
2177  case DMA_TO_DEVICE:
2178  c->Request.Type.Direction = XFER_WRITE;
2179  break;
2180  case DMA_FROM_DEVICE:
2181  c->Request.Type.Direction = XFER_READ;
2182  break;
2183  case DMA_NONE:
2184  c->Request.Type.Direction = XFER_NONE;
2185  break;
2186  case DMA_BIDIRECTIONAL:
2187  /* This can happen if a buggy application does a scsi passthru
2188  * and sets both inlen and outlen to non-zero. ( see
2189  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
2190  */
2191 
2192  c->Request.Type.Direction = XFER_RSVD;
2193  /* This is technically wrong, and hpsa controllers should
2194  * reject it with CMD_INVALID, which is the most correct
2195  * response, but non-fibre backends appear to let it
2196  * slide by, and give the same results as if this field
2197  * were set correctly. Either way is acceptable for
2198  * our purposes here.
2199  */
2200 
2201  break;
2202 
2203  default:
2204  dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2205  cmd->sc_data_direction);
2206  BUG();
2207  break;
2208  }
2209 
2210  if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2211  cmd_free(h, c);
2212  return SCSI_MLQUEUE_HOST_BUSY;
2213  }
2214  enqueue_cmd_and_start_io(h, c);
2215  /* the cmd'll come back via intr handler in complete_scsi_command() */
2216  return 0;
2217 }
2218 
2219 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2220 
2221 static void hpsa_scan_start(struct Scsi_Host *sh)
2222 {
2223  struct ctlr_info *h = shost_to_hba(sh);
2224  unsigned long flags;
2225 
2226  /* wait until any scan already in progress is finished. */
2227  while (1) {
2228  spin_lock_irqsave(&h->scan_lock, flags);
2229  if (h->scan_finished)
2230  break;
2231  spin_unlock_irqrestore(&h->scan_lock, flags);
2233  /* Note: We don't need to worry about a race between this
2234  * thread and driver unload because the midlayer will
2235  * have incremented the reference count, so unload won't
2236  * happen if we're in here.
2237  */
2238  }
2239  h->scan_finished = 0; /* mark scan as in progress */
2240  spin_unlock_irqrestore(&h->scan_lock, flags);
2241 
2242  hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2243 
2244  spin_lock_irqsave(&h->scan_lock, flags);
2245  h->scan_finished = 1; /* mark scan as finished. */
2247  spin_unlock_irqrestore(&h->scan_lock, flags);
2248 }
2249 
2250 static int hpsa_scan_finished(struct Scsi_Host *sh,
2251  unsigned long elapsed_time)
2252 {
2253  struct ctlr_info *h = shost_to_hba(sh);
2254  unsigned long flags;
2255  int finished;
2256 
2257  spin_lock_irqsave(&h->scan_lock, flags);
2258  finished = h->scan_finished;
2259  spin_unlock_irqrestore(&h->scan_lock, flags);
2260  return finished;
2261 }
2262 
2263 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2264  int qdepth, int reason)
2265 {
2266  struct ctlr_info *h = sdev_to_hba(sdev);
2267 
2268  if (reason != SCSI_QDEPTH_DEFAULT)
2269  return -ENOTSUPP;
2270 
2271  if (qdepth < 1)
2272  qdepth = 1;
2273  else
2274  if (qdepth > h->nr_cmds)
2275  qdepth = h->nr_cmds;
2276  scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2277  return sdev->queue_depth;
2278 }
2279 
2280 static void hpsa_unregister_scsi(struct ctlr_info *h)
2281 {
2282  /* we are being forcibly unloaded, and may not refuse. */
2285  h->scsi_host = NULL;
2286 }
2287 
2288 static int hpsa_register_scsi(struct ctlr_info *h)
2289 {
2290  struct Scsi_Host *sh;
2291  int error;
2292 
2293  sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
2294  if (sh == NULL)
2295  goto fail;
2296 
2297  sh->io_port = 0;
2298  sh->n_io_port = 0;
2299  sh->this_id = -1;
2300  sh->max_channel = 3;
2302  sh->max_lun = HPSA_MAX_LUN;
2303  sh->max_id = HPSA_MAX_LUN;
2304  sh->can_queue = h->nr_cmds;
2305  sh->cmd_per_lun = h->nr_cmds;
2306  sh->sg_tablesize = h->maxsgentries;
2307  h->scsi_host = sh;
2308  sh->hostdata[0] = (unsigned long) h;
2309  sh->irq = h->intr[h->intr_mode];
2310  sh->unique_id = sh->irq;
2311  error = scsi_add_host(sh, &h->pdev->dev);
2312  if (error)
2313  goto fail_host_put;
2314  scsi_scan_host(sh);
2315  return 0;
2316 
2317  fail_host_put:
2318  dev_err(&h->pdev->dev, "%s: scsi_add_host"
2319  " failed for controller %d\n", __func__, h->ctlr);
2320  scsi_host_put(sh);
2321  return error;
2322  fail:
2323  dev_err(&h->pdev->dev, "%s: scsi_host_alloc"
2324  " failed for controller %d\n", __func__, h->ctlr);
2325  return -ENOMEM;
2326 }
2327 
2328 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2329  unsigned char lunaddr[])
2330 {
2331  int rc = 0;
2332  int count = 0;
2333  int waittime = 1; /* seconds */
2334  struct CommandList *c;
2335 
2336  c = cmd_special_alloc(h);
2337  if (!c) {
2338  dev_warn(&h->pdev->dev, "out of memory in "
2339  "wait_for_device_to_become_ready.\n");
2340  return IO_ERROR;
2341  }
2342 
2343  /* Send test unit ready until device ready, or give up. */
2344  while (count < HPSA_TUR_RETRY_LIMIT) {
2345 
2346  /* Wait for a bit. do this first, because if we send
2347  * the TUR right away, the reset will just abort it.
2348  */
2349  msleep(1000 * waittime);
2350  count++;
2351 
2352  /* Increase wait time with each try, up to a point. */
2353  if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2354  waittime = waittime * 2;
2355 
2356  /* Send the Test Unit Ready */
2357  fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2358  hpsa_scsi_do_simple_cmd_core(h, c);
2359  /* no unmap needed here because no data xfer. */
2360 
2361  if (c->err_info->CommandStatus == CMD_SUCCESS)
2362  break;
2363 
2364  if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2365  c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2366  (c->err_info->SenseInfo[2] == NO_SENSE ||
2367  c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2368  break;
2369 
2370  dev_warn(&h->pdev->dev, "waiting %d secs "
2371  "for device to become ready.\n", waittime);
2372  rc = 1; /* device not ready. */
2373  }
2374 
2375  if (rc)
2376  dev_warn(&h->pdev->dev, "giving up on device.\n");
2377  else
2378  dev_warn(&h->pdev->dev, "device is ready.\n");
2379 
2380  cmd_special_free(h, c);
2381  return rc;
2382 }
2383 
2384 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2385  * complaining. Doing a host- or bus-reset can't do anything good here.
2386  */
2387 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2388 {
2389  int rc;
2390  struct ctlr_info *h;
2391  struct hpsa_scsi_dev_t *dev;
2392 
2393  /* find the controller to which the command to be aborted was sent */
2394  h = sdev_to_hba(scsicmd->device);
2395  if (h == NULL) /* paranoia */
2396  return FAILED;
2397  dev = scsicmd->device->hostdata;
2398  if (!dev) {
2399  dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2400  "device lookup failed.\n");
2401  return FAILED;
2402  }
2403  dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2404  h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2405  /* send a reset to the SCSI LUN which the command was sent to */
2406  rc = hpsa_send_reset(h, dev->scsi3addr);
2407  if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2408  return SUCCESS;
2409 
2410  dev_warn(&h->pdev->dev, "resetting device failed.\n");
2411  return FAILED;
2412 }
2413 
2414 static void swizzle_abort_tag(u8 *tag)
2415 {
2416  u8 original_tag[8];
2417 
2418  memcpy(original_tag, tag, 8);
2419  tag[0] = original_tag[3];
2420  tag[1] = original_tag[2];
2421  tag[2] = original_tag[1];
2422  tag[3] = original_tag[0];
2423  tag[4] = original_tag[7];
2424  tag[5] = original_tag[6];
2425  tag[6] = original_tag[5];
2426  tag[7] = original_tag[4];
2427 }
2428 
2429 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
2430  struct CommandList *abort, int swizzle)
2431 {
2432  int rc = IO_OK;
2433  struct CommandList *c;
2434  struct ErrorInfo *ei;
2435 
2436  c = cmd_special_alloc(h);
2437  if (c == NULL) { /* trouble... */
2438  dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
2439  return -ENOMEM;
2440  }
2441 
2442  fill_cmd(c, HPSA_ABORT_MSG, h, abort, 0, 0, scsi3addr, TYPE_MSG);
2443  if (swizzle)
2444  swizzle_abort_tag(&c->Request.CDB[4]);
2445  hpsa_scsi_do_simple_cmd_core(h, c);
2446  dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd_core completed.\n",
2447  __func__, abort->Header.Tag.upper, abort->Header.Tag.lower);
2448  /* no unmap needed here because no data xfer. */
2449 
2450  ei = c->err_info;
2451  switch (ei->CommandStatus) {
2452  case CMD_SUCCESS:
2453  break;
2454  case CMD_UNABORTABLE: /* Very common, don't make noise. */
2455  rc = -1;
2456  break;
2457  default:
2458  dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
2459  __func__, abort->Header.Tag.upper,
2460  abort->Header.Tag.lower);
2461  hpsa_scsi_interpret_error(c);
2462  rc = -1;
2463  break;
2464  }
2465  cmd_special_free(h, c);
2466  dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
2467  abort->Header.Tag.upper, abort->Header.Tag.lower);
2468  return rc;
2469 }
2470 
2471 /*
2472  * hpsa_find_cmd_in_queue
2473  *
2474  * Used to determine whether a command (find) is still present
2475  * in queue_head. Optionally excludes the last element of queue_head.
2476  *
2477  * This is used to avoid unnecessary aborts. Commands in h->reqQ have
2478  * not yet been submitted, and so can be aborted by the driver without
2479  * sending an abort to the hardware.
2480  *
2481  * Returns pointer to command if found in queue, NULL otherwise.
2482  */
2483 static struct CommandList *hpsa_find_cmd_in_queue(struct ctlr_info *h,
2484  struct scsi_cmnd *find, struct list_head *queue_head)
2485 {
2486  unsigned long flags;
2487  struct CommandList *c = NULL; /* ptr into cmpQ */
2488 
2489  if (!find)
2490  return 0;
2491  spin_lock_irqsave(&h->lock, flags);
2492  list_for_each_entry(c, queue_head, list) {
2493  if (c->scsi_cmd == NULL) /* e.g.: passthru ioctl */
2494  continue;
2495  if (c->scsi_cmd == find) {
2496  spin_unlock_irqrestore(&h->lock, flags);
2497  return c;
2498  }
2499  }
2500  spin_unlock_irqrestore(&h->lock, flags);
2501  return NULL;
2502 }
2503 
2504 static struct CommandList *hpsa_find_cmd_in_queue_by_tag(struct ctlr_info *h,
2505  u8 *tag, struct list_head *queue_head)
2506 {
2507  unsigned long flags;
2508  struct CommandList *c;
2509 
2510  spin_lock_irqsave(&h->lock, flags);
2511  list_for_each_entry(c, queue_head, list) {
2512  if (memcmp(&c->Header.Tag, tag, 8) != 0)
2513  continue;
2514  spin_unlock_irqrestore(&h->lock, flags);
2515  return c;
2516  }
2517  spin_unlock_irqrestore(&h->lock, flags);
2518  return NULL;
2519 }
2520 
2521 /* Some Smart Arrays need the abort tag swizzled, and some don't. It's hard to
2522  * tell which kind we're dealing with, so we send the abort both ways. There
2523  * shouldn't be any collisions between swizzled and unswizzled tags due to the
2524  * way we construct our tags but we check anyway in case the assumptions which
2525  * make this true someday become false.
2526  */
2527 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
2528  unsigned char *scsi3addr, struct CommandList *abort)
2529 {
2530  u8 swizzled_tag[8];
2531  struct CommandList *c;
2532  int rc = 0, rc2 = 0;
2533 
2534  /* we do not expect to find the swizzled tag in our queue, but
2535  * check anyway just to be sure the assumptions which make this
2536  * the case haven't become wrong.
2537  */
2538  memcpy(swizzled_tag, &abort->Request.CDB[4], 8);
2539  swizzle_abort_tag(swizzled_tag);
2540  c = hpsa_find_cmd_in_queue_by_tag(h, swizzled_tag, &h->cmpQ);
2541  if (c != NULL) {
2542  dev_warn(&h->pdev->dev, "Unexpectedly found byte-swapped tag in completion queue.\n");
2543  return hpsa_send_abort(h, scsi3addr, abort, 0);
2544  }
2545  rc = hpsa_send_abort(h, scsi3addr, abort, 0);
2546 
2547  /* if the command is still in our queue, we can't conclude that it was
2548  * aborted (it might have just completed normally) but in any case
2549  * we don't need to try to abort it another way.
2550  */
2551  c = hpsa_find_cmd_in_queue(h, abort->scsi_cmd, &h->cmpQ);
2552  if (c)
2553  rc2 = hpsa_send_abort(h, scsi3addr, abort, 1);
2554  return rc && rc2;
2555 }
2556 
2557 /* Send an abort for the specified command.
2558  * If the device and controller support it,
2559  * send a task abort request.
2560  */
2561 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
2562 {
2563 
2564  int i, rc;
2565  struct ctlr_info *h;
2566  struct hpsa_scsi_dev_t *dev;
2567  struct CommandList *abort; /* pointer to command to be aborted */
2568  struct CommandList *found;
2569  struct scsi_cmnd *as; /* ptr to scsi cmd inside aborted command. */
2570  char msg[256]; /* For debug messaging. */
2571  int ml = 0;
2572 
2573  /* Find the controller of the command to be aborted */
2574  h = sdev_to_hba(sc->device);
2575  if (WARN(h == NULL,
2576  "ABORT REQUEST FAILED, Controller lookup failed.\n"))
2577  return FAILED;
2578 
2579  /* Check that controller supports some kind of task abort */
2582  return FAILED;
2583 
2584  memset(msg, 0, sizeof(msg));
2585  ml += sprintf(msg+ml, "ABORT REQUEST on C%d:B%d:T%d:L%d ",
2586  h->scsi_host->host_no, sc->device->channel,
2587  sc->device->id, sc->device->lun);
2588 
2589  /* Find the device of the command to be aborted */
2590  dev = sc->device->hostdata;
2591  if (!dev) {
2592  dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
2593  msg);
2594  return FAILED;
2595  }
2596 
2597  /* Get SCSI command to be aborted */
2598  abort = (struct CommandList *) sc->host_scribble;
2599  if (abort == NULL) {
2600  dev_err(&h->pdev->dev, "%s FAILED, Command to abort is NULL.\n",
2601  msg);
2602  return FAILED;
2603  }
2604 
2605  ml += sprintf(msg+ml, "Tag:0x%08x:%08x ",
2606  abort->Header.Tag.upper, abort->Header.Tag.lower);
2607  as = (struct scsi_cmnd *) abort->scsi_cmd;
2608  if (as != NULL)
2609  ml += sprintf(msg+ml, "Command:0x%x SN:0x%lx ",
2610  as->cmnd[0], as->serial_number);
2611  dev_dbg(&h->pdev->dev, "%s\n", msg);
2612  dev_warn(&h->pdev->dev, "Abort request on C%d:B%d:T%d:L%d\n",
2613  h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2614 
2615  /* Search reqQ to See if command is queued but not submitted,
2616  * if so, complete the command with aborted status and remove
2617  * it from the reqQ.
2618  */
2619  found = hpsa_find_cmd_in_queue(h, sc, &h->reqQ);
2620  if (found) {
2621  found->err_info->CommandStatus = CMD_ABORTED;
2622  finish_cmd(found);
2623  dev_info(&h->pdev->dev, "%s Request SUCCEEDED (driver queue).\n",
2624  msg);
2625  return SUCCESS;
2626  }
2627 
2628  /* not in reqQ, if also not in cmpQ, must have already completed */
2629  found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2630  if (!found) {
2631  dev_dbg(&h->pdev->dev, "%s Request SUCCEEDED (not known to driver).\n",
2632  msg);
2633  return SUCCESS;
2634  }
2635 
2636  /*
2637  * Command is in flight, or possibly already completed
2638  * by the firmware (but not to the scsi mid layer) but we can't
2639  * distinguish which. Send the abort down.
2640  */
2641  rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort);
2642  if (rc != 0) {
2643  dev_dbg(&h->pdev->dev, "%s Request FAILED.\n", msg);
2644  dev_warn(&h->pdev->dev, "FAILED abort on device C%d:B%d:T%d:L%d\n",
2645  h->scsi_host->host_no,
2646  dev->bus, dev->target, dev->lun);
2647  return FAILED;
2648  }
2649  dev_info(&h->pdev->dev, "%s REQUEST SUCCEEDED.\n", msg);
2650 
2651  /* If the abort(s) above completed and actually aborted the
2652  * command, then the command to be aborted should already be
2653  * completed. If not, wait around a bit more to see if they
2654  * manage to complete normally.
2655  */
2656 #define ABORT_COMPLETE_WAIT_SECS 30
2657  for (i = 0; i < ABORT_COMPLETE_WAIT_SECS * 10; i++) {
2658  found = hpsa_find_cmd_in_queue(h, sc, &h->cmpQ);
2659  if (!found)
2660  return SUCCESS;
2661  msleep(100);
2662  }
2663  dev_warn(&h->pdev->dev, "%s FAILED. Aborted command has not completed after %d seconds.\n",
2664  msg, ABORT_COMPLETE_WAIT_SECS);
2665  return FAILED;
2666 }
2667 
2668 
2669 /*
2670  * For operations that cannot sleep, a command block is allocated at init,
2671  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2672  * which ones are free or in use. Lock must be held when calling this.
2673  * cmd_free() is the complement.
2674  */
2675 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2676 {
2677  struct CommandList *c;
2678  int i;
2679  union u64bit temp64;
2680  dma_addr_t cmd_dma_handle, err_dma_handle;
2681  unsigned long flags;
2682 
2683  spin_lock_irqsave(&h->lock, flags);
2684  do {
2686  if (i == h->nr_cmds) {
2687  spin_unlock_irqrestore(&h->lock, flags);
2688  return NULL;
2689  }
2690  } while (test_and_set_bit
2691  (i & (BITS_PER_LONG - 1),
2692  h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2693  h->nr_allocs++;
2694  spin_unlock_irqrestore(&h->lock, flags);
2695 
2696  c = h->cmd_pool + i;
2697  memset(c, 0, sizeof(*c));
2698  cmd_dma_handle = h->cmd_pool_dhandle
2699  + i * sizeof(*c);
2700  c->err_info = h->errinfo_pool + i;
2701  memset(c->err_info, 0, sizeof(*c->err_info));
2702  err_dma_handle = h->errinfo_pool_dhandle
2703  + i * sizeof(*c->err_info);
2704 
2705  c->cmdindex = i;
2706 
2707  INIT_LIST_HEAD(&c->list);
2708  c->busaddr = (u32) cmd_dma_handle;
2709  temp64.val = (u64) err_dma_handle;
2710  c->ErrDesc.Addr.lower = temp64.val32.lower;
2711  c->ErrDesc.Addr.upper = temp64.val32.upper;
2712  c->ErrDesc.Len = sizeof(*c->err_info);
2713 
2714  c->h = h;
2715  return c;
2716 }
2717 
2718 /* For operations that can wait for kmalloc to possibly sleep,
2719  * this routine can be called. Lock need not be held to call
2720  * cmd_special_alloc. cmd_special_free() is the complement.
2721  */
2722 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2723 {
2724  struct CommandList *c;
2725  union u64bit temp64;
2726  dma_addr_t cmd_dma_handle, err_dma_handle;
2727 
2728  c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2729  if (c == NULL)
2730  return NULL;
2731  memset(c, 0, sizeof(*c));
2732 
2733  c->cmdindex = -1;
2734 
2735  c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2736  &err_dma_handle);
2737 
2738  if (c->err_info == NULL) {
2740  sizeof(*c), c, cmd_dma_handle);
2741  return NULL;
2742  }
2743  memset(c->err_info, 0, sizeof(*c->err_info));
2744 
2745  INIT_LIST_HEAD(&c->list);
2746  c->busaddr = (u32) cmd_dma_handle;
2747  temp64.val = (u64) err_dma_handle;
2748  c->ErrDesc.Addr.lower = temp64.val32.lower;
2749  c->ErrDesc.Addr.upper = temp64.val32.upper;
2750  c->ErrDesc.Len = sizeof(*c->err_info);
2751 
2752  c->h = h;
2753  return c;
2754 }
2755 
2756 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2757 {
2758  int i;
2759  unsigned long flags;
2760 
2761  i = c - h->cmd_pool;
2762  spin_lock_irqsave(&h->lock, flags);
2763  clear_bit(i & (BITS_PER_LONG - 1),
2764  h->cmd_pool_bits + (i / BITS_PER_LONG));
2765  h->nr_frees++;
2766  spin_unlock_irqrestore(&h->lock, flags);
2767 }
2768 
2769 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2770 {
2771  union u64bit temp64;
2772 
2773  temp64.val32.lower = c->ErrDesc.Addr.lower;
2774  temp64.val32.upper = c->ErrDesc.Addr.upper;
2775  pci_free_consistent(h->pdev, sizeof(*c->err_info),
2776  c->err_info, (dma_addr_t) temp64.val);
2777  pci_free_consistent(h->pdev, sizeof(*c),
2778  c, (dma_addr_t) (c->busaddr & DIRECT_LOOKUP_MASK));
2779 }
2780 
2781 #ifdef CONFIG_COMPAT
2782 
2783 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2784 {
2785  IOCTL32_Command_struct __user *arg32 =
2786  (IOCTL32_Command_struct __user *) arg;
2787  IOCTL_Command_struct arg64;
2789  int err;
2790  u32 cp;
2791 
2792  memset(&arg64, 0, sizeof(arg64));
2793  err = 0;
2794  err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2795  sizeof(arg64.LUN_info));
2796  err |= copy_from_user(&arg64.Request, &arg32->Request,
2797  sizeof(arg64.Request));
2798  err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2799  sizeof(arg64.error_info));
2800  err |= get_user(arg64.buf_size, &arg32->buf_size);
2801  err |= get_user(cp, &arg32->buf);
2802  arg64.buf = compat_ptr(cp);
2803  err |= copy_to_user(p, &arg64, sizeof(arg64));
2804 
2805  if (err)
2806  return -EFAULT;
2807 
2808  err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2809  if (err)
2810  return err;
2811  err |= copy_in_user(&arg32->error_info, &p->error_info,
2812  sizeof(arg32->error_info));
2813  if (err)
2814  return -EFAULT;
2815  return err;
2816 }
2817 
2818 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2819  int cmd, void *arg)
2820 {
2821  BIG_IOCTL32_Command_struct __user *arg32 =
2822  (BIG_IOCTL32_Command_struct __user *) arg;
2825  compat_alloc_user_space(sizeof(arg64));
2826  int err;
2827  u32 cp;
2828 
2829  memset(&arg64, 0, sizeof(arg64));
2830  err = 0;
2831  err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2832  sizeof(arg64.LUN_info));
2833  err |= copy_from_user(&arg64.Request, &arg32->Request,
2834  sizeof(arg64.Request));
2835  err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2836  sizeof(arg64.error_info));
2837  err |= get_user(arg64.buf_size, &arg32->buf_size);
2838  err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2839  err |= get_user(cp, &arg32->buf);
2840  arg64.buf = compat_ptr(cp);
2841  err |= copy_to_user(p, &arg64, sizeof(arg64));
2842 
2843  if (err)
2844  return -EFAULT;
2845 
2846  err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2847  if (err)
2848  return err;
2849  err |= copy_in_user(&arg32->error_info, &p->error_info,
2850  sizeof(arg32->error_info));
2851  if (err)
2852  return -EFAULT;
2853  return err;
2854 }
2855 
2856 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2857 {
2858  switch (cmd) {
2859  case CCISS_GETPCIINFO:
2860  case CCISS_GETINTINFO:
2861  case CCISS_SETINTINFO:
2862  case CCISS_GETNODENAME:
2863  case CCISS_SETNODENAME:
2864  case CCISS_GETHEARTBEAT:
2865  case CCISS_GETBUSTYPES:
2866  case CCISS_GETFIRMVER:
2867  case CCISS_GETDRIVVER:
2868  case CCISS_REVALIDVOLS:
2869  case CCISS_DEREGDISK:
2870  case CCISS_REGNEWDISK:
2871  case CCISS_REGNEWD:
2872  case CCISS_RESCANDISK:
2873  case CCISS_GETLUNINFO:
2874  return hpsa_ioctl(dev, cmd, arg);
2875 
2876  case CCISS_PASSTHRU32:
2877  return hpsa_ioctl32_passthru(dev, cmd, arg);
2878  case CCISS_BIG_PASSTHRU32:
2879  return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2880 
2881  default:
2882  return -ENOIOCTLCMD;
2883  }
2884 }
2885 #endif
2886 
2887 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2888 {
2889  struct hpsa_pci_info pciinfo;
2890 
2891  if (!argp)
2892  return -EINVAL;
2893  pciinfo.domain = pci_domain_nr(h->pdev->bus);
2894  pciinfo.bus = h->pdev->bus->number;
2895  pciinfo.dev_fn = h->pdev->devfn;
2896  pciinfo.board_id = h->board_id;
2897  if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2898  return -EFAULT;
2899  return 0;
2900 }
2901 
2902 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2903 {
2904  DriverVer_type DriverVer;
2905  unsigned char vmaj, vmin, vsubmin;
2906  int rc;
2907 
2908  rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2909  &vmaj, &vmin, &vsubmin);
2910  if (rc != 3) {
2911  dev_info(&h->pdev->dev, "driver version string '%s' "
2912  "unrecognized.", HPSA_DRIVER_VERSION);
2913  vmaj = 0;
2914  vmin = 0;
2915  vsubmin = 0;
2916  }
2917  DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2918  if (!argp)
2919  return -EINVAL;
2920  if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2921  return -EFAULT;
2922  return 0;
2923 }
2924 
2925 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2926 {
2927  IOCTL_Command_struct iocommand;
2928  struct CommandList *c;
2929  char *buff = NULL;
2930  union u64bit temp64;
2931 
2932  if (!argp)
2933  return -EINVAL;
2934  if (!capable(CAP_SYS_RAWIO))
2935  return -EPERM;
2936  if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2937  return -EFAULT;
2938  if ((iocommand.buf_size < 1) &&
2939  (iocommand.Request.Type.Direction != XFER_NONE)) {
2940  return -EINVAL;
2941  }
2942  if (iocommand.buf_size > 0) {
2943  buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2944  if (buff == NULL)
2945  return -EFAULT;
2946  if (iocommand.Request.Type.Direction == XFER_WRITE) {
2947  /* Copy the data into the buffer we created */
2948  if (copy_from_user(buff, iocommand.buf,
2949  iocommand.buf_size)) {
2950  kfree(buff);
2951  return -EFAULT;
2952  }
2953  } else {
2954  memset(buff, 0, iocommand.buf_size);
2955  }
2956  }
2957  c = cmd_special_alloc(h);
2958  if (c == NULL) {
2959  kfree(buff);
2960  return -ENOMEM;
2961  }
2962  /* Fill in the command type */
2963  c->cmd_type = CMD_IOCTL_PEND;
2964  /* Fill in Command Header */
2965  c->Header.ReplyQueue = 0; /* unused in simple mode */
2966  if (iocommand.buf_size > 0) { /* buffer to fill */
2967  c->Header.SGList = 1;
2968  c->Header.SGTotal = 1;
2969  } else { /* no buffers to fill */
2970  c->Header.SGList = 0;
2971  c->Header.SGTotal = 0;
2972  }
2973  memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2974  /* use the kernel address the cmd block for tag */
2975  c->Header.Tag.lower = c->busaddr;
2976 
2977  /* Fill in Request block */
2978  memcpy(&c->Request, &iocommand.Request,
2979  sizeof(c->Request));
2980 
2981  /* Fill in the scatter gather information */
2982  if (iocommand.buf_size > 0) {
2983  temp64.val = pci_map_single(h->pdev, buff,
2984  iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2985  c->SG[0].Addr.lower = temp64.val32.lower;
2986  c->SG[0].Addr.upper = temp64.val32.upper;
2987  c->SG[0].Len = iocommand.buf_size;
2988  c->SG[0].Ext = 0; /* we are not chaining*/
2989  }
2990  hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
2991  if (iocommand.buf_size > 0)
2992  hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2993  check_ioctl_unit_attention(h, c);
2994 
2995  /* Copy the error information out */
2996  memcpy(&iocommand.error_info, c->err_info,
2997  sizeof(iocommand.error_info));
2998  if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2999  kfree(buff);
3000  cmd_special_free(h, c);
3001  return -EFAULT;
3002  }
3003  if (iocommand.Request.Type.Direction == XFER_READ &&
3004  iocommand.buf_size > 0) {
3005  /* Copy the data out of the buffer we created */
3006  if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
3007  kfree(buff);
3008  cmd_special_free(h, c);
3009  return -EFAULT;
3010  }
3011  }
3012  kfree(buff);
3013  cmd_special_free(h, c);
3014  return 0;
3015 }
3016 
3017 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
3018 {
3020  struct CommandList *c;
3021  unsigned char **buff = NULL;
3022  int *buff_size = NULL;
3023  union u64bit temp64;
3024  BYTE sg_used = 0;
3025  int status = 0;
3026  int i;
3027  u32 left;
3028  u32 sz;
3029  BYTE __user *data_ptr;
3030 
3031  if (!argp)
3032  return -EINVAL;
3033  if (!capable(CAP_SYS_RAWIO))
3034  return -EPERM;
3035  ioc = (BIG_IOCTL_Command_struct *)
3036  kmalloc(sizeof(*ioc), GFP_KERNEL);
3037  if (!ioc) {
3038  status = -ENOMEM;
3039  goto cleanup1;
3040  }
3041  if (copy_from_user(ioc, argp, sizeof(*ioc))) {
3042  status = -EFAULT;
3043  goto cleanup1;
3044  }
3045  if ((ioc->buf_size < 1) &&
3046  (ioc->Request.Type.Direction != XFER_NONE)) {
3047  status = -EINVAL;
3048  goto cleanup1;
3049  }
3050  /* Check kmalloc limits using all SGs */
3051  if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
3052  status = -EINVAL;
3053  goto cleanup1;
3054  }
3055  if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
3056  status = -EINVAL;
3057  goto cleanup1;
3058  }
3059  buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
3060  if (!buff) {
3061  status = -ENOMEM;
3062  goto cleanup1;
3063  }
3064  buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
3065  if (!buff_size) {
3066  status = -ENOMEM;
3067  goto cleanup1;
3068  }
3069  left = ioc->buf_size;
3070  data_ptr = ioc->buf;
3071  while (left) {
3072  sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
3073  buff_size[sg_used] = sz;
3074  buff[sg_used] = kmalloc(sz, GFP_KERNEL);
3075  if (buff[sg_used] == NULL) {
3076  status = -ENOMEM;
3077  goto cleanup1;
3078  }
3079  if (ioc->Request.Type.Direction == XFER_WRITE) {
3080  if (copy_from_user(buff[sg_used], data_ptr, sz)) {
3081  status = -ENOMEM;
3082  goto cleanup1;
3083  }
3084  } else
3085  memset(buff[sg_used], 0, sz);
3086  left -= sz;
3087  data_ptr += sz;
3088  sg_used++;
3089  }
3090  c = cmd_special_alloc(h);
3091  if (c == NULL) {
3092  status = -ENOMEM;
3093  goto cleanup1;
3094  }
3095  c->cmd_type = CMD_IOCTL_PEND;
3096  c->Header.ReplyQueue = 0;
3097  c->Header.SGList = c->Header.SGTotal = sg_used;
3098  memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
3099  c->Header.Tag.lower = c->busaddr;
3100  memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
3101  if (ioc->buf_size > 0) {
3102  int i;
3103  for (i = 0; i < sg_used; i++) {
3104  temp64.val = pci_map_single(h->pdev, buff[i],
3105  buff_size[i], PCI_DMA_BIDIRECTIONAL);
3106  c->SG[i].Addr.lower = temp64.val32.lower;
3107  c->SG[i].Addr.upper = temp64.val32.upper;
3108  c->SG[i].Len = buff_size[i];
3109  /* we are not chaining */
3110  c->SG[i].Ext = 0;
3111  }
3112  }
3113  hpsa_scsi_do_simple_cmd_core_if_no_lockup(h, c);
3114  if (sg_used)
3115  hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
3116  check_ioctl_unit_attention(h, c);
3117  /* Copy the error information out */
3118  memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
3119  if (copy_to_user(argp, ioc, sizeof(*ioc))) {
3120  cmd_special_free(h, c);
3121  status = -EFAULT;
3122  goto cleanup1;
3123  }
3124  if (ioc->Request.Type.Direction == XFER_READ && ioc->buf_size > 0) {
3125  /* Copy the data out of the buffer we created */
3126  BYTE __user *ptr = ioc->buf;
3127  for (i = 0; i < sg_used; i++) {
3128  if (copy_to_user(ptr, buff[i], buff_size[i])) {
3129  cmd_special_free(h, c);
3130  status = -EFAULT;
3131  goto cleanup1;
3132  }
3133  ptr += buff_size[i];
3134  }
3135  }
3136  cmd_special_free(h, c);
3137  status = 0;
3138 cleanup1:
3139  if (buff) {
3140  for (i = 0; i < sg_used; i++)
3141  kfree(buff[i]);
3142  kfree(buff);
3143  }
3144  kfree(buff_size);
3145  kfree(ioc);
3146  return status;
3147 }
3148 
3149 static void check_ioctl_unit_attention(struct ctlr_info *h,
3150  struct CommandList *c)
3151 {
3152  if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
3153  c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
3154  (void) check_for_unit_attention(h, c);
3155 }
3156 /*
3157  * ioctl
3158  */
3159 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
3160 {
3161  struct ctlr_info *h;
3162  void __user *argp = (void __user *)arg;
3163 
3164  h = sdev_to_hba(dev);
3165 
3166  switch (cmd) {
3167  case CCISS_DEREGDISK:
3168  case CCISS_REGNEWDISK:
3169  case CCISS_REGNEWD:
3170  hpsa_scan_start(h->scsi_host);
3171  return 0;
3172  case CCISS_GETPCIINFO:
3173  return hpsa_getpciinfo_ioctl(h, argp);
3174  case CCISS_GETDRIVVER:
3175  return hpsa_getdrivver_ioctl(h, argp);
3176  case CCISS_PASSTHRU:
3177  return hpsa_passthru_ioctl(h, argp);
3178  case CCISS_BIG_PASSTHRU:
3179  return hpsa_big_passthru_ioctl(h, argp);
3180  default:
3181  return -ENOTTY;
3182  }
3183 }
3184 
3185 static int __devinit hpsa_send_host_reset(struct ctlr_info *h,
3186  unsigned char *scsi3addr, u8 reset_type)
3187 {
3188  struct CommandList *c;
3189 
3190  c = cmd_alloc(h);
3191  if (!c)
3192  return -ENOMEM;
3193  fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
3195  c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
3196  c->waiting = NULL;
3197  enqueue_cmd_and_start_io(h, c);
3198  /* Don't wait for completion, the reset won't complete. Don't free
3199  * the command either. This is the last command we will send before
3200  * re-initializing everything, so it doesn't matter and won't leak.
3201  */
3202  return 0;
3203 }
3204 
3205 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
3206  void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
3207  int cmd_type)
3208 {
3209  int pci_dir = XFER_NONE;
3210  struct CommandList *a; /* for commands to be aborted */
3211 
3212  c->cmd_type = CMD_IOCTL_PEND;
3213  c->Header.ReplyQueue = 0;
3214  if (buff != NULL && size > 0) {
3215  c->Header.SGList = 1;
3216  c->Header.SGTotal = 1;
3217  } else {
3218  c->Header.SGList = 0;
3219  c->Header.SGTotal = 0;
3220  }
3221  c->Header.Tag.lower = c->busaddr;
3222  memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
3223 
3224  c->Request.Type.Type = cmd_type;
3225  if (cmd_type == TYPE_CMD) {
3226  switch (cmd) {
3227  case HPSA_INQUIRY:
3228  /* are we trying to read a vital product page */
3229  if (page_code != 0) {
3230  c->Request.CDB[1] = 0x01;
3231  c->Request.CDB[2] = page_code;
3232  }
3233  c->Request.CDBLen = 6;
3234  c->Request.Type.Attribute = ATTR_SIMPLE;
3235  c->Request.Type.Direction = XFER_READ;
3236  c->Request.Timeout = 0;
3237  c->Request.CDB[0] = HPSA_INQUIRY;
3238  c->Request.CDB[4] = size & 0xFF;
3239  break;
3240  case HPSA_REPORT_LOG:
3241  case HPSA_REPORT_PHYS:
3242  /* Talking to controller so It's a physical command
3243  mode = 00 target = 0. Nothing to write.
3244  */
3245  c->Request.CDBLen = 12;
3246  c->Request.Type.Attribute = ATTR_SIMPLE;
3247  c->Request.Type.Direction = XFER_READ;
3248  c->Request.Timeout = 0;
3249  c->Request.CDB[0] = cmd;
3250  c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
3251  c->Request.CDB[7] = (size >> 16) & 0xFF;
3252  c->Request.CDB[8] = (size >> 8) & 0xFF;
3253  c->Request.CDB[9] = size & 0xFF;
3254  break;
3255  case HPSA_CACHE_FLUSH:
3256  c->Request.CDBLen = 12;
3257  c->Request.Type.Attribute = ATTR_SIMPLE;
3258  c->Request.Type.Direction = XFER_WRITE;
3259  c->Request.Timeout = 0;
3260  c->Request.CDB[0] = BMIC_WRITE;
3261  c->Request.CDB[6] = BMIC_CACHE_FLUSH;
3262  c->Request.CDB[7] = (size >> 8) & 0xFF;
3263  c->Request.CDB[8] = size & 0xFF;
3264  break;
3265  case TEST_UNIT_READY:
3266  c->Request.CDBLen = 6;
3267  c->Request.Type.Attribute = ATTR_SIMPLE;
3268  c->Request.Type.Direction = XFER_NONE;
3269  c->Request.Timeout = 0;
3270  break;
3271  default:
3272  dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
3273  BUG();
3274  return;
3275  }
3276  } else if (cmd_type == TYPE_MSG) {
3277  switch (cmd) {
3278 
3279  case HPSA_DEVICE_RESET_MSG:
3280  c->Request.CDBLen = 16;
3281  c->Request.Type.Type = 1; /* It is a MSG not a CMD */
3282  c->Request.Type.Attribute = ATTR_SIMPLE;
3283  c->Request.Type.Direction = XFER_NONE;
3284  c->Request.Timeout = 0; /* Don't time out */
3285  memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
3286  c->Request.CDB[0] = cmd;
3287  c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
3288  /* If bytes 4-7 are zero, it means reset the */
3289  /* LunID device */
3290  c->Request.CDB[4] = 0x00;
3291  c->Request.CDB[5] = 0x00;
3292  c->Request.CDB[6] = 0x00;
3293  c->Request.CDB[7] = 0x00;
3294  break;
3295  case HPSA_ABORT_MSG:
3296  a = buff; /* point to command to be aborted */
3297  dev_dbg(&h->pdev->dev, "Abort Tag:0x%08x:%08x using request Tag:0x%08x:%08x\n",
3298  a->Header.Tag.upper, a->Header.Tag.lower,
3299  c->Header.Tag.upper, c->Header.Tag.lower);
3300  c->Request.CDBLen = 16;
3301  c->Request.Type.Type = TYPE_MSG;
3302  c->Request.Type.Attribute = ATTR_SIMPLE;
3303  c->Request.Type.Direction = XFER_WRITE;
3304  c->Request.Timeout = 0; /* Don't time out */
3305  c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
3306  c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
3307  c->Request.CDB[2] = 0x00; /* reserved */
3308  c->Request.CDB[3] = 0x00; /* reserved */
3309  /* Tag to abort goes in CDB[4]-CDB[11] */
3310  c->Request.CDB[4] = a->Header.Tag.lower & 0xFF;
3311  c->Request.CDB[5] = (a->Header.Tag.lower >> 8) & 0xFF;
3312  c->Request.CDB[6] = (a->Header.Tag.lower >> 16) & 0xFF;
3313  c->Request.CDB[7] = (a->Header.Tag.lower >> 24) & 0xFF;
3314  c->Request.CDB[8] = a->Header.Tag.upper & 0xFF;
3315  c->Request.CDB[9] = (a->Header.Tag.upper >> 8) & 0xFF;
3316  c->Request.CDB[10] = (a->Header.Tag.upper >> 16) & 0xFF;
3317  c->Request.CDB[11] = (a->Header.Tag.upper >> 24) & 0xFF;
3318  c->Request.CDB[12] = 0x00; /* reserved */
3319  c->Request.CDB[13] = 0x00; /* reserved */
3320  c->Request.CDB[14] = 0x00; /* reserved */
3321  c->Request.CDB[15] = 0x00; /* reserved */
3322  break;
3323  default:
3324  dev_warn(&h->pdev->dev, "unknown message type %d\n",
3325  cmd);
3326  BUG();
3327  }
3328  } else {
3329  dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
3330  BUG();
3331  }
3332 
3333  switch (c->Request.Type.Direction) {
3334  case XFER_READ:
3335  pci_dir = PCI_DMA_FROMDEVICE;
3336  break;
3337  case XFER_WRITE:
3338  pci_dir = PCI_DMA_TODEVICE;
3339  break;
3340  case XFER_NONE:
3341  pci_dir = PCI_DMA_NONE;
3342  break;
3343  default:
3344  pci_dir = PCI_DMA_BIDIRECTIONAL;
3345  }
3346 
3347  hpsa_map_one(h->pdev, c, buff, size, pci_dir);
3348 
3349  return;
3350 }
3351 
3352 /*
3353  * Map (physical) PCI mem into (virtual) kernel space
3354  */
3355 static void __iomem *remap_pci_mem(ulong base, ulong size)
3356 {
3357  ulong page_base = ((ulong) base) & PAGE_MASK;
3358  ulong page_offs = ((ulong) base) - page_base;
3359  void __iomem *page_remapped = ioremap_nocache(page_base,
3360  page_offs + size);
3361 
3362  return page_remapped ? (page_remapped + page_offs) : NULL;
3363 }
3364 
3365 /* Takes cmds off the submission queue and sends them to the hardware,
3366  * then puts them on the queue of cmds waiting for completion.
3367  */
3368 static void start_io(struct ctlr_info *h)
3369 {
3370  struct CommandList *c;
3371  unsigned long flags;
3372 
3373  spin_lock_irqsave(&h->lock, flags);
3374  while (!list_empty(&h->reqQ)) {
3375  c = list_entry(h->reqQ.next, struct CommandList, list);
3376  /* can't do anything if fifo is full */
3377  if ((h->access.fifo_full(h))) {
3378  dev_warn(&h->pdev->dev, "fifo full\n");
3379  break;
3380  }
3381 
3382  /* Get the first entry from the Request Q */
3383  removeQ(c);
3384  h->Qdepth--;
3385 
3386  /* Put job onto the completed Q */
3387  addQ(&h->cmpQ, c);
3388 
3389  /* Must increment commands_outstanding before unlocking
3390  * and submitting to avoid race checking for fifo full
3391  * condition.
3392  */
3393  h->commands_outstanding++;
3396 
3397  /* Tell the controller execute command */
3398  spin_unlock_irqrestore(&h->lock, flags);
3399  h->access.submit_command(h, c);
3400  spin_lock_irqsave(&h->lock, flags);
3401  }
3402  spin_unlock_irqrestore(&h->lock, flags);
3403 }
3404 
3405 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
3406 {
3407  return h->access.command_completed(h, q);
3408 }
3409 
3410 static inline bool interrupt_pending(struct ctlr_info *h)
3411 {
3412  return h->access.intr_pending(h);
3413 }
3414 
3415 static inline long interrupt_not_for_us(struct ctlr_info *h)
3416 {
3417  return (h->access.intr_pending(h) == 0) ||
3418  (h->interrupts_enabled == 0);
3419 }
3420 
3421 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
3422  u32 raw_tag)
3423 {
3424  if (unlikely(tag_index >= h->nr_cmds)) {
3425  dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
3426  return 1;
3427  }
3428  return 0;
3429 }
3430 
3431 static inline void finish_cmd(struct CommandList *c)
3432 {
3433  unsigned long flags;
3434 
3435  spin_lock_irqsave(&c->h->lock, flags);
3436  removeQ(c);
3437  spin_unlock_irqrestore(&c->h->lock, flags);
3438  dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
3439  if (likely(c->cmd_type == CMD_SCSI))
3440  complete_scsi_command(c);
3441  else if (c->cmd_type == CMD_IOCTL_PEND)
3442  complete(c->waiting);
3443 }
3444 
3445 static inline u32 hpsa_tag_contains_index(u32 tag)
3446 {
3447  return tag & DIRECT_LOOKUP_BIT;
3448 }
3449 
3450 static inline u32 hpsa_tag_to_index(u32 tag)
3451 {
3452  return tag >> DIRECT_LOOKUP_SHIFT;
3453 }
3454 
3455 
3456 static inline u32 hpsa_tag_discard_error_bits(struct ctlr_info *h, u32 tag)
3457 {
3458 #define HPSA_PERF_ERROR_BITS ((1 << DIRECT_LOOKUP_SHIFT) - 1)
3459 #define HPSA_SIMPLE_ERROR_BITS 0x03
3461  return tag & ~HPSA_SIMPLE_ERROR_BITS;
3462  return tag & ~HPSA_PERF_ERROR_BITS;
3463 }
3464 
3465 /* process completion of an indexed ("direct lookup") command */
3466 static inline void process_indexed_cmd(struct ctlr_info *h,
3467  u32 raw_tag)
3468 {
3469  u32 tag_index;
3470  struct CommandList *c;
3471 
3472  tag_index = hpsa_tag_to_index(raw_tag);
3473  if (!bad_tag(h, tag_index, raw_tag)) {
3474  c = h->cmd_pool + tag_index;
3475  finish_cmd(c);
3476  }
3477 }
3478 
3479 /* process completion of a non-indexed command */
3480 static inline void process_nonindexed_cmd(struct ctlr_info *h,
3481  u32 raw_tag)
3482 {
3483  u32 tag;
3484  struct CommandList *c = NULL;
3485  unsigned long flags;
3486 
3487  tag = hpsa_tag_discard_error_bits(h, raw_tag);
3488  spin_lock_irqsave(&h->lock, flags);
3489  list_for_each_entry(c, &h->cmpQ, list) {
3490  if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
3491  spin_unlock_irqrestore(&h->lock, flags);
3492  finish_cmd(c);
3493  return;
3494  }
3495  }
3496  spin_unlock_irqrestore(&h->lock, flags);
3497  bad_tag(h, h->nr_cmds + 1, raw_tag);
3498 }
3499 
3500 /* Some controllers, like p400, will give us one interrupt
3501  * after a soft reset, even if we turned interrupts off.
3502  * Only need to check for this in the hpsa_xxx_discard_completions
3503  * functions.
3504  */
3505 static int ignore_bogus_interrupt(struct ctlr_info *h)
3506 {
3507  if (likely(!reset_devices))
3508  return 0;
3509 
3510  if (likely(h->interrupts_enabled))
3511  return 0;
3512 
3513  dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
3514  "(known firmware bug.) Ignoring.\n");
3515 
3516  return 1;
3517 }
3518 
3519 /*
3520  * Convert &h->q[x] (passed to interrupt handlers) back to h.
3521  * Relies on (h-q[x] == x) being true for x such that
3522  * 0 <= x < MAX_REPLY_QUEUES.
3523  */
3524 static struct ctlr_info *queue_to_hba(u8 *queue)
3525 {
3526  return container_of((queue - *queue), struct ctlr_info, q[0]);
3527 }
3528 
3529 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
3530 {
3531  struct ctlr_info *h = queue_to_hba(queue);
3532  u8 q = *(u8 *) queue;
3533  u32 raw_tag;
3534 
3535  if (ignore_bogus_interrupt(h))
3536  return IRQ_NONE;
3537 
3538  if (interrupt_not_for_us(h))
3539  return IRQ_NONE;
3541  while (interrupt_pending(h)) {
3542  raw_tag = get_next_completion(h, q);
3543  while (raw_tag != FIFO_EMPTY)
3544  raw_tag = next_command(h, q);
3545  }
3546  return IRQ_HANDLED;
3547 }
3548 
3549 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
3550 {
3551  struct ctlr_info *h = queue_to_hba(queue);
3552  u32 raw_tag;
3553  u8 q = *(u8 *) queue;
3554 
3555  if (ignore_bogus_interrupt(h))
3556  return IRQ_NONE;
3557 
3559  raw_tag = get_next_completion(h, q);
3560  while (raw_tag != FIFO_EMPTY)
3561  raw_tag = next_command(h, q);
3562  return IRQ_HANDLED;
3563 }
3564 
3565 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
3566 {
3567  struct ctlr_info *h = queue_to_hba((u8 *) queue);
3568  u32 raw_tag;
3569  u8 q = *(u8 *) queue;
3570 
3571  if (interrupt_not_for_us(h))
3572  return IRQ_NONE;
3574  while (interrupt_pending(h)) {
3575  raw_tag = get_next_completion(h, q);
3576  while (raw_tag != FIFO_EMPTY) {
3577  if (likely(hpsa_tag_contains_index(raw_tag)))
3578  process_indexed_cmd(h, raw_tag);
3579  else
3580  process_nonindexed_cmd(h, raw_tag);
3581  raw_tag = next_command(h, q);
3582  }
3583  }
3584  return IRQ_HANDLED;
3585 }
3586 
3587 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
3588 {
3589  struct ctlr_info *h = queue_to_hba(queue);
3590  u32 raw_tag;
3591  u8 q = *(u8 *) queue;
3592 
3594  raw_tag = get_next_completion(h, q);
3595  while (raw_tag != FIFO_EMPTY) {
3596  if (likely(hpsa_tag_contains_index(raw_tag)))
3597  process_indexed_cmd(h, raw_tag);
3598  else
3599  process_nonindexed_cmd(h, raw_tag);
3600  raw_tag = next_command(h, q);
3601  }
3602  return IRQ_HANDLED;
3603 }
3604 
3605 /* Send a message CDB to the firmware. Careful, this only works
3606  * in simple mode, not performant mode due to the tag lookup.
3607  * We only ever use this immediately after a controller reset.
3608  */
3609 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
3610  unsigned char type)
3611 {
3612  struct Command {
3613  struct CommandListHeader CommandHeader;
3614  struct RequestBlock Request;
3615  struct ErrDescriptor ErrorDescriptor;
3616  };
3617  struct Command *cmd;
3618  static const size_t cmd_sz = sizeof(*cmd) +
3619  sizeof(cmd->ErrorDescriptor);
3620  dma_addr_t paddr64;
3621  uint32_t paddr32, tag;
3622  void __iomem *vaddr;
3623  int i, err;
3624 
3625  vaddr = pci_ioremap_bar(pdev, 0);
3626  if (vaddr == NULL)
3627  return -ENOMEM;
3628 
3629  /* The Inbound Post Queue only accepts 32-bit physical addresses for the
3630  * CCISS commands, so they must be allocated from the lower 4GiB of
3631  * memory.
3632  */
3633  err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3634  if (err) {
3635  iounmap(vaddr);
3636  return -ENOMEM;
3637  }
3638 
3639  cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3640  if (cmd == NULL) {
3641  iounmap(vaddr);
3642  return -ENOMEM;
3643  }
3644 
3645  /* This must fit, because of the 32-bit consistent DMA mask. Also,
3646  * although there's no guarantee, we assume that the address is at
3647  * least 4-byte aligned (most likely, it's page-aligned).
3648  */
3649  paddr32 = paddr64;
3650 
3651  cmd->CommandHeader.ReplyQueue = 0;
3652  cmd->CommandHeader.SGList = 0;
3653  cmd->CommandHeader.SGTotal = 0;
3654  cmd->CommandHeader.Tag.lower = paddr32;
3655  cmd->CommandHeader.Tag.upper = 0;
3656  memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3657 
3658  cmd->Request.CDBLen = 16;
3659  cmd->Request.Type.Type = TYPE_MSG;
3660  cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3661  cmd->Request.Type.Direction = XFER_NONE;
3662  cmd->Request.Timeout = 0; /* Don't time out */
3663  cmd->Request.CDB[0] = opcode;
3664  cmd->Request.CDB[1] = type;
3665  memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3666  cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3667  cmd->ErrorDescriptor.Addr.upper = 0;
3668  cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3669 
3670  writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3671 
3672  for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3673  tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3674  if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr32)
3675  break;
3677  }
3678 
3679  iounmap(vaddr);
3680 
3681  /* we leak the DMA buffer here ... no choice since the controller could
3682  * still complete the command.
3683  */
3684  if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3685  dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3686  opcode, type);
3687  return -ETIMEDOUT;
3688  }
3689 
3690  pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3691 
3692  if (tag & HPSA_ERROR_BIT) {
3693  dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3694  opcode, type);
3695  return -EIO;
3696  }
3697 
3698  dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3699  opcode, type);
3700  return 0;
3701 }
3702 
3703 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3704 
3705 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3706  void * __iomem vaddr, u32 use_doorbell)
3707 {
3708  u16 pmcsr;
3709  int pos;
3710 
3711  if (use_doorbell) {
3712  /* For everything after the P600, the PCI power state method
3713  * of resetting the controller doesn't work, so we have this
3714  * other way using the doorbell register.
3715  */
3716  dev_info(&pdev->dev, "using doorbell to reset controller\n");
3717  writel(use_doorbell, vaddr + SA5_DOORBELL);
3718  } else { /* Try to do it the PCI power state way */
3719 
3720  /* Quoting from the Open CISS Specification: "The Power
3721  * Management Control/Status Register (CSR) controls the power
3722  * state of the device. The normal operating state is D0,
3723  * CSR=00h. The software off state is D3, CSR=03h. To reset
3724  * the controller, place the interface device in D3 then to D0,
3725  * this causes a secondary PCI reset which will reset the
3726  * controller." */
3727 
3728  pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3729  if (pos == 0) {
3730  dev_err(&pdev->dev,
3731  "hpsa_reset_controller: "
3732  "PCI PM not supported\n");
3733  return -ENODEV;
3734  }
3735  dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3736  /* enter the D3hot power management state */
3737  pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3738  pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3739  pmcsr |= PCI_D3hot;
3740  pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3741 
3742  msleep(500);
3743 
3744  /* enter the D0 power management state */
3745  pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3746  pmcsr |= PCI_D0;
3747  pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3748 
3749  /*
3750  * The P600 requires a small delay when changing states.
3751  * Otherwise we may think the board did not reset and we bail.
3752  * This for kdump only and is particular to the P600.
3753  */
3754  msleep(500);
3755  }
3756  return 0;
3757 }
3758 
3759 static __devinit void init_driver_version(char *driver_version, int len)
3760 {
3761  memset(driver_version, 0, len);
3762  strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
3763 }
3764 
3765 static __devinit int write_driver_ver_to_cfgtable(
3766  struct CfgTable __iomem *cfgtable)
3767 {
3768  char *driver_version;
3769  int i, size = sizeof(cfgtable->driver_version);
3770 
3771  driver_version = kmalloc(size, GFP_KERNEL);
3772  if (!driver_version)
3773  return -ENOMEM;
3774 
3775  init_driver_version(driver_version, size);
3776  for (i = 0; i < size; i++)
3777  writeb(driver_version[i], &cfgtable->driver_version[i]);
3778  kfree(driver_version);
3779  return 0;
3780 }
3781 
3782 static __devinit void read_driver_ver_from_cfgtable(
3783  struct CfgTable __iomem *cfgtable, unsigned char *driver_ver)
3784 {
3785  int i;
3786 
3787  for (i = 0; i < sizeof(cfgtable->driver_version); i++)
3788  driver_ver[i] = readb(&cfgtable->driver_version[i]);
3789 }
3790 
3791 static __devinit int controller_reset_failed(
3792  struct CfgTable __iomem *cfgtable)
3793 {
3794 
3795  char *driver_ver, *old_driver_ver;
3796  int rc, size = sizeof(cfgtable->driver_version);
3797 
3798  old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
3799  if (!old_driver_ver)
3800  return -ENOMEM;
3801  driver_ver = old_driver_ver + size;
3802 
3803  /* After a reset, the 32 bytes of "driver version" in the cfgtable
3804  * should have been changed, otherwise we know the reset failed.
3805  */
3806  init_driver_version(old_driver_ver, size);
3807  read_driver_ver_from_cfgtable(cfgtable, driver_ver);
3808  rc = !memcmp(driver_ver, old_driver_ver, size);
3809  kfree(old_driver_ver);
3810  return rc;
3811 }
3812 /* This does a hard reset of the controller using PCI power management
3813  * states or the using the doorbell register.
3814  */
3815 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3816 {
3817  u64 cfg_offset;
3818  u32 cfg_base_addr;
3819  u64 cfg_base_addr_index;
3820  void __iomem *vaddr;
3821  unsigned long paddr;
3822  u32 misc_fw_support;
3823  int rc;
3824  struct CfgTable __iomem *cfgtable;
3825  u32 use_doorbell;
3826  u32 board_id;
3827  u16 command_register;
3828 
3829  /* For controllers as old as the P600, this is very nearly
3830  * the same thing as
3831  *
3832  * pci_save_state(pci_dev);
3833  * pci_set_power_state(pci_dev, PCI_D3hot);
3834  * pci_set_power_state(pci_dev, PCI_D0);
3835  * pci_restore_state(pci_dev);
3836  *
3837  * For controllers newer than the P600, the pci power state
3838  * method of resetting doesn't work so we have another way
3839  * using the doorbell register.
3840  */
3841 
3842  rc = hpsa_lookup_board_id(pdev, &board_id);
3843  if (rc < 0 || !ctlr_is_resettable(board_id)) {
3844  dev_warn(&pdev->dev, "Not resetting device.\n");
3845  return -ENODEV;
3846  }
3847 
3848  /* if controller is soft- but not hard resettable... */
3849  if (!ctlr_is_hard_resettable(board_id))
3850  return -ENOTSUPP; /* try soft reset later. */
3851 
3852  /* Save the PCI command register */
3853  pci_read_config_word(pdev, 4, &command_register);
3854  /* Turn the board off. This is so that later pci_restore_state()
3855  * won't turn the board on before the rest of config space is ready.
3856  */
3857  pci_disable_device(pdev);
3858  pci_save_state(pdev);
3859 
3860  /* find the first memory BAR, so we can find the cfg table */
3861  rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3862  if (rc)
3863  return rc;
3864  vaddr = remap_pci_mem(paddr, 0x250);
3865  if (!vaddr)
3866  return -ENOMEM;
3867 
3868  /* find cfgtable in order to check if reset via doorbell is supported */
3869  rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3870  &cfg_base_addr_index, &cfg_offset);
3871  if (rc)
3872  goto unmap_vaddr;
3873  cfgtable = remap_pci_mem(pci_resource_start(pdev,
3874  cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3875  if (!cfgtable) {
3876  rc = -ENOMEM;
3877  goto unmap_vaddr;
3878  }
3879  rc = write_driver_ver_to_cfgtable(cfgtable);
3880  if (rc)
3881  goto unmap_vaddr;
3882 
3883  /* If reset via doorbell register is supported, use that.
3884  * There are two such methods. Favor the newest method.
3885  */
3886  misc_fw_support = readl(&cfgtable->misc_fw_support);
3887  use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
3888  if (use_doorbell) {
3889  use_doorbell = DOORBELL_CTLR_RESET2;
3890  } else {
3891  use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3892  if (use_doorbell) {
3893  dev_warn(&pdev->dev, "Soft reset not supported. "
3894  "Firmware update is required.\n");
3895  rc = -ENOTSUPP; /* try soft reset */
3896  goto unmap_cfgtable;
3897  }
3898  }
3899 
3900  rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3901  if (rc)
3902  goto unmap_cfgtable;
3903 
3904  pci_restore_state(pdev);
3905  rc = pci_enable_device(pdev);
3906  if (rc) {
3907  dev_warn(&pdev->dev, "failed to enable device.\n");
3908  goto unmap_cfgtable;
3909  }
3910  pci_write_config_word(pdev, 4, command_register);
3911 
3912  /* Some devices (notably the HP Smart Array 5i Controller)
3913  need a little pause here */
3915 
3916  /* Wait for board to become not ready, then ready. */
3917  dev_info(&pdev->dev, "Waiting for board to reset.\n");
3918  rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_NOT_READY);
3919  if (rc) {
3920  dev_warn(&pdev->dev,
3921  "failed waiting for board to reset."
3922  " Will try soft reset.\n");
3923  rc = -ENOTSUPP; /* Not expected, but try soft reset later */
3924  goto unmap_cfgtable;
3925  }
3926  rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
3927  if (rc) {
3928  dev_warn(&pdev->dev,
3929  "failed waiting for board to become ready "
3930  "after hard reset\n");
3931  goto unmap_cfgtable;
3932  }
3933 
3934  rc = controller_reset_failed(vaddr);
3935  if (rc < 0)
3936  goto unmap_cfgtable;
3937  if (rc) {
3938  dev_warn(&pdev->dev, "Unable to successfully reset "
3939  "controller. Will try soft reset.\n");
3940  rc = -ENOTSUPP;
3941  } else {
3942  dev_info(&pdev->dev, "board ready after hard reset.\n");
3943  }
3944 
3945 unmap_cfgtable:
3946  iounmap(cfgtable);
3947 
3948 unmap_vaddr:
3949  iounmap(vaddr);
3950  return rc;
3951 }
3952 
3953 /*
3954  * We cannot read the structure directly, for portability we must use
3955  * the io functions.
3956  * This is for debug only.
3957  */
3958 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3959 {
3960 #ifdef HPSA_DEBUG
3961  int i;
3962  char temp_name[17];
3963 
3964  dev_info(dev, "Controller Configuration information\n");
3965  dev_info(dev, "------------------------------------\n");
3966  for (i = 0; i < 4; i++)
3967  temp_name[i] = readb(&(tb->Signature[i]));
3968  temp_name[4] = '\0';
3969  dev_info(dev, " Signature = %s\n", temp_name);
3970  dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3971  dev_info(dev, " Transport methods supported = 0x%x\n",
3972  readl(&(tb->TransportSupport)));
3973  dev_info(dev, " Transport methods active = 0x%x\n",
3974  readl(&(tb->TransportActive)));
3975  dev_info(dev, " Requested transport Method = 0x%x\n",
3976  readl(&(tb->HostWrite.TransportRequest)));
3977  dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3978  readl(&(tb->HostWrite.CoalIntDelay)));
3979  dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3980  readl(&(tb->HostWrite.CoalIntCount)));
3981  dev_info(dev, " Max outstanding commands = 0x%d\n",
3982  readl(&(tb->CmdsOutMax)));
3983  dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3984  for (i = 0; i < 16; i++)
3985  temp_name[i] = readb(&(tb->ServerName[i]));
3986  temp_name[16] = '\0';
3987  dev_info(dev, " Server Name = %s\n", temp_name);
3988  dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3989  readl(&(tb->HeartBeat)));
3990 #endif /* HPSA_DEBUG */
3991 }
3992 
3993 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3994 {
3995  int i, offset, mem_type, bar_type;
3996 
3997  if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3998  return 0;
3999  offset = 0;
4000  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
4001  bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
4002  if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
4003  offset += 4;
4004  else {
4005  mem_type = pci_resource_flags(pdev, i) &
4007  switch (mem_type) {
4010  offset += 4; /* 32 bit */
4011  break;
4013  offset += 8;
4014  break;
4015  default: /* reserved in PCI 2.2 */
4016  dev_warn(&pdev->dev,
4017  "base address is invalid\n");
4018  return -1;
4019  break;
4020  }
4021  }
4022  if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
4023  return i + 1;
4024  }
4025  return -1;
4026 }
4027 
4028 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
4029  * controllers that are capable. If not, we use IO-APIC mode.
4030  */
4031 
4032 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
4033 {
4034 #ifdef CONFIG_PCI_MSI
4035  int err, i;
4036  struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
4037 
4038  for (i = 0; i < MAX_REPLY_QUEUES; i++) {
4039  hpsa_msix_entries[i].vector = 0;
4040  hpsa_msix_entries[i].entry = i;
4041  }
4042 
4043  /* Some boards advertise MSI but don't really support it */
4044  if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
4045  (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
4046  goto default_int_mode;
4048  dev_info(&h->pdev->dev, "MSIX\n");
4049  err = pci_enable_msix(h->pdev, hpsa_msix_entries,
4050  MAX_REPLY_QUEUES);
4051  if (!err) {
4052  for (i = 0; i < MAX_REPLY_QUEUES; i++)
4053  h->intr[i] = hpsa_msix_entries[i].vector;
4054  h->msix_vector = 1;
4055  return;
4056  }
4057  if (err > 0) {
4058  dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
4059  "available\n", err);
4060  goto default_int_mode;
4061  } else {
4062  dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
4063  err);
4064  goto default_int_mode;
4065  }
4066  }
4068  dev_info(&h->pdev->dev, "MSI\n");
4069  if (!pci_enable_msi(h->pdev))
4070  h->msi_vector = 1;
4071  else
4072  dev_warn(&h->pdev->dev, "MSI init failed\n");
4073  }
4074 default_int_mode:
4075 #endif /* CONFIG_PCI_MSI */
4076  /* if we get here we're going to use the default interrupt mode */
4077  h->intr[h->intr_mode] = h->pdev->irq;
4078 }
4079 
4080 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
4081 {
4082  int i;
4083  u32 subsystem_vendor_id, subsystem_device_id;
4084 
4085  subsystem_vendor_id = pdev->subsystem_vendor;
4086  subsystem_device_id = pdev->subsystem_device;
4087  *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
4088  subsystem_vendor_id;
4089 
4090  for (i = 0; i < ARRAY_SIZE(products); i++)
4091  if (*board_id == products[i].board_id)
4092  return i;
4093 
4094  if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
4095  subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
4096  !hpsa_allow_any) {
4097  dev_warn(&pdev->dev, "unrecognized board ID: "
4098  "0x%08x, ignoring.\n", *board_id);
4099  return -ENODEV;
4100  }
4101  return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
4102 }
4103 
4104 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
4105  unsigned long *memory_bar)
4106 {
4107  int i;
4108 
4109  for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
4110  if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
4111  /* addressing mode bits already removed */
4112  *memory_bar = pci_resource_start(pdev, i);
4113  dev_dbg(&pdev->dev, "memory BAR = %lx\n",
4114  *memory_bar);
4115  return 0;
4116  }
4117  dev_warn(&pdev->dev, "no memory BAR found\n");
4118  return -ENODEV;
4119 }
4120 
4121 static int __devinit hpsa_wait_for_board_state(struct pci_dev *pdev,
4122  void __iomem *vaddr, int wait_for_ready)
4123 {
4124  int i, iterations;
4125  u32 scratchpad;
4126  if (wait_for_ready)
4127  iterations = HPSA_BOARD_READY_ITERATIONS;
4128  else
4129  iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
4130 
4131  for (i = 0; i < iterations; i++) {
4132  scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
4133  if (wait_for_ready) {
4134  if (scratchpad == HPSA_FIRMWARE_READY)
4135  return 0;
4136  } else {
4137  if (scratchpad != HPSA_FIRMWARE_READY)
4138  return 0;
4139  }
4141  }
4142  dev_warn(&pdev->dev, "board not ready, timed out.\n");
4143  return -ENODEV;
4144 }
4145 
4146 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
4147  void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
4148  u64 *cfg_offset)
4149 {
4150  *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
4151  *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
4152  *cfg_base_addr &= (u32) 0x0000ffff;
4153  *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
4154  if (*cfg_base_addr_index == -1) {
4155  dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
4156  return -ENODEV;
4157  }
4158  return 0;
4159 }
4160 
4161 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
4162 {
4163  u64 cfg_offset;
4164  u32 cfg_base_addr;
4165  u64 cfg_base_addr_index;
4166  u32 trans_offset;
4167  int rc;
4168 
4169  rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
4170  &cfg_base_addr_index, &cfg_offset);
4171  if (rc)
4172  return rc;
4173  h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
4174  cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
4175  if (!h->cfgtable)
4176  return -ENOMEM;
4177  rc = write_driver_ver_to_cfgtable(h->cfgtable);
4178  if (rc)
4179  return rc;
4180  /* Find performant mode table. */
4181  trans_offset = readl(&h->cfgtable->TransMethodOffset);
4182  h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
4183  cfg_base_addr_index)+cfg_offset+trans_offset,
4184  sizeof(*h->transtable));
4185  if (!h->transtable)
4186  return -ENOMEM;
4187  return 0;
4188 }
4189 
4190 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
4191 {
4193 
4194  /* Limit commands in memory limited kdump scenario. */
4195  if (reset_devices && h->max_commands > 32)
4196  h->max_commands = 32;
4197 
4198  if (h->max_commands < 16) {
4199  dev_warn(&h->pdev->dev, "Controller reports "
4200  "max supported commands of %d, an obvious lie. "
4201  "Using 16. Ensure that firmware is up to date.\n",
4202  h->max_commands);
4203  h->max_commands = 16;
4204  }
4205 }
4206 
4207 /* Interrogate the hardware for some limits:
4208  * max commands, max SG elements without chaining, and with chaining,
4209  * SG chain block size, etc.
4210  */
4211 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
4212 {
4213  hpsa_get_max_perf_mode_cmds(h);
4214  h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
4215  h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
4216  /*
4217  * Limit in-command s/g elements to 32 save dma'able memory.
4218  * Howvever spec says if 0, use 31
4219  */
4220  h->max_cmd_sg_entries = 31;
4221  if (h->maxsgentries > 512) {
4222  h->max_cmd_sg_entries = 32;
4223  h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
4224  h->maxsgentries--; /* save one for chain pointer */
4225  } else {
4226  h->maxsgentries = 31; /* default to traditional values */
4227  h->chainsize = 0;
4228  }
4229 
4230  /* Find out what task management functions are supported and cache */
4231  h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
4232 }
4233 
4234 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
4235 {
4236  if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
4237  dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
4238  return false;
4239  }
4240  return true;
4241 }
4242 
4243 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4244 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
4245 {
4246 #ifdef CONFIG_X86
4247  u32 prefetch;
4248 
4249  prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
4250  prefetch |= 0x100;
4251  writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
4252 #endif
4253 }
4254 
4255 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4256  * in a prefetch beyond physical memory.
4257  */
4258 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
4259 {
4260  u32 dma_prefetch;
4261 
4262  if (h->board_id != 0x3225103C)
4263  return;
4264  dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
4265  dma_prefetch |= 0x8000;
4266  writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
4267 }
4268 
4269 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
4270 {
4271  int i;
4272  u32 doorbell_value;
4273  unsigned long flags;
4274 
4275  /* under certain very rare conditions, this can take awhile.
4276  * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
4277  * as we enter this code.)
4278  */
4279  for (i = 0; i < MAX_CONFIG_WAIT; i++) {
4280  spin_lock_irqsave(&h->lock, flags);
4281  doorbell_value = readl(h->vaddr + SA5_DOORBELL);
4282  spin_unlock_irqrestore(&h->lock, flags);
4283  if (!(doorbell_value & CFGTBL_ChangeReq))
4284  break;
4285  /* delay and try again */
4286  usleep_range(10000, 20000);
4287  }
4288 }
4289 
4290 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
4291 {
4292  u32 trans_support;
4293 
4294  trans_support = readl(&(h->cfgtable->TransportSupport));
4295  if (!(trans_support & SIMPLE_MODE))
4296  return -ENOTSUPP;
4297 
4298  h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
4299  /* Update the field, and then ring the doorbell */
4302  hpsa_wait_for_mode_change_ack(h);
4303  print_cfg_table(&h->pdev->dev, h->cfgtable);
4305  dev_warn(&h->pdev->dev,
4306  "unable to get board into simple mode\n");
4307  return -ENODEV;
4308  }
4310  return 0;
4311 }
4312 
4313 static int __devinit hpsa_pci_init(struct ctlr_info *h)
4314 {
4315  int prod_index, err;
4316 
4317  prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
4318  if (prod_index < 0)
4319  return -ENODEV;
4320  h->product_name = products[prod_index].product_name;
4321  h->access = *(products[prod_index].access);
4322 
4325 
4326  err = pci_enable_device(h->pdev);
4327  if (err) {
4328  dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
4329  return err;
4330  }
4331 
4332  /* Enable bus mastering (pci_disable_device may disable this) */
4333  pci_set_master(h->pdev);
4334 
4335  err = pci_request_regions(h->pdev, HPSA);
4336  if (err) {
4337  dev_err(&h->pdev->dev,
4338  "cannot obtain PCI resources, aborting\n");
4339  return err;
4340  }
4341  hpsa_interrupt_mode(h);
4342  err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
4343  if (err)
4344  goto err_out_free_res;
4345  h->vaddr = remap_pci_mem(h->paddr, 0x250);
4346  if (!h->vaddr) {
4347  err = -ENOMEM;
4348  goto err_out_free_res;
4349  }
4350  err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
4351  if (err)
4352  goto err_out_free_res;
4353  err = hpsa_find_cfgtables(h);
4354  if (err)
4355  goto err_out_free_res;
4356  hpsa_find_board_params(h);
4357 
4358  if (!hpsa_CISS_signature_present(h)) {
4359  err = -ENODEV;
4360  goto err_out_free_res;
4361  }
4362  hpsa_enable_scsi_prefetch(h);
4363  hpsa_p600_dma_prefetch_quirk(h);
4364  err = hpsa_enter_simple_mode(h);
4365  if (err)
4366  goto err_out_free_res;
4367  return 0;
4368 
4369 err_out_free_res:
4370  if (h->transtable)
4371  iounmap(h->transtable);
4372  if (h->cfgtable)
4373  iounmap(h->cfgtable);
4374  if (h->vaddr)
4375  iounmap(h->vaddr);
4378  return err;
4379 }
4380 
4381 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
4382 {
4383  int rc;
4384 
4385 #define HBA_INQUIRY_BYTE_COUNT 64
4386  h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
4387  if (!h->hba_inquiry_data)
4388  return;
4389  rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
4390  h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
4391  if (rc != 0) {
4392  kfree(h->hba_inquiry_data);
4393  h->hba_inquiry_data = NULL;
4394  }
4395 }
4396 
4397 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
4398 {
4399  int rc, i;
4400 
4401  if (!reset_devices)
4402  return 0;
4403 
4404  /* Reset the controller with a PCI power-cycle or via doorbell */
4405  rc = hpsa_kdump_hard_reset_controller(pdev);
4406 
4407  /* -ENOTSUPP here means we cannot reset the controller
4408  * but it's already (and still) up and running in
4409  * "performant mode". Or, it might be 640x, which can't reset
4410  * due to concerns about shared bbwc between 6402/6404 pair.
4411  */
4412  if (rc == -ENOTSUPP)
4413  return rc; /* just try to do the kdump anyhow. */
4414  if (rc)
4415  return -ENODEV;
4416 
4417  /* Now try to get the controller to respond to a no-op */
4418  dev_warn(&pdev->dev, "Waiting for controller to respond to no-op\n");
4419  for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
4420  if (hpsa_noop(pdev) == 0)
4421  break;
4422  else
4423  dev_warn(&pdev->dev, "no-op failed%s\n",
4424  (i < 11 ? "; re-trying" : ""));
4425  }
4426  return 0;
4427 }
4428 
4429 static __devinit int hpsa_allocate_cmd_pool(struct ctlr_info *h)
4430 {
4431  h->cmd_pool_bits = kzalloc(
4433  sizeof(unsigned long), GFP_KERNEL);
4435  h->nr_cmds * sizeof(*h->cmd_pool),
4436  &(h->cmd_pool_dhandle));
4438  h->nr_cmds * sizeof(*h->errinfo_pool),
4439  &(h->errinfo_pool_dhandle));
4440  if ((h->cmd_pool_bits == NULL)
4441  || (h->cmd_pool == NULL)
4442  || (h->errinfo_pool == NULL)) {
4443  dev_err(&h->pdev->dev, "out of memory in %s", __func__);
4444  return -ENOMEM;
4445  }
4446  return 0;
4447 }
4448 
4449 static void hpsa_free_cmd_pool(struct ctlr_info *h)
4450 {
4451  kfree(h->cmd_pool_bits);
4452  if (h->cmd_pool)
4454  h->nr_cmds * sizeof(struct CommandList),
4455  h->cmd_pool, h->cmd_pool_dhandle);
4456  if (h->errinfo_pool)
4458  h->nr_cmds * sizeof(struct ErrorInfo),
4459  h->errinfo_pool,
4461 }
4462 
4463 static int hpsa_request_irq(struct ctlr_info *h,
4464  irqreturn_t (*msixhandler)(int, void *),
4465  irqreturn_t (*intxhandler)(int, void *))
4466 {
4467  int rc, i;
4468 
4469  /*
4470  * initialize h->q[x] = x so that interrupt handlers know which
4471  * queue to process.
4472  */
4473  for (i = 0; i < MAX_REPLY_QUEUES; i++)
4474  h->q[i] = (u8) i;
4475 
4476  if (h->intr_mode == PERF_MODE_INT && h->msix_vector) {
4477  /* If performant mode and MSI-X, use multiple reply queues */
4478  for (i = 0; i < MAX_REPLY_QUEUES; i++)
4479  rc = request_irq(h->intr[i], msixhandler,
4480  0, h->devname,
4481  &h->q[i]);
4482  } else {
4483  /* Use single reply pool */
4484  if (h->msix_vector || h->msi_vector) {
4485  rc = request_irq(h->intr[h->intr_mode],
4486  msixhandler, 0, h->devname,
4487  &h->q[h->intr_mode]);
4488  } else {
4489  rc = request_irq(h->intr[h->intr_mode],
4490  intxhandler, IRQF_SHARED, h->devname,
4491  &h->q[h->intr_mode]);
4492  }
4493  }
4494  if (rc) {
4495  dev_err(&h->pdev->dev, "unable to get irq %d for %s\n",
4496  h->intr[h->intr_mode], h->devname);
4497  return -ENODEV;
4498  }
4499  return 0;
4500 }
4501 
4502 static int __devinit hpsa_kdump_soft_reset(struct ctlr_info *h)
4503 {
4504  if (hpsa_send_host_reset(h, RAID_CTLR_LUNID,
4506  dev_warn(&h->pdev->dev, "Resetting array controller failed.\n");
4507  return -EIO;
4508  }
4509 
4510  dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
4511  if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY)) {
4512  dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
4513  return -1;
4514  }
4515 
4516  dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
4517  if (hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY)) {
4518  dev_warn(&h->pdev->dev, "Board failed to become ready "
4519  "after soft reset.\n");
4520  return -1;
4521  }
4522 
4523  return 0;
4524 }
4525 
4526 static void free_irqs(struct ctlr_info *h)
4527 {
4528  int i;
4529 
4530  if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
4531  /* Single reply queue, only one irq to free */
4532  i = h->intr_mode;
4533  free_irq(h->intr[i], &h->q[i]);
4534  return;
4535  }
4536 
4537  for (i = 0; i < MAX_REPLY_QUEUES; i++)
4538  free_irq(h->intr[i], &h->q[i]);
4539 }
4540 
4541 static void hpsa_free_irqs_and_disable_msix(struct ctlr_info *h)
4542 {
4543  free_irqs(h);
4544 #ifdef CONFIG_PCI_MSI
4545  if (h->msix_vector) {
4546  if (h->pdev->msix_enabled)
4547  pci_disable_msix(h->pdev);
4548  } else if (h->msi_vector) {
4549  if (h->pdev->msi_enabled)
4550  pci_disable_msi(h->pdev);
4551  }
4552 #endif /* CONFIG_PCI_MSI */
4553 }
4554 
4555 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
4556 {
4557  hpsa_free_irqs_and_disable_msix(h);
4558  hpsa_free_sg_chain_blocks(h);
4559  hpsa_free_cmd_pool(h);
4560  kfree(h->blockFetchTable);
4563  if (h->vaddr)
4564  iounmap(h->vaddr);
4565  if (h->transtable)
4566  iounmap(h->transtable);
4567  if (h->cfgtable)
4568  iounmap(h->cfgtable);
4570  kfree(h);
4571 }
4572 
4573 static void remove_ctlr_from_lockup_detector_list(struct ctlr_info *h)
4574 {
4575  assert_spin_locked(&lockup_detector_lock);
4576  if (!hpsa_lockup_detector)
4577  return;
4578  if (h->lockup_detected)
4579  return; /* already stopped the lockup detector */
4580  list_del(&h->lockup_list);
4581 }
4582 
4583 /* Called when controller lockup detected. */
4584 static void fail_all_cmds_on_list(struct ctlr_info *h, struct list_head *list)
4585 {
4586  struct CommandList *c = NULL;
4587 
4588  assert_spin_locked(&h->lock);
4589  /* Mark all outstanding commands as failed and complete them. */
4590  while (!list_empty(list)) {
4591  c = list_entry(list->next, struct CommandList, list);
4592  c->err_info->CommandStatus = CMD_HARDWARE_ERR;
4593  finish_cmd(c);
4594  }
4595 }
4596 
4597 static void controller_lockup_detected(struct ctlr_info *h)
4598 {
4599  unsigned long flags;
4600 
4601  assert_spin_locked(&lockup_detector_lock);
4602  remove_ctlr_from_lockup_detector_list(h);
4603  h->access.set_intr_mask(h, HPSA_INTR_OFF);
4604  spin_lock_irqsave(&h->lock, flags);
4606  spin_unlock_irqrestore(&h->lock, flags);
4607  dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x\n",
4608  h->lockup_detected);
4610  spin_lock_irqsave(&h->lock, flags);
4611  fail_all_cmds_on_list(h, &h->cmpQ);
4612  fail_all_cmds_on_list(h, &h->reqQ);
4613  spin_unlock_irqrestore(&h->lock, flags);
4614 }
4615 
4616 static void detect_controller_lockup(struct ctlr_info *h)
4617 {
4618  u64 now;
4619  u32 heartbeat;
4620  unsigned long flags;
4621 
4622  assert_spin_locked(&lockup_detector_lock);
4623  now = get_jiffies_64();
4624  /* If we've received an interrupt recently, we're ok. */
4626  (h->heartbeat_sample_interval), now))
4627  return;
4628 
4629  /*
4630  * If we've already checked the heartbeat recently, we're ok.
4631  * This could happen if someone sends us a signal. We
4632  * otherwise don't care about signals in this thread.
4633  */
4635  (h->heartbeat_sample_interval), now))
4636  return;
4637 
4638  /* If heartbeat has not changed since we last looked, we're not ok. */
4639  spin_lock_irqsave(&h->lock, flags);
4640  heartbeat = readl(&h->cfgtable->HeartBeat);
4641  spin_unlock_irqrestore(&h->lock, flags);
4642  if (h->last_heartbeat == heartbeat) {
4643  controller_lockup_detected(h);
4644  return;
4645  }
4646 
4647  /* We're ok. */
4649  h->last_heartbeat_timestamp = now;
4650 }
4651 
4652 static int detect_controller_lockup_thread(void *notused)
4653 {
4654  struct ctlr_info *h;
4655  unsigned long flags;
4656 
4657  while (1) {
4658  struct list_head *this, *tmp;
4659 
4661  if (kthread_should_stop())
4662  break;
4663  spin_lock_irqsave(&lockup_detector_lock, flags);
4664  list_for_each_safe(this, tmp, &hpsa_ctlr_list) {
4665  h = list_entry(this, struct ctlr_info, lockup_list);
4666  detect_controller_lockup(h);
4667  }
4668  spin_unlock_irqrestore(&lockup_detector_lock, flags);
4669  }
4670  return 0;
4671 }
4672 
4673 static void add_ctlr_to_lockup_detector_list(struct ctlr_info *h)
4674 {
4675  unsigned long flags;
4676 
4678  spin_lock_irqsave(&lockup_detector_lock, flags);
4679  list_add_tail(&h->lockup_list, &hpsa_ctlr_list);
4680  spin_unlock_irqrestore(&lockup_detector_lock, flags);
4681 }
4682 
4683 static void start_controller_lockup_detector(struct ctlr_info *h)
4684 {
4685  /* Start the lockup detector thread if not already started */
4686  if (!hpsa_lockup_detector) {
4687  spin_lock_init(&lockup_detector_lock);
4688  hpsa_lockup_detector =
4689  kthread_run(detect_controller_lockup_thread,
4690  NULL, HPSA);
4691  }
4692  if (!hpsa_lockup_detector) {
4693  dev_warn(&h->pdev->dev,
4694  "Could not start lockup detector thread\n");
4695  return;
4696  }
4697  add_ctlr_to_lockup_detector_list(h);
4698 }
4699 
4700 static void stop_controller_lockup_detector(struct ctlr_info *h)
4701 {
4702  unsigned long flags;
4703 
4704  spin_lock_irqsave(&lockup_detector_lock, flags);
4705  remove_ctlr_from_lockup_detector_list(h);
4706  /* If the list of ctlr's to monitor is empty, stop the thread */
4707  if (list_empty(&hpsa_ctlr_list)) {
4708  spin_unlock_irqrestore(&lockup_detector_lock, flags);
4709  kthread_stop(hpsa_lockup_detector);
4710  spin_lock_irqsave(&lockup_detector_lock, flags);
4711  hpsa_lockup_detector = NULL;
4712  }
4713  spin_unlock_irqrestore(&lockup_detector_lock, flags);
4714 }
4715 
4716 static int __devinit hpsa_init_one(struct pci_dev *pdev,
4717  const struct pci_device_id *ent)
4718 {
4719  int dac, rc;
4720  struct ctlr_info *h;
4721  int try_soft_reset = 0;
4722  unsigned long flags;
4723 
4724  if (number_of_controllers == 0)
4726 
4727  rc = hpsa_init_reset_devices(pdev);
4728  if (rc) {
4729  if (rc != -ENOTSUPP)
4730  return rc;
4731  /* If the reset fails in a particular way (it has no way to do
4732  * a proper hard reset, so returns -ENOTSUPP) we can try to do
4733  * a soft reset once we get the controller configured up to the
4734  * point that it can accept a command.
4735  */
4736  try_soft_reset = 1;
4737  rc = 0;
4738  }
4739 
4740 reinit_after_soft_reset:
4741 
4742  /* Command structures must be aligned on a 32-byte boundary because
4743  * the 5 lower bits of the address are used by the hardware. and by
4744  * the driver. See comments in hpsa.h for more info.
4745  */
4746 #define COMMANDLIST_ALIGNMENT 32
4747  BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
4748  h = kzalloc(sizeof(*h), GFP_KERNEL);
4749  if (!h)
4750  return -ENOMEM;
4751 
4752  h->pdev = pdev;
4753  h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
4754  INIT_LIST_HEAD(&h->cmpQ);
4755  INIT_LIST_HEAD(&h->reqQ);
4756  spin_lock_init(&h->lock);
4758  rc = hpsa_pci_init(h);
4759  if (rc != 0)
4760  goto clean1;
4761 
4762  sprintf(h->devname, HPSA "%d", number_of_controllers);
4763  h->ctlr = number_of_controllers;
4764  number_of_controllers++;
4765 
4766  /* configure PCI DMA stuff */
4767  rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
4768  if (rc == 0) {
4769  dac = 1;
4770  } else {
4771  rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4772  if (rc == 0) {
4773  dac = 0;
4774  } else {
4775  dev_err(&pdev->dev, "no suitable DMA available\n");
4776  goto clean1;
4777  }
4778  }
4779 
4780  /* make sure the board interrupts are off */
4781  h->access.set_intr_mask(h, HPSA_INTR_OFF);
4782 
4783  if (hpsa_request_irq(h, do_hpsa_intr_msi, do_hpsa_intr_intx))
4784  goto clean2;
4785  dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
4786  h->devname, pdev->device,
4787  h->intr[h->intr_mode], dac ? "" : " not");
4788  if (hpsa_allocate_cmd_pool(h))
4789  goto clean4;
4790  if (hpsa_allocate_sg_chain_blocks(h))
4791  goto clean4;
4793  h->scan_finished = 1; /* no scan currently in progress */
4794 
4795  pci_set_drvdata(pdev, h);
4796  h->ndevices = 0;
4797  h->scsi_host = NULL;
4798  spin_lock_init(&h->devlock);
4799  hpsa_put_ctlr_into_performant_mode(h);
4800 
4801  /* At this point, the controller is ready to take commands.
4802  * Now, if reset_devices and the hard reset didn't work, try
4803  * the soft reset and see if that works.
4804  */
4805  if (try_soft_reset) {
4806 
4807  /* This is kind of gross. We may or may not get a completion
4808  * from the soft reset command, and if we do, then the value
4809  * from the fifo may or may not be valid. So, we wait 10 secs
4810  * after the reset throwing away any completions we get during
4811  * that time. Unregister the interrupt handler and register
4812  * fake ones to scoop up any residual completions.
4813  */
4814  spin_lock_irqsave(&h->lock, flags);
4815  h->access.set_intr_mask(h, HPSA_INTR_OFF);
4816  spin_unlock_irqrestore(&h->lock, flags);
4817  free_irqs(h);
4818  rc = hpsa_request_irq(h, hpsa_msix_discard_completions,
4819  hpsa_intx_discard_completions);
4820  if (rc) {
4821  dev_warn(&h->pdev->dev, "Failed to request_irq after "
4822  "soft reset.\n");
4823  goto clean4;
4824  }
4825 
4826  rc = hpsa_kdump_soft_reset(h);
4827  if (rc)
4828  /* Neither hard nor soft reset worked, we're hosed. */
4829  goto clean4;
4830 
4831  dev_info(&h->pdev->dev, "Board READY.\n");
4832  dev_info(&h->pdev->dev,
4833  "Waiting for stale completions to drain.\n");
4834  h->access.set_intr_mask(h, HPSA_INTR_ON);
4835  msleep(10000);
4836  h->access.set_intr_mask(h, HPSA_INTR_OFF);
4837 
4838  rc = controller_reset_failed(h->cfgtable);
4839  if (rc)
4840  dev_info(&h->pdev->dev,
4841  "Soft reset appears to have failed.\n");
4842 
4843  /* since the controller's reset, we have to go back and re-init
4844  * everything. Easiest to just forget what we've done and do it
4845  * all over again.
4846  */
4847  hpsa_undo_allocations_after_kdump_soft_reset(h);
4848  try_soft_reset = 0;
4849  if (rc)
4850  /* don't go to clean4, we already unallocated */
4851  return -ENODEV;
4852 
4853  goto reinit_after_soft_reset;
4854  }
4855 
4856  /* Turn the interrupts on so we can service requests */
4857  h->access.set_intr_mask(h, HPSA_INTR_ON);
4858 
4859  hpsa_hba_inquiry(h);
4860  hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
4861  start_controller_lockup_detector(h);
4862  return 1;
4863 
4864 clean4:
4865  hpsa_free_sg_chain_blocks(h);
4866  hpsa_free_cmd_pool(h);
4867  free_irqs(h);
4868 clean2:
4869 clean1:
4870  kfree(h);
4871  return rc;
4872 }
4873 
4874 static void hpsa_flush_cache(struct ctlr_info *h)
4875 {
4876  char *flush_buf;
4877  struct CommandList *c;
4878 
4879  flush_buf = kzalloc(4, GFP_KERNEL);
4880  if (!flush_buf)
4881  return;
4882 
4883  c = cmd_special_alloc(h);
4884  if (!c) {
4885  dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
4886  goto out_of_memory;
4887  }
4888  fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
4890  hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
4891  if (c->err_info->CommandStatus != 0)
4892  dev_warn(&h->pdev->dev,
4893  "error flushing cache on controller\n");
4894  cmd_special_free(h, c);
4896  kfree(flush_buf);
4897 }
4898 
4899 static void hpsa_shutdown(struct pci_dev *pdev)
4900 {
4901  struct ctlr_info *h;
4902 
4903  h = pci_get_drvdata(pdev);
4904  /* Turn board interrupts off and send the flush cache command
4905  * sendcmd will turn off interrupt, and send the flush...
4906  * To write all data in the battery backed cache to disks
4907  */
4908  hpsa_flush_cache(h);
4909  h->access.set_intr_mask(h, HPSA_INTR_OFF);
4910  hpsa_free_irqs_and_disable_msix(h);
4911 }
4912 
4913 static void __devexit hpsa_free_device_info(struct ctlr_info *h)
4914 {
4915  int i;
4916 
4917  for (i = 0; i < h->ndevices; i++)
4918  kfree(h->dev[i]);
4919 }
4920 
4921 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
4922 {
4923  struct ctlr_info *h;
4924 
4925  if (pci_get_drvdata(pdev) == NULL) {
4926  dev_err(&pdev->dev, "unable to remove device\n");
4927  return;
4928  }
4929  h = pci_get_drvdata(pdev);
4930  stop_controller_lockup_detector(h);
4931  hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
4932  hpsa_shutdown(pdev);
4933  iounmap(h->vaddr);
4934  iounmap(h->transtable);
4935  iounmap(h->cfgtable);
4936  hpsa_free_device_info(h);
4937  hpsa_free_sg_chain_blocks(h);
4939  h->nr_cmds * sizeof(struct CommandList),
4940  h->cmd_pool, h->cmd_pool_dhandle);
4942  h->nr_cmds * sizeof(struct ErrorInfo),
4946  kfree(h->cmd_pool_bits);
4947  kfree(h->blockFetchTable);
4948  kfree(h->hba_inquiry_data);
4949  pci_disable_device(pdev);
4950  pci_release_regions(pdev);
4951  pci_set_drvdata(pdev, NULL);
4952  kfree(h);
4953 }
4954 
4955 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
4957 {
4958  return -ENOSYS;
4959 }
4960 
4961 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
4962 {
4963  return -ENOSYS;
4964 }
4965 
4966 static struct pci_driver hpsa_pci_driver = {
4967  .name = HPSA,
4968  .probe = hpsa_init_one,
4969  .remove = __devexit_p(hpsa_remove_one),
4970  .id_table = hpsa_pci_device_id, /* id_table */
4971  .shutdown = hpsa_shutdown,
4972  .suspend = hpsa_suspend,
4973  .resume = hpsa_resume,
4974 };
4975 
4976 /* Fill in bucket_map[], given nsgs (the max number of
4977  * scatter gather elements supported) and bucket[],
4978  * which is an array of 8 integers. The bucket[] array
4979  * contains 8 different DMA transfer sizes (in 16
4980  * byte increments) which the controller uses to fetch
4981  * commands. This function fills in bucket_map[], which
4982  * maps a given number of scatter gather elements to one of
4983  * the 8 DMA transfer sizes. The point of it is to allow the
4984  * controller to only do as much DMA as needed to fetch the
4985  * command, with the DMA transfer size encoded in the lower
4986  * bits of the command address.
4987  */
4988 static void calc_bucket_map(int bucket[], int num_buckets,
4989  int nsgs, int *bucket_map)
4990 {
4991  int i, j, b, size;
4992 
4993  /* even a command with 0 SGs requires 4 blocks */
4994 #define MINIMUM_TRANSFER_BLOCKS 4
4995 #define NUM_BUCKETS 8
4996  /* Note, bucket_map must have nsgs+1 entries. */
4997  for (i = 0; i <= nsgs; i++) {
4998  /* Compute size of a command with i SG entries */
4999  size = i + MINIMUM_TRANSFER_BLOCKS;
5000  b = num_buckets; /* Assume the biggest bucket */
5001  /* Find the bucket that is just big enough */
5002  for (j = 0; j < 8; j++) {
5003  if (bucket[j] >= size) {
5004  b = j;
5005  break;
5006  }
5007  }
5008  /* for a command with i SG entries, use bucket b. */
5009  bucket_map[i] = b;
5010  }
5011 }
5012 
5013 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h,
5014  u32 use_short_tags)
5015 {
5016  int i;
5017  unsigned long register_value;
5018 
5019  /* This is a bit complicated. There are 8 registers on
5020  * the controller which we write to to tell it 8 different
5021  * sizes of commands which there may be. It's a way of
5022  * reducing the DMA done to fetch each command. Encoded into
5023  * each command's tag are 3 bits which communicate to the controller
5024  * which of the eight sizes that command fits within. The size of
5025  * each command depends on how many scatter gather entries there are.
5026  * Each SG entry requires 16 bytes. The eight registers are programmed
5027  * with the number of 16-byte blocks a command of that size requires.
5028  * The smallest command possible requires 5 such 16 byte blocks.
5029  * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
5030  * blocks. Note, this only extends to the SG entries contained
5031  * within the command block, and does not extend to chained blocks
5032  * of SG elements. bft[] contains the eight values we write to
5033  * the registers. They are not evenly distributed, but have more
5034  * sizes for small commands, and fewer sizes for larger commands.
5035  */
5036  int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
5037  BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
5038  /* 5 = 1 s/g entry or 4k
5039  * 6 = 2 s/g entry or 8k
5040  * 8 = 4 s/g entry or 16k
5041  * 10 = 6 s/g entry or 24k
5042  */
5043 
5044  /* Controller spec: zero out this buffer. */
5045  memset(h->reply_pool, 0, h->reply_pool_size);
5046 
5047  bft[7] = SG_ENTRIES_IN_CMD + 4;
5048  calc_bucket_map(bft, ARRAY_SIZE(bft),
5050  for (i = 0; i < 8; i++)
5051  writel(bft[i], &h->transtable->BlockFetch[i]);
5052 
5053  /* size of controller ring buffer */
5054  writel(h->max_commands, &h->transtable->RepQSize);
5055  writel(h->nreply_queues, &h->transtable->RepQCount);
5056  writel(0, &h->transtable->RepQCtrAddrLow32);
5057  writel(0, &h->transtable->RepQCtrAddrHigh32);
5058 
5059  for (i = 0; i < h->nreply_queues; i++) {
5060  writel(0, &h->transtable->RepQAddr[i].upper);
5062  (h->max_commands * sizeof(u64) * i),
5063  &h->transtable->RepQAddr[i].lower);
5064  }
5065 
5066  writel(CFGTBL_Trans_Performant | use_short_tags |
5070  hpsa_wait_for_mode_change_ack(h);
5071  register_value = readl(&(h->cfgtable->TransportActive));
5072  if (!(register_value & CFGTBL_Trans_Performant)) {
5073  dev_warn(&h->pdev->dev, "unable to get board into"
5074  " performant mode\n");
5075  return;
5076  }
5077  /* Change the access methods to the performant access methods */
5078  h->access = SA5_performant_access;
5080 }
5081 
5082 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
5083 {
5084  u32 trans_support;
5085  int i;
5086 
5087  if (hpsa_simple_mode)
5088  return;
5089 
5090  trans_support = readl(&(h->cfgtable->TransportSupport));
5091  if (!(trans_support & PERFORMANT_MODE))
5092  return;
5093 
5094  h->nreply_queues = h->msix_vector ? MAX_REPLY_QUEUES : 1;
5095  hpsa_get_max_perf_mode_cmds(h);
5096  /* Performant mode ring buffer and supporting data structures */
5097  h->reply_pool_size = h->max_commands * sizeof(u64) * h->nreply_queues;
5099  &(h->reply_pool_dhandle));
5100 
5101  for (i = 0; i < h->nreply_queues; i++) {
5102  h->reply_queue[i].head = &h->reply_pool[h->max_commands * i];
5103  h->reply_queue[i].size = h->max_commands;
5104  h->reply_queue[i].wraparound = 1; /* spec: init to 1 */
5105  h->reply_queue[i].current_entry = 0;
5106  }
5107 
5108  /* Need a block fetch table for performant mode */
5110  sizeof(u32)), GFP_KERNEL);
5111 
5112  if ((h->reply_pool == NULL)
5113  || (h->blockFetchTable == NULL))
5114  goto clean_up;
5115 
5116  hpsa_enter_performant_mode(h,
5117  trans_support & CFGTBL_Trans_use_short_tags);
5118 
5119  return;
5120 
5121 clean_up:
5122  if (h->reply_pool)
5125  kfree(h->blockFetchTable);
5126 }
5127 
5128 /*
5129  * This is it. Register the PCI driver information for the cards we control
5130  * the OS will call our registered routines when it finds one of our cards.
5131  */
5132 static int __init hpsa_init(void)
5133 {
5134  return pci_register_driver(&hpsa_pci_driver);
5135 }
5136 
5137 static void __exit hpsa_cleanup(void)
5138 {
5139  pci_unregister_driver(&hpsa_pci_driver);
5140 }
5141 
5142 module_init(hpsa_init);
5143 module_exit(hpsa_cleanup);