Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
netdevice.h
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Definitions for the Interfaces handler.
7  *
8  * Version: @(#)dev.h 1.0.10 08/12/93
9  *
10  * Authors: Ross Biro
11  * Fred N. van Kempen, <[email protected]>
12  * Corey Minyard <[email protected]>
13  * Donald J. Becker, <[email protected]>
14  * Alan Cox, <[email protected]>
15  * Bjorn Ekwall. <[email protected]>
16  * Pekka Riikonen <[email protected]>
17  *
18  * This program is free software; you can redistribute it and/or
19  * modify it under the terms of the GNU General Public License
20  * as published by the Free Software Foundation; either version
21  * 2 of the License, or (at your option) any later version.
22  *
23  * Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/pm_qos.h>
29 #include <linux/timer.h>
30 #include <linux/bug.h>
31 #include <linux/delay.h>
32 #include <linux/atomic.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/dmaengine.h>
39 #include <linux/workqueue.h>
41 
42 #include <linux/ethtool.h>
43 #include <net/net_namespace.h>
44 #include <net/dsa.h>
45 #ifdef CONFIG_DCB
46 #include <net/dcbnl.h>
47 #endif
48 #include <net/netprio_cgroup.h>
49 
50 #include <linux/netdev_features.h>
51 #include <linux/neighbour.h>
52 #include <uapi/linux/netdevice.h>
53 
54 struct netpoll_info;
55 struct device;
56 struct phy_device;
57 /* 802.11 specific */
58 struct wireless_dev;
59  /* source back-compat hooks */
60 #define SET_ETHTOOL_OPS(netdev,ops) \
61  ( (netdev)->ethtool_ops = (ops) )
62 
63 /* hardware address assignment types */
64 #define NET_ADDR_PERM 0 /* address is permanent (default) */
65 #define NET_ADDR_RANDOM 1 /* address is generated randomly */
66 #define NET_ADDR_STOLEN 2 /* address is stolen from other device */
67 
68 /* Backlog congestion levels */
69 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
70 #define NET_RX_DROP 1 /* packet dropped */
71 
72 /*
73  * Transmit return codes: transmit return codes originate from three different
74  * namespaces:
75  *
76  * - qdisc return codes
77  * - driver transmit return codes
78  * - errno values
79  *
80  * Drivers are allowed to return any one of those in their hard_start_xmit()
81  * function. Real network devices commonly used with qdiscs should only return
82  * the driver transmit return codes though - when qdiscs are used, the actual
83  * transmission happens asynchronously, so the value is not propagated to
84  * higher layers. Virtual network devices transmit synchronously, in this case
85  * the driver transmit return codes are consumed by dev_queue_xmit(), all
86  * others are propagated to higher layers.
87  */
88 
89 /* qdisc ->enqueue() return codes. */
90 #define NET_XMIT_SUCCESS 0x00
91 #define NET_XMIT_DROP 0x01 /* skb dropped */
92 #define NET_XMIT_CN 0x02 /* congestion notification */
93 #define NET_XMIT_POLICED 0x03 /* skb is shot by police */
94 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
95 
96 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
97  * indicates that the device will soon be dropping packets, or already drops
98  * some packets of the same priority; prompting us to send less aggressively. */
99 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
100 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
101 
102 /* Driver transmit return codes */
103 #define NETDEV_TX_MASK 0xf0
104 
105 enum netdev_tx {
106  __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
107  NETDEV_TX_OK = 0x00, /* driver took care of packet */
108  NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
109  NETDEV_TX_LOCKED = 0x20, /* driver tx lock was already taken */
110 };
111 typedef enum netdev_tx netdev_tx_t;
112 
113 /*
114  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
115  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
116  */
117 static inline bool dev_xmit_complete(int rc)
118 {
119  /*
120  * Positive cases with an skb consumed by a driver:
121  * - successful transmission (rc == NETDEV_TX_OK)
122  * - error while transmitting (rc < 0)
123  * - error while queueing to a different device (rc & NET_XMIT_MASK)
124  */
125  if (likely(rc < NET_XMIT_MASK))
126  return true;
127 
128  return false;
129 }
130 
131 /*
132  * Compute the worst case header length according to the protocols
133  * used.
134  */
135 
136 #if defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
137 # if defined(CONFIG_MAC80211_MESH)
138 # define LL_MAX_HEADER 128
139 # else
140 # define LL_MAX_HEADER 96
141 # endif
142 #elif IS_ENABLED(CONFIG_TR)
143 # define LL_MAX_HEADER 48
144 #else
145 # define LL_MAX_HEADER 32
146 #endif
147 
148 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
149  !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
150 #define MAX_HEADER LL_MAX_HEADER
151 #else
152 #define MAX_HEADER (LL_MAX_HEADER + 48)
153 #endif
154 
155 /*
156  * Old network device statistics. Fields are native words
157  * (unsigned long) so they can be read and written atomically.
158  */
159 
161  unsigned long rx_packets;
162  unsigned long tx_packets;
163  unsigned long rx_bytes;
164  unsigned long tx_bytes;
165  unsigned long rx_errors;
166  unsigned long tx_errors;
167  unsigned long rx_dropped;
168  unsigned long tx_dropped;
169  unsigned long multicast;
170  unsigned long collisions;
171  unsigned long rx_length_errors;
172  unsigned long rx_over_errors;
173  unsigned long rx_crc_errors;
174  unsigned long rx_frame_errors;
175  unsigned long rx_fifo_errors;
176  unsigned long rx_missed_errors;
177  unsigned long tx_aborted_errors;
178  unsigned long tx_carrier_errors;
179  unsigned long tx_fifo_errors;
180  unsigned long tx_heartbeat_errors;
181  unsigned long tx_window_errors;
182  unsigned long rx_compressed;
183  unsigned long tx_compressed;
184 };
185 
186 
187 #include <linux/cache.h>
188 #include <linux/skbuff.h>
189 
190 #ifdef CONFIG_RPS
191 #include <linux/static_key.h>
192 extern struct static_key rps_needed;
193 #endif
194 
195 struct neighbour;
196 struct neigh_parms;
197 struct sk_buff;
198 
200  struct list_head list;
201  unsigned char addr[MAX_ADDR_LEN];
202  unsigned char type;
203 #define NETDEV_HW_ADDR_T_LAN 1
204 #define NETDEV_HW_ADDR_T_SAN 2
205 #define NETDEV_HW_ADDR_T_SLAVE 3
206 #define NETDEV_HW_ADDR_T_UNICAST 4
207 #define NETDEV_HW_ADDR_T_MULTICAST 5
208  bool synced;
210  int refcount;
212 };
213 
215  struct list_head list;
216  int count;
217 };
218 
219 #define netdev_hw_addr_list_count(l) ((l)->count)
220 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
221 #define netdev_hw_addr_list_for_each(ha, l) \
222  list_for_each_entry(ha, &(l)->list, list)
223 
224 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
225 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
226 #define netdev_for_each_uc_addr(ha, dev) \
227  netdev_hw_addr_list_for_each(ha, &(dev)->uc)
228 
229 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
230 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
231 #define netdev_for_each_mc_addr(ha, dev) \
232  netdev_hw_addr_list_for_each(ha, &(dev)->mc)
233 
234 struct hh_cache {
238 
239  /* cached hardware header; allow for machine alignment needs. */
240 #define HH_DATA_MOD 16
241 #define HH_DATA_OFF(__len) \
242  (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
243 #define HH_DATA_ALIGN(__len) \
244  (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
245  unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
246 };
247 
248 /* Reserve HH_DATA_MOD byte aligned hard_header_len, but at least that much.
249  * Alternative is:
250  * dev->hard_header_len ? (dev->hard_header_len +
251  * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
252  *
253  * We could use other alignment values, but we must maintain the
254  * relationship HH alignment <= LL alignment.
255  */
256 #define LL_RESERVED_SPACE(dev) \
257  ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
258 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
259  ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
260 
261 struct header_ops {
262  int (*create) (struct sk_buff *skb, struct net_device *dev,
263  unsigned short type, const void *daddr,
264  const void *saddr, unsigned int len);
265  int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
266  int (*rebuild)(struct sk_buff *skb);
267  int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
269  const struct net_device *dev,
270  const unsigned char *haddr);
271 };
272 
273 /* These flag bits are private to the generic network queueing
274  * layer, they may not be explicitly referenced by any other
275  * code.
276  */
277 
284 };
285 
286 
287 /*
288  * This structure holds at boot time configured netdevice settings. They
289  * are then used in the device probing.
290  */
292  char name[IFNAMSIZ];
293  struct ifmap map;
294 };
295 #define NETDEV_BOOT_SETUP_MAX 8
296 
297 extern int __init netdev_boot_setup(char *str);
298 
299 /*
300  * Structure for NAPI scheduling similar to tasklet but with weighting
301  */
302 struct napi_struct {
303  /* The poll_list must only be managed by the entity which
304  * changes the state of the NAPI_STATE_SCHED bit. This means
305  * whoever atomically sets that bit can add this napi_struct
306  * to the per-cpu poll_list, and whoever clears that bit
307  * can remove from the list right before clearing the bit.
308  */
310 
311  unsigned long state;
312  int weight;
313  unsigned int gro_count;
314  int (*poll)(struct napi_struct *, int);
315 #ifdef CONFIG_NETPOLL
316  spinlock_t poll_lock;
317  int poll_owner;
318 #endif
319  struct net_device *dev;
320  struct sk_buff *gro_list;
321  struct sk_buff *skb;
323 };
324 
325 enum {
326  NAPI_STATE_SCHED, /* Poll is scheduled */
327  NAPI_STATE_DISABLE, /* Disable pending */
328  NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
329 };
330 
337 };
339 
340 /*
341  * enum rx_handler_result - Possible return values for rx_handlers.
342  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
343  * further.
344  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
345  * case skb->dev was changed by rx_handler.
346  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
347  * @RX_HANDLER_PASS: Do nothing, passe the skb as if no rx_handler was called.
348  *
349  * rx_handlers are functions called from inside __netif_receive_skb(), to do
350  * special processing of the skb, prior to delivery to protocol handlers.
351  *
352  * Currently, a net_device can only have a single rx_handler registered. Trying
353  * to register a second rx_handler will return -EBUSY.
354  *
355  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
356  * To unregister a rx_handler on a net_device, use
357  * netdev_rx_handler_unregister().
358  *
359  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
360  * do with the skb.
361  *
362  * If the rx_handler consumed to skb in some way, it should return
363  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
364  * the skb to be delivered in some other ways.
365  *
366  * If the rx_handler changed skb->dev, to divert the skb to another
367  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
368  * new device will be called if it exists.
369  *
370  * If the rx_handler consider the skb should be ignored, it should return
371  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
372  * are registred on exact device (ptype->dev == skb->dev).
373  *
374  * If the rx_handler didn't changed skb->dev, but want the skb to be normally
375  * delivered, it should return RX_HANDLER_PASS.
376  *
377  * A device without a registered rx_handler will behave as if rx_handler
378  * returned RX_HANDLER_PASS.
379  */
380 
386 };
389 
390 extern void __napi_schedule(struct napi_struct *n);
391 
392 static inline bool napi_disable_pending(struct napi_struct *n)
393 {
394  return test_bit(NAPI_STATE_DISABLE, &n->state);
395 }
396 
406 static inline bool napi_schedule_prep(struct napi_struct *n)
407 {
408  return !napi_disable_pending(n) &&
410 }
411 
419 static inline void napi_schedule(struct napi_struct *n)
420 {
421  if (napi_schedule_prep(n))
422  __napi_schedule(n);
423 }
424 
425 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
426 static inline bool napi_reschedule(struct napi_struct *napi)
427 {
428  if (napi_schedule_prep(napi)) {
429  __napi_schedule(napi);
430  return true;
431  }
432  return false;
433 }
434 
441 extern void __napi_complete(struct napi_struct *n);
442 extern void napi_complete(struct napi_struct *n);
443 
451 static inline void napi_disable(struct napi_struct *n)
452 {
455  msleep(1);
457 }
458 
466 static inline void napi_enable(struct napi_struct *n)
467 {
471 }
472 
473 #ifdef CONFIG_SMP
474 
482 static inline void napi_synchronize(const struct napi_struct *n)
483 {
484  while (test_bit(NAPI_STATE_SCHED, &n->state))
485  msleep(1);
486 }
487 #else
488 # define napi_synchronize(n) barrier()
489 #endif
490 
495 #define QUEUE_STATE_ANY_XOFF ((1 << __QUEUE_STATE_DRV_XOFF) | \
496  (1 << __QUEUE_STATE_STACK_XOFF))
497 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
498  (1 << __QUEUE_STATE_FROZEN))
499 };
500 /*
501  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
502  * netif_tx_* functions below are used to manipulate this flag. The
503  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
504  * queue independently. The netif_xmit_*stopped functions below are called
505  * to check if the queue has been stopped by the driver or stack (either
506  * of the XOFF bits are set in the state). Drivers should not need to call
507  * netif_xmit*stopped functions, they should only be using netif_tx_*.
508  */
509 
510 struct netdev_queue {
511 /*
512  * read mostly part
513  */
514  struct net_device *dev;
515  struct Qdisc *qdisc;
517 #ifdef CONFIG_SYSFS
518  struct kobject kobj;
519 #endif
520 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
521  int numa_node;
522 #endif
523 /*
524  * write mostly part
525  */
528  /*
529  * please use this field instead of dev->trans_start
530  */
531  unsigned long trans_start;
532 
533  /*
534  * Number of TX timeouts for this queue
535  * (/sys/class/net/DEV/Q/trans_timeout)
536  */
537  unsigned long trans_timeout;
538 
539  unsigned long state;
540 
541 #ifdef CONFIG_BQL
542  struct dql dql;
543 #endif
545 
546 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
547 {
548 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
549  return q->numa_node;
550 #else
551  return NUMA_NO_NODE;
552 #endif
553 }
554 
555 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
556 {
557 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
558  q->numa_node = node;
559 #endif
560 }
561 
562 #ifdef CONFIG_RPS
563 /*
564  * This structure holds an RPS map which can be of variable length. The
565  * map is an array of CPUs.
566  */
567 struct rps_map {
568  unsigned int len;
569  struct rcu_head rcu;
570  u16 cpus[0];
571 };
572 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
573 
574 /*
575  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
576  * tail pointer for that CPU's input queue at the time of last enqueue, and
577  * a hardware filter index.
578  */
579 struct rps_dev_flow {
580  u16 cpu;
581  u16 filter;
582  unsigned int last_qtail;
583 };
584 #define RPS_NO_FILTER 0xffff
585 
586 /*
587  * The rps_dev_flow_table structure contains a table of flow mappings.
588  */
589 struct rps_dev_flow_table {
590  unsigned int mask;
591  struct rcu_head rcu;
592  struct work_struct free_work;
593  struct rps_dev_flow flows[0];
594 };
595 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
596  ((_num) * sizeof(struct rps_dev_flow)))
597 
598 /*
599  * The rps_sock_flow_table contains mappings of flows to the last CPU
600  * on which they were processed by the application (set in recvmsg).
601  */
602 struct rps_sock_flow_table {
603  unsigned int mask;
604  u16 ents[0];
605 };
606 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_sock_flow_table) + \
607  ((_num) * sizeof(u16)))
608 
609 #define RPS_NO_CPU 0xffff
610 
611 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
612  u32 hash)
613 {
614  if (table && hash) {
615  unsigned int cpu, index = hash & table->mask;
616 
617  /* We only give a hint, preemption can change cpu under us */
618  cpu = raw_smp_processor_id();
619 
620  if (table->ents[index] != cpu)
621  table->ents[index] = cpu;
622  }
623 }
624 
625 static inline void rps_reset_sock_flow(struct rps_sock_flow_table *table,
626  u32 hash)
627 {
628  if (table && hash)
629  table->ents[hash & table->mask] = RPS_NO_CPU;
630 }
631 
632 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
633 
634 #ifdef CONFIG_RFS_ACCEL
635 extern bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
636  u32 flow_id, u16 filter_id);
637 #endif
638 
639 /* This structure contains an instance of an RX queue. */
640 struct netdev_rx_queue {
641  struct rps_map __rcu *rps_map;
642  struct rps_dev_flow_table __rcu *rps_flow_table;
643  struct kobject kobj;
644  struct net_device *dev;
646 #endif /* CONFIG_RPS */
647 
648 #ifdef CONFIG_XPS
649 /*
650  * This structure holds an XPS map which can be of variable length. The
651  * map is an array of queues.
652  */
653 struct xps_map {
654  unsigned int len;
655  unsigned int alloc_len;
656  struct rcu_head rcu;
657  u16 queues[0];
658 };
659 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
660 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_BYTES - sizeof(struct xps_map)) \
661  / sizeof(u16))
662 
663 /*
664  * This structure holds all XPS maps for device. Maps are indexed by CPU.
665  */
666 struct xps_dev_maps {
667  struct rcu_head rcu;
668  struct xps_map __rcu *cpu_map[0];
669 };
670 #define XPS_DEV_MAPS_SIZE (sizeof(struct xps_dev_maps) + \
671  (nr_cpu_ids * sizeof(struct xps_map *)))
672 #endif /* CONFIG_XPS */
673 
674 #define TC_MAX_QUEUE 16
675 #define TC_BITMASK 15
676 /* HW offloaded queuing disciplines txq count and offset maps */
680 };
681 
682 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
683 /*
684  * This structure is to hold information about the device
685  * configured to run FCoE protocol stack.
686  */
687 struct netdev_fcoe_hbainfo {
688  char manufacturer[64];
689  char serial_number[64];
690  char hardware_version[64];
691  char driver_version[64];
692  char optionrom_version[64];
693  char firmware_version[64];
694  char model[256];
695  char model_description[256];
696 };
697 #endif
698 
699 /*
700  * This structure defines the management hooks for network devices.
701  * The following hooks can be defined; unless noted otherwise, they are
702  * optional and can be filled with a null pointer.
703  *
704  * int (*ndo_init)(struct net_device *dev);
705  * This function is called once when network device is registered.
706  * The network device can use this to any late stage initializaton
707  * or semantic validattion. It can fail with an error code which will
708  * be propogated back to register_netdev
709  *
710  * void (*ndo_uninit)(struct net_device *dev);
711  * This function is called when device is unregistered or when registration
712  * fails. It is not called if init fails.
713  *
714  * int (*ndo_open)(struct net_device *dev);
715  * This function is called when network device transistions to the up
716  * state.
717  *
718  * int (*ndo_stop)(struct net_device *dev);
719  * This function is called when network device transistions to the down
720  * state.
721  *
722  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
723  * struct net_device *dev);
724  * Called when a packet needs to be transmitted.
725  * Must return NETDEV_TX_OK , NETDEV_TX_BUSY.
726  * (can also return NETDEV_TX_LOCKED iff NETIF_F_LLTX)
727  * Required can not be NULL.
728  *
729  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb);
730  * Called to decide which queue to when device supports multiple
731  * transmit queues.
732  *
733  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
734  * This function is called to allow device receiver to make
735  * changes to configuration when multicast or promiscious is enabled.
736  *
737  * void (*ndo_set_rx_mode)(struct net_device *dev);
738  * This function is called device changes address list filtering.
739  * If driver handles unicast address filtering, it should set
740  * IFF_UNICAST_FLT to its priv_flags.
741  *
742  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
743  * This function is called when the Media Access Control address
744  * needs to be changed. If this interface is not defined, the
745  * mac address can not be changed.
746  *
747  * int (*ndo_validate_addr)(struct net_device *dev);
748  * Test if Media Access Control address is valid for the device.
749  *
750  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
751  * Called when a user request an ioctl which can't be handled by
752  * the generic interface code. If not defined ioctl's return
753  * not supported error code.
754  *
755  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
756  * Used to set network devices bus interface parameters. This interface
757  * is retained for legacy reason, new devices should use the bus
758  * interface (PCI) for low level management.
759  *
760  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
761  * Called when a user wants to change the Maximum Transfer Unit
762  * of a device. If not defined, any request to change MTU will
763  * will return an error.
764  *
765  * void (*ndo_tx_timeout)(struct net_device *dev);
766  * Callback uses when the transmitter has not made any progress
767  * for dev->watchdog ticks.
768  *
769  * struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
770  * struct rtnl_link_stats64 *storage);
771  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
772  * Called when a user wants to get the network device usage
773  * statistics. Drivers must do one of the following:
774  * 1. Define @ndo_get_stats64 to fill in a zero-initialised
775  * rtnl_link_stats64 structure passed by the caller.
776  * 2. Define @ndo_get_stats to update a net_device_stats structure
777  * (which should normally be dev->stats) and return a pointer to
778  * it. The structure may be changed asynchronously only if each
779  * field is written atomically.
780  * 3. Update dev->stats asynchronously and atomically, and define
781  * neither operation.
782  *
783  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, unsigned short vid);
784  * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
785  * this function is called when a VLAN id is registered.
786  *
787  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, unsigned short vid);
788  * If device support VLAN filtering (dev->features & NETIF_F_HW_VLAN_FILTER)
789  * this function is called when a VLAN id is unregistered.
790  *
791  * void (*ndo_poll_controller)(struct net_device *dev);
792  *
793  * SR-IOV management functions.
794  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
795  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan, u8 qos);
796  * int (*ndo_set_vf_tx_rate)(struct net_device *dev, int vf, int rate);
797  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
798  * int (*ndo_get_vf_config)(struct net_device *dev,
799  * int vf, struct ifla_vf_info *ivf);
800  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
801  * struct nlattr *port[]);
802  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
803  * int (*ndo_setup_tc)(struct net_device *dev, u8 tc)
804  * Called to setup 'tc' number of traffic classes in the net device. This
805  * is always called from the stack with the rtnl lock held and netif tx
806  * queues stopped. This allows the netdevice to perform queue management
807  * safely.
808  *
809  * Fiber Channel over Ethernet (FCoE) offload functions.
810  * int (*ndo_fcoe_enable)(struct net_device *dev);
811  * Called when the FCoE protocol stack wants to start using LLD for FCoE
812  * so the underlying device can perform whatever needed configuration or
813  * initialization to support acceleration of FCoE traffic.
814  *
815  * int (*ndo_fcoe_disable)(struct net_device *dev);
816  * Called when the FCoE protocol stack wants to stop using LLD for FCoE
817  * so the underlying device can perform whatever needed clean-ups to
818  * stop supporting acceleration of FCoE traffic.
819  *
820  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
821  * struct scatterlist *sgl, unsigned int sgc);
822  * Called when the FCoE Initiator wants to initialize an I/O that
823  * is a possible candidate for Direct Data Placement (DDP). The LLD can
824  * perform necessary setup and returns 1 to indicate the device is set up
825  * successfully to perform DDP on this I/O, otherwise this returns 0.
826  *
827  * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
828  * Called when the FCoE Initiator/Target is done with the DDPed I/O as
829  * indicated by the FC exchange id 'xid', so the underlying device can
830  * clean up and reuse resources for later DDP requests.
831  *
832  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
833  * struct scatterlist *sgl, unsigned int sgc);
834  * Called when the FCoE Target wants to initialize an I/O that
835  * is a possible candidate for Direct Data Placement (DDP). The LLD can
836  * perform necessary setup and returns 1 to indicate the device is set up
837  * successfully to perform DDP on this I/O, otherwise this returns 0.
838  *
839  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
840  * struct netdev_fcoe_hbainfo *hbainfo);
841  * Called when the FCoE Protocol stack wants information on the underlying
842  * device. This information is utilized by the FCoE protocol stack to
843  * register attributes with Fiber Channel management service as per the
844  * FC-GS Fabric Device Management Information(FDMI) specification.
845  *
846  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
847  * Called when the underlying device wants to override default World Wide
848  * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
849  * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
850  * protocol stack to use.
851  *
852  * RFS acceleration.
853  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
854  * u16 rxq_index, u32 flow_id);
855  * Set hardware filter for RFS. rxq_index is the target queue index;
856  * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
857  * Return the filter ID on success, or a negative error code.
858  *
859  * Slave management functions (for bridge, bonding, etc). User should
860  * call netdev_set_master() to set dev->master properly.
861  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
862  * Called to make another netdev an underling.
863  *
864  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
865  * Called to release previously enslaved netdev.
866  *
867  * Feature/offload setting functions.
868  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
869  * netdev_features_t features);
870  * Adjusts the requested feature flags according to device-specific
871  * constraints, and returns the resulting flags. Must not modify
872  * the device state.
873  *
874  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
875  * Called to update device configuration to new features. Passed
876  * feature set might be less than what was returned by ndo_fix_features()).
877  * Must return >0 or -errno if it changed dev->features itself.
878  *
879  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
880  * struct net_device *dev,
881  * const unsigned char *addr, u16 flags)
882  * Adds an FDB entry to dev for addr.
883  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct net_device *dev,
884  * const unsigned char *addr)
885  * Deletes the FDB entry from dev coresponding to addr.
886  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
887  * struct net_device *dev, int idx)
888  * Used to add FDB entries to dump requests. Implementers should add
889  * entries to skb and update idx with the number of entries.
890  */
892  int (*ndo_init)(struct net_device *dev);
894  int (*ndo_open)(struct net_device *dev);
895  int (*ndo_stop)(struct net_device *dev);
897  struct net_device *dev);
899  struct sk_buff *skb);
901  int flags);
904  void *addr);
907  struct ifreq *ifr, int cmd);
909  struct ifmap *map);
911  int new_mtu);
913  struct neigh_parms *);
915 
916  struct rtnl_link_stats64* (*ndo_get_stats64)(struct net_device *dev,
917  struct rtnl_link_stats64 *storage);
918  struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
919 
921  unsigned short vid);
923  unsigned short vid);
924 #ifdef CONFIG_NET_POLL_CONTROLLER
925  void (*ndo_poll_controller)(struct net_device *dev);
926  int (*ndo_netpoll_setup)(struct net_device *dev,
927  struct netpoll_info *info,
928  gfp_t gfp);
929  void (*ndo_netpoll_cleanup)(struct net_device *dev);
930 #endif
932  int queue, u8 *mac);
934  int queue, u16 vlan, u8 qos);
936  int vf, int rate);
938  int vf, bool setting);
940  int vf,
941  struct ifla_vf_info *ivf);
943  int vf,
944  struct nlattr *port[]);
946  int vf, struct sk_buff *skb);
948 #if IS_ENABLED(CONFIG_FCOE)
949  int (*ndo_fcoe_enable)(struct net_device *dev);
950  int (*ndo_fcoe_disable)(struct net_device *dev);
951  int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
952  u16 xid,
953  struct scatterlist *sgl,
954  unsigned int sgc);
955  int (*ndo_fcoe_ddp_done)(struct net_device *dev,
956  u16 xid);
957  int (*ndo_fcoe_ddp_target)(struct net_device *dev,
958  u16 xid,
959  struct scatterlist *sgl,
960  unsigned int sgc);
961  int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
962  struct netdev_fcoe_hbainfo *hbainfo);
963 #endif
964 
965 #if IS_ENABLED(CONFIG_LIBFCOE)
966 #define NETDEV_FCOE_WWNN 0
967 #define NETDEV_FCOE_WWPN 1
968  int (*ndo_fcoe_get_wwn)(struct net_device *dev,
969  u64 *wwn, int type);
970 #endif
971 
972 #ifdef CONFIG_RFS_ACCEL
973  int (*ndo_rx_flow_steer)(struct net_device *dev,
974  const struct sk_buff *skb,
975  u16 rxq_index,
976  u32 flow_id);
977 #endif
979  struct net_device *slave_dev);
981  struct net_device *slave_dev);
988 
989  int (*ndo_fdb_add)(struct ndmsg *ndm,
990  struct nlattr *tb[],
991  struct net_device *dev,
992  const unsigned char *addr,
993  u16 flags);
994  int (*ndo_fdb_del)(struct ndmsg *ndm,
995  struct net_device *dev,
996  const unsigned char *addr);
998  struct netlink_callback *cb,
999  struct net_device *dev,
1000  int idx);
1001 };
1002 
1003 /*
1004  * The DEVICE structure.
1005  * Actually, this whole structure is a big mistake. It mixes I/O
1006  * data with strictly "high-level" data, and it has to know about
1007  * almost every data structure used in the INET module.
1008  *
1009  * FIXME: cleanup struct net_device such that network protocol info
1010  * moves out.
1011  */
1012 
1013 struct net_device {
1014 
1015  /*
1016  * This is the first field of the "visible" part of this structure
1017  * (i.e. as seen by users in the "Space.c" file). It is the name
1018  * of the interface.
1019  */
1021 
1022  /* device name hash chain, please keep it close to name[] */
1024 
1025  /* snmp alias */
1026  char *ifalias;
1027 
1028  /*
1029  * I/O specific fields
1030  * FIXME: Merge these and struct ifmap into one
1031  */
1032  unsigned long mem_end; /* shared mem end */
1033  unsigned long mem_start; /* shared mem start */
1034  unsigned long base_addr; /* device I/O address */
1035  unsigned int irq; /* device IRQ number */
1036 
1037  /*
1038  * Some hardware also needs these fields, but they are not
1039  * part of the usual set specified in Space.c.
1040  */
1041 
1042  unsigned long state;
1043 
1047 
1048  /* currently active device features */
1050  /* user-changeable features */
1052  /* user-requested features */
1054  /* mask of features inheritable by VLAN devices */
1056 
1057  /* Interface index. Unique device identifier */
1058  int ifindex;
1059  int iflink;
1060 
1062  atomic_long_t rx_dropped; /* dropped packets by core network
1063  * Do not use this in drivers.
1064  */
1065 
1066 #ifdef CONFIG_WIRELESS_EXT
1067  /* List of functions to handle Wireless Extensions (instead of ioctl).
1068  * See <net/iw_handler.h> for details. Jean II */
1069  const struct iw_handler_def * wireless_handlers;
1070  /* Instance data managed by the core of Wireless Extensions. */
1071  struct iw_public_data * wireless_data;
1072 #endif
1073  /* Management operations */
1075  const struct ethtool_ops *ethtool_ops;
1076 
1077  /* Hardware header description */
1078  const struct header_ops *header_ops;
1079 
1080  unsigned int flags; /* interface flags (a la BSD) */
1081  unsigned int priv_flags; /* Like 'flags' but invisible to userspace.
1082  * See if.h for definitions. */
1083  unsigned short gflags;
1084  unsigned short padded; /* How much padding added by alloc_netdev() */
1085 
1086  unsigned char operstate; /* RFC2863 operstate */
1087  unsigned char link_mode; /* mapping policy to operstate */
1088 
1089  unsigned char if_port; /* Selectable AUI, TP,..*/
1090  unsigned char dma; /* DMA channel */
1091 
1092  unsigned int mtu; /* interface MTU value */
1093  unsigned short type; /* interface hardware type */
1094  unsigned short hard_header_len; /* hardware hdr length */
1095 
1096  /* extra head- and tailroom the hardware may need, but not in all cases
1097  * can this be guaranteed, especially tailroom. Some cases also use
1098  * LL_MAX_HEADER instead to allocate the skb.
1099  */
1100  unsigned short needed_headroom;
1101  unsigned short needed_tailroom;
1102 
1103  /* Interface address info. */
1104  unsigned char perm_addr[MAX_ADDR_LEN]; /* permanent hw address */
1105  unsigned char addr_assign_type; /* hw address assignment type */
1106  unsigned char addr_len; /* hardware address length */
1107  unsigned char neigh_priv_len;
1108  unsigned short dev_id; /* for shared network cards */
1109 
1111  struct netdev_hw_addr_list uc; /* Unicast mac addresses */
1112  struct netdev_hw_addr_list mc; /* Multicast mac addresses */
1114  unsigned int promiscuity;
1115  unsigned int allmulti;
1116 
1117 
1118  /* Protocol specific pointers */
1119 
1120 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1121  struct vlan_info __rcu *vlan_info; /* VLAN info */
1122 #endif
1123 #if IS_ENABLED(CONFIG_NET_DSA)
1124  struct dsa_switch_tree *dsa_ptr; /* dsa specific data */
1125 #endif
1126  void *atalk_ptr; /* AppleTalk link */
1127  struct in_device __rcu *ip_ptr; /* IPv4 specific data */
1128  struct dn_dev __rcu *dn_ptr; /* DECnet specific data */
1129  struct inet6_dev __rcu *ip6_ptr; /* IPv6 specific data */
1130  void *ax25_ptr; /* AX.25 specific data */
1131  struct wireless_dev *ieee80211_ptr; /* IEEE 802.11 specific data,
1132  assign before registering */
1133 
1134 /*
1135  * Cache lines mostly used on receive path (including eth_type_trans())
1136  */
1137  unsigned long last_rx; /* Time of last Rx
1138  * This should not be set in
1139  * drivers, unless really needed,
1140  * because network stack (bonding)
1141  * use it if/when necessary, to
1142  * avoid dirtying this cache line.
1143  */
1144 
1145  struct net_device *master; /* Pointer to master device of a group,
1146  * which this device is member of.
1147  */
1148 
1149  /* Interface address info used in eth_type_trans() */
1150  unsigned char *dev_addr; /* hw address, (before bcast
1151  because most packets are
1152  unicast) */
1153 
1154  struct netdev_hw_addr_list dev_addrs; /* list of device
1155  hw addresses */
1156 
1157  unsigned char broadcast[MAX_ADDR_LEN]; /* hw bcast add */
1158 
1159 #ifdef CONFIG_SYSFS
1160  struct kset *queues_kset;
1161 #endif
1162 
1163 #ifdef CONFIG_RPS
1164  struct netdev_rx_queue *_rx;
1165 
1166  /* Number of RX queues allocated at register_netdev() time */
1167  unsigned int num_rx_queues;
1168 
1169  /* Number of RX queues currently active in device */
1170  unsigned int real_num_rx_queues;
1171 
1172 #ifdef CONFIG_RFS_ACCEL
1173  /* CPU reverse-mapping for RX completion interrupts, indexed
1174  * by RX queue number. Assigned by driver. This must only be
1175  * set if the ndo_rx_flow_steer operation is defined. */
1176  struct cpu_rmap *rx_cpu_rmap;
1177 #endif
1178 #endif
1179 
1182 
1184 
1185 /*
1186  * Cache lines mostly used on transmit path
1187  */
1189 
1190  /* Number of TX queues allocated at alloc_netdev_mq() time */
1191  unsigned int num_tx_queues;
1192 
1193  /* Number of TX queues currently active in device */
1194  unsigned int real_num_tx_queues;
1195 
1196  /* root qdisc from userspace point of view */
1197  struct Qdisc *qdisc;
1198 
1199  unsigned long tx_queue_len; /* Max frames per queue allowed */
1201 
1202 #ifdef CONFIG_XPS
1203  struct xps_dev_maps __rcu *xps_maps;
1204 #endif
1205 
1206  /* These may be needed for future network-power-down code. */
1207 
1208  /*
1209  * trans_start here is expensive for high speed devices on SMP,
1210  * please use netdev_queue->trans_start instead.
1211  */
1212  unsigned long trans_start; /* Time (in jiffies) of last Tx */
1213 
1214  int watchdog_timeo; /* used by dev_watchdog() */
1216 
1217  /* Number of references to this device */
1219 
1220  /* delayed register/unregister */
1222  /* device index hash chain */
1224 
1226 
1227  /* register/unregister state machine */
1229  NETREG_REGISTERED, /* completed register_netdevice */
1230  NETREG_UNREGISTERING, /* called unregister_netdevice */
1231  NETREG_UNREGISTERED, /* completed unregister todo */
1232  NETREG_RELEASED, /* called free_netdev */
1233  NETREG_DUMMY, /* dummy device for NAPI poll */
1234  } reg_state:8;
1235 
1236  bool dismantle; /* device is going do be freed */
1237 
1238  enum {
1241  } rtnl_link_state:16;
1242 
1243  /* Called from unregister, can be used to call free_netdev */
1245 
1246 #ifdef CONFIG_NETPOLL
1247  struct netpoll_info *npinfo;
1248 #endif
1249 
1250 #ifdef CONFIG_NET_NS
1251  /* Network namespace this network device is inside */
1252  struct net *nd_net;
1253 #endif
1254 
1255  /* mid-layer private */
1256  union {
1257  void *ml_priv;
1258  struct pcpu_lstats __percpu *lstats; /* loopback stats */
1259  struct pcpu_tstats __percpu *tstats; /* tunnel stats */
1260  struct pcpu_dstats __percpu *dstats; /* dummy stats */
1261  };
1262  /* GARP */
1264 
1265  /* class/net/name entry */
1266  struct device dev;
1267  /* space for optional device, statistics, and wireless sysfs groups */
1268  const struct attribute_group *sysfs_groups[4];
1269 
1270  /* rtnetlink link ops */
1272 
1273  /* for setting kernel sock attribute on TCP connection setup */
1274 #define GSO_MAX_SIZE 65536
1275  unsigned int gso_max_size;
1276 #define GSO_MAX_SEGS 65535
1278 
1279 #ifdef CONFIG_DCB
1280  /* Data Center Bridging netlink ops */
1281  const struct dcbnl_rtnl_ops *dcbnl_ops;
1282 #endif
1286 
1287 #if IS_ENABLED(CONFIG_FCOE)
1288  /* max exchange id for FCoE LRO by ddp */
1289  unsigned int fcoe_ddp_xid;
1290 #endif
1291 #if IS_ENABLED(CONFIG_NETPRIO_CGROUP)
1292  struct netprio_map __rcu *priomap;
1293 #endif
1294  /* phy device may attach itself for hardware timestamping */
1296 
1298 
1299  /* group the device belongs to */
1300  int group;
1301 
1303 };
1304 #define to_net_dev(d) container_of(d, struct net_device, dev)
1305 
1306 #define NETDEV_ALIGN 32
1307 
1308 static inline
1309 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
1310 {
1311  return dev->prio_tc_map[prio & TC_BITMASK];
1312 }
1313 
1314 static inline
1315 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
1316 {
1317  if (tc >= dev->num_tc)
1318  return -EINVAL;
1319 
1320  dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
1321  return 0;
1322 }
1323 
1324 static inline
1325 void netdev_reset_tc(struct net_device *dev)
1326 {
1327  dev->num_tc = 0;
1328  memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
1329  memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
1330 }
1331 
1332 static inline
1333 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
1334 {
1335  if (tc >= dev->num_tc)
1336  return -EINVAL;
1337 
1338  dev->tc_to_txq[tc].count = count;
1339  dev->tc_to_txq[tc].offset = offset;
1340  return 0;
1341 }
1342 
1343 static inline
1344 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
1345 {
1346  if (num_tc > TC_MAX_QUEUE)
1347  return -EINVAL;
1348 
1349  dev->num_tc = num_tc;
1350  return 0;
1351 }
1352 
1353 static inline
1354 int netdev_get_num_tc(struct net_device *dev)
1355 {
1356  return dev->num_tc;
1357 }
1358 
1359 static inline
1360 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
1361  unsigned int index)
1362 {
1363  return &dev->_tx[index];
1364 }
1365 
1366 static inline void netdev_for_each_tx_queue(struct net_device *dev,
1367  void (*f)(struct net_device *,
1368  struct netdev_queue *,
1369  void *),
1370  void *arg)
1371 {
1372  unsigned int i;
1373 
1374  for (i = 0; i < dev->num_tx_queues; i++)
1375  f(dev, &dev->_tx[i], arg);
1376 }
1377 
1378 extern struct netdev_queue *netdev_pick_tx(struct net_device *dev,
1379  struct sk_buff *skb);
1380 
1381 /*
1382  * Net namespace inlines
1383  */
1384 static inline
1385 struct net *dev_net(const struct net_device *dev)
1386 {
1387  return read_pnet(&dev->nd_net);
1388 }
1389 
1390 static inline
1391 void dev_net_set(struct net_device *dev, struct net *net)
1392 {
1393 #ifdef CONFIG_NET_NS
1394  release_net(dev->nd_net);
1395  dev->nd_net = hold_net(net);
1396 #endif
1397 }
1398 
1399 static inline bool netdev_uses_dsa_tags(struct net_device *dev)
1400 {
1401 #ifdef CONFIG_NET_DSA_TAG_DSA
1402  if (dev->dsa_ptr != NULL)
1403  return dsa_uses_dsa_tags(dev->dsa_ptr);
1404 #endif
1405 
1406  return 0;
1407 }
1408 
1409 static inline bool netdev_uses_trailer_tags(struct net_device *dev)
1410 {
1411 #ifdef CONFIG_NET_DSA_TAG_TRAILER
1412  if (dev->dsa_ptr != NULL)
1413  return dsa_uses_trailer_tags(dev->dsa_ptr);
1414 #endif
1415 
1416  return 0;
1417 }
1418 
1425 static inline void *netdev_priv(const struct net_device *dev)
1426 {
1427  return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
1428 }
1429 
1430 /* Set the sysfs physical device reference for the network logical device
1431  * if set prior to registration will cause a symlink during initialization.
1432  */
1433 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
1434 
1435 /* Set the sysfs device type for the network logical device to allow
1436  * fin grained indentification of different network device types. For
1437  * example Ethernet, Wirelss LAN, Bluetooth, WiMAX etc.
1438  */
1439 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
1440 
1451 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
1452  int (*poll)(struct napi_struct *, int), int weight);
1453 
1460 void netif_napi_del(struct napi_struct *napi);
1461 
1462 struct napi_gro_cb {
1463  /* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
1464  void *frag0;
1465 
1466  /* Length of frag0. */
1467  unsigned int frag0_len;
1468 
1469  /* This indicates where we are processing relative to skb->data. */
1471 
1472  /* This is non-zero if the packet cannot be merged with the new skb. */
1473  int flush;
1474 
1475  /* Number of segments aggregated. */
1477 
1478  /* This is non-zero if the packet may be of the same flow. */
1480 
1481  /* Free the skb? */
1483 #define NAPI_GRO_FREE 1
1484 #define NAPI_GRO_FREE_STOLEN_HEAD 2
1485 
1486  /* jiffies when first packet was created/queued */
1487  unsigned long age;
1488 
1489  /* Used in ipv6_gro_receive() */
1490  int proto;
1491 
1492  /* used in skb_gro_receive() slow path */
1493  struct sk_buff *last;
1494 };
1495 
1496 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
1497 
1498 struct packet_type {
1499  __be16 type; /* This is really htons(ether_type). */
1500  struct net_device *dev; /* NULL is wildcarded here */
1501  int (*func) (struct sk_buff *,
1502  struct net_device *,
1503  struct packet_type *,
1504  struct net_device *);
1505  struct sk_buff *(*gso_segment)(struct sk_buff *skb,
1508  struct sk_buff **(*gro_receive)(struct sk_buff **head,
1509  struct sk_buff *skb);
1511  bool (*id_match)(struct packet_type *ptype,
1512  struct sock *sk);
1514  struct list_head list;
1515 };
1516 
1517 #include <linux/notifier.h>
1518 
1519 /* netdevice notifier chain. Please remember to update the rtnetlink
1520  * notification exclusion list in rtnetlink_event() when adding new
1521  * types.
1522  */
1523 #define NETDEV_UP 0x0001 /* For now you can't veto a device up/down */
1524 #define NETDEV_DOWN 0x0002
1525 #define NETDEV_REBOOT 0x0003 /* Tell a protocol stack a network interface
1526  detected a hardware crash and restarted
1527  - we can use this eg to kick tcp sessions
1528  once done */
1529 #define NETDEV_CHANGE 0x0004 /* Notify device state change */
1530 #define NETDEV_REGISTER 0x0005
1531 #define NETDEV_UNREGISTER 0x0006
1532 #define NETDEV_CHANGEMTU 0x0007
1533 #define NETDEV_CHANGEADDR 0x0008
1534 #define NETDEV_GOING_DOWN 0x0009
1535 #define NETDEV_CHANGENAME 0x000A
1536 #define NETDEV_FEAT_CHANGE 0x000B
1537 #define NETDEV_BONDING_FAILOVER 0x000C
1538 #define NETDEV_PRE_UP 0x000D
1539 #define NETDEV_PRE_TYPE_CHANGE 0x000E
1540 #define NETDEV_POST_TYPE_CHANGE 0x000F
1541 #define NETDEV_POST_INIT 0x0010
1542 #define NETDEV_UNREGISTER_FINAL 0x0011
1543 #define NETDEV_RELEASE 0x0012
1544 #define NETDEV_NOTIFY_PEERS 0x0013
1545 #define NETDEV_JOIN 0x0014
1546 
1547 extern int register_netdevice_notifier(struct notifier_block *nb);
1548 extern int unregister_netdevice_notifier(struct notifier_block *nb);
1549 extern int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
1550 
1551 
1552 extern rwlock_t dev_base_lock; /* Device list lock */
1553 
1555 #define for_each_netdev(net, d) \
1556  list_for_each_entry(d, &(net)->dev_base_head, dev_list)
1557 #define for_each_netdev_reverse(net, d) \
1558  list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
1559 #define for_each_netdev_rcu(net, d) \
1560  list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
1561 #define for_each_netdev_safe(net, d, n) \
1562  list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
1563 #define for_each_netdev_continue(net, d) \
1564  list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
1565 #define for_each_netdev_continue_rcu(net, d) \
1566  list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
1567 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
1568 
1569 static inline struct net_device *next_net_device(struct net_device *dev)
1570 {
1571  struct list_head *lh;
1572  struct net *net;
1573 
1574  net = dev_net(dev);
1575  lh = dev->dev_list.next;
1576  return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1577 }
1578 
1579 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
1580 {
1581  struct list_head *lh;
1582  struct net *net;
1583 
1584  net = dev_net(dev);
1585  lh = rcu_dereference(list_next_rcu(&dev->dev_list));
1586  return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1587 }
1588 
1589 static inline struct net_device *first_net_device(struct net *net)
1590 {
1591  return list_empty(&net->dev_base_head) ? NULL :
1592  net_device_entry(net->dev_base_head.next);
1593 }
1594 
1595 static inline struct net_device *first_net_device_rcu(struct net *net)
1596 {
1597  struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
1598 
1599  return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
1600 }
1601 
1602 extern int netdev_boot_setup_check(struct net_device *dev);
1603 extern unsigned long netdev_boot_base(const char *prefix, int unit);
1604 extern struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
1605  const char *hwaddr);
1606 extern struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
1607 extern struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
1608 extern void dev_add_pack(struct packet_type *pt);
1609 extern void dev_remove_pack(struct packet_type *pt);
1610 extern void __dev_remove_pack(struct packet_type *pt);
1611 
1612 extern struct net_device *dev_get_by_flags_rcu(struct net *net, unsigned short flags,
1613  unsigned short mask);
1614 extern struct net_device *dev_get_by_name(struct net *net, const char *name);
1615 extern struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
1616 extern struct net_device *__dev_get_by_name(struct net *net, const char *name);
1617 extern int dev_alloc_name(struct net_device *dev, const char *name);
1618 extern int dev_open(struct net_device *dev);
1619 extern int dev_close(struct net_device *dev);
1620 extern void dev_disable_lro(struct net_device *dev);
1621 extern int dev_loopback_xmit(struct sk_buff *newskb);
1622 extern int dev_queue_xmit(struct sk_buff *skb);
1623 extern int register_netdevice(struct net_device *dev);
1624 extern void unregister_netdevice_queue(struct net_device *dev,
1625  struct list_head *head);
1626 extern void unregister_netdevice_many(struct list_head *head);
1627 static inline void unregister_netdevice(struct net_device *dev)
1628 {
1630 }
1631 
1632 extern int netdev_refcnt_read(const struct net_device *dev);
1633 extern void free_netdev(struct net_device *dev);
1634 extern void synchronize_net(void);
1635 extern int init_dummy_netdev(struct net_device *dev);
1636 extern void netdev_resync_ops(struct net_device *dev);
1637 
1638 extern struct net_device *dev_get_by_index(struct net *net, int ifindex);
1639 extern struct net_device *__dev_get_by_index(struct net *net, int ifindex);
1640 extern struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
1641 extern int dev_restart(struct net_device *dev);
1642 #ifdef CONFIG_NETPOLL_TRAP
1643 extern int netpoll_trap(void);
1644 #endif
1645 extern int skb_gro_receive(struct sk_buff **head,
1646  struct sk_buff *skb);
1647 
1648 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
1649 {
1650  return NAPI_GRO_CB(skb)->data_offset;
1651 }
1652 
1653 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
1654 {
1655  return skb->len - NAPI_GRO_CB(skb)->data_offset;
1656 }
1657 
1658 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
1659 {
1660  NAPI_GRO_CB(skb)->data_offset += len;
1661 }
1662 
1663 static inline void *skb_gro_header_fast(struct sk_buff *skb,
1664  unsigned int offset)
1665 {
1666  return NAPI_GRO_CB(skb)->frag0 + offset;
1667 }
1668 
1669 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
1670 {
1671  return NAPI_GRO_CB(skb)->frag0_len < hlen;
1672 }
1673 
1674 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
1675  unsigned int offset)
1676 {
1677  if (!pskb_may_pull(skb, hlen))
1678  return NULL;
1679 
1680  NAPI_GRO_CB(skb)->frag0 = NULL;
1681  NAPI_GRO_CB(skb)->frag0_len = 0;
1682  return skb->data + offset;
1683 }
1684 
1685 static inline void *skb_gro_mac_header(struct sk_buff *skb)
1686 {
1687  return NAPI_GRO_CB(skb)->frag0 ?: skb_mac_header(skb);
1688 }
1689 
1690 static inline void *skb_gro_network_header(struct sk_buff *skb)
1691 {
1692  return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
1693  skb_network_offset(skb);
1694 }
1695 
1696 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
1697  unsigned short type,
1698  const void *daddr, const void *saddr,
1699  unsigned int len)
1700 {
1701  if (!dev->header_ops || !dev->header_ops->create)
1702  return 0;
1703 
1704  return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
1705 }
1706 
1707 static inline int dev_parse_header(const struct sk_buff *skb,
1708  unsigned char *haddr)
1709 {
1710  const struct net_device *dev = skb->dev;
1711 
1712  if (!dev->header_ops || !dev->header_ops->parse)
1713  return 0;
1714  return dev->header_ops->parse(skb, haddr);
1715 }
1716 
1717 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr, int len);
1718 extern int register_gifconf(unsigned int family, gifconf_func_t * gifconf);
1719 static inline int unregister_gifconf(unsigned int family)
1720 {
1721  return register_gifconf(family, NULL);
1722 }
1723 
1724 /*
1725  * Incoming packets are placed on per-cpu queues
1726  */
1730  struct list_head poll_list;
1731  struct sk_buff *completion_queue;
1734  /* stats */
1735  unsigned int processed;
1736  unsigned int time_squeeze;
1737  unsigned int cpu_collision;
1738  unsigned int received_rps;
1739 
1740 #ifdef CONFIG_RPS
1741  struct softnet_data *rps_ipi_list;
1742 
1743  /* Elements below can be accessed between CPUs for RPS */
1745  struct softnet_data *rps_ipi_next;
1746  unsigned int cpu;
1747  unsigned int input_queue_head;
1748  unsigned int input_queue_tail;
1749 #endif
1750  unsigned int dropped;
1752  struct napi_struct backlog;
1753 };
1754 
1755 static inline void input_queue_head_incr(struct softnet_data *sd)
1756 {
1757 #ifdef CONFIG_RPS
1758  sd->input_queue_head++;
1759 #endif
1760 }
1761 
1762 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
1763  unsigned int *qtail)
1764 {
1765 #ifdef CONFIG_RPS
1766  *qtail = ++sd->input_queue_tail;
1767 #endif
1768 }
1769 
1771 
1772 extern void __netif_schedule(struct Qdisc *q);
1773 
1774 static inline void netif_schedule_queue(struct netdev_queue *txq)
1775 {
1776  if (!(txq->state & QUEUE_STATE_ANY_XOFF))
1777  __netif_schedule(txq->qdisc);
1778 }
1779 
1780 static inline void netif_tx_schedule_all(struct net_device *dev)
1781 {
1782  unsigned int i;
1783 
1784  for (i = 0; i < dev->num_tx_queues; i++)
1785  netif_schedule_queue(netdev_get_tx_queue(dev, i));
1786 }
1787 
1788 static inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
1789 {
1790  clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1791 }
1792 
1799 static inline void netif_start_queue(struct net_device *dev)
1800 {
1801  netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
1802 }
1803 
1804 static inline void netif_tx_start_all_queues(struct net_device *dev)
1805 {
1806  unsigned int i;
1807 
1808  for (i = 0; i < dev->num_tx_queues; i++) {
1809  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1810  netif_tx_start_queue(txq);
1811  }
1812 }
1813 
1814 static inline void netif_tx_wake_queue(struct netdev_queue *dev_queue)
1815 {
1816 #ifdef CONFIG_NETPOLL_TRAP
1817  if (netpoll_trap()) {
1818  netif_tx_start_queue(dev_queue);
1819  return;
1820  }
1821 #endif
1823  __netif_schedule(dev_queue->qdisc);
1824 }
1825 
1833 static inline void netif_wake_queue(struct net_device *dev)
1834 {
1835  netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
1836 }
1837 
1838 static inline void netif_tx_wake_all_queues(struct net_device *dev)
1839 {
1840  unsigned int i;
1841 
1842  for (i = 0; i < dev->num_tx_queues; i++) {
1843  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1844  netif_tx_wake_queue(txq);
1845  }
1846 }
1847 
1848 static inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
1849 {
1850  if (WARN_ON(!dev_queue)) {
1851  pr_info("netif_stop_queue() cannot be called before register_netdev()\n");
1852  return;
1853  }
1854  set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1855 }
1856 
1864 static inline void netif_stop_queue(struct net_device *dev)
1865 {
1866  netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
1867 }
1868 
1869 static inline void netif_tx_stop_all_queues(struct net_device *dev)
1870 {
1871  unsigned int i;
1872 
1873  for (i = 0; i < dev->num_tx_queues; i++) {
1874  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
1875  netif_tx_stop_queue(txq);
1876  }
1877 }
1878 
1879 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
1880 {
1881  return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
1882 }
1883 
1890 static inline bool netif_queue_stopped(const struct net_device *dev)
1891 {
1892  return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
1893 }
1894 
1895 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
1896 {
1897  return dev_queue->state & QUEUE_STATE_ANY_XOFF;
1898 }
1899 
1900 static inline bool netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
1901 {
1902  return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
1903 }
1904 
1905 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
1906  unsigned int bytes)
1907 {
1908 #ifdef CONFIG_BQL
1909  dql_queued(&dev_queue->dql, bytes);
1910 
1911  if (likely(dql_avail(&dev_queue->dql) >= 0))
1912  return;
1913 
1914  set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
1915 
1916  /*
1917  * The XOFF flag must be set before checking the dql_avail below,
1918  * because in netdev_tx_completed_queue we update the dql_completed
1919  * before checking the XOFF flag.
1920  */
1921  smp_mb();
1922 
1923  /* check again in case another CPU has just made room avail */
1924  if (unlikely(dql_avail(&dev_queue->dql) >= 0))
1926 #endif
1927 }
1928 
1929 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
1930 {
1931  netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
1932 }
1933 
1934 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
1935  unsigned int pkts, unsigned int bytes)
1936 {
1937 #ifdef CONFIG_BQL
1938  if (unlikely(!bytes))
1939  return;
1940 
1941  dql_completed(&dev_queue->dql, bytes);
1942 
1943  /*
1944  * Without the memory barrier there is a small possiblity that
1945  * netdev_tx_sent_queue will miss the update and cause the queue to
1946  * be stopped forever
1947  */
1948  smp_mb();
1949 
1950  if (dql_avail(&dev_queue->dql) < 0)
1951  return;
1952 
1954  netif_schedule_queue(dev_queue);
1955 #endif
1956 }
1957 
1958 static inline void netdev_completed_queue(struct net_device *dev,
1959  unsigned int pkts, unsigned int bytes)
1960 {
1961  netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
1962 }
1963 
1964 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
1965 {
1966 #ifdef CONFIG_BQL
1968  dql_reset(&q->dql);
1969 #endif
1970 }
1971 
1972 static inline void netdev_reset_queue(struct net_device *dev_queue)
1973 {
1974  netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
1975 }
1976 
1983 static inline bool netif_running(const struct net_device *dev)
1984 {
1985  return test_bit(__LINK_STATE_START, &dev->state);
1986 }
1987 
1988 /*
1989  * Routines to manage the subqueues on a device. We only need start
1990  * stop, and a check if it's stopped. All other device management is
1991  * done at the overall netdevice level.
1992  * Also test the device if we're multiqueue.
1993  */
1994 
2002 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
2003 {
2004  struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2005 
2006  netif_tx_start_queue(txq);
2007 }
2008 
2016 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
2017 {
2018  struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2019 #ifdef CONFIG_NETPOLL_TRAP
2020  if (netpoll_trap())
2021  return;
2022 #endif
2023  netif_tx_stop_queue(txq);
2024 }
2025 
2033 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
2034  u16 queue_index)
2035 {
2036  struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2037 
2038  return netif_tx_queue_stopped(txq);
2039 }
2040 
2041 static inline bool netif_subqueue_stopped(const struct net_device *dev,
2042  struct sk_buff *skb)
2043 {
2044  return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
2045 }
2046 
2054 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2055 {
2056  struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2057 #ifdef CONFIG_NETPOLL_TRAP
2058  if (netpoll_trap())
2059  return;
2060 #endif
2062  __netif_schedule(txq->qdisc);
2063 }
2064 
2065 /*
2066  * Returns a Tx hash for the given packet when dev->real_num_tx_queues is used
2067  * as a distribution range limit for the returned value.
2068  */
2069 static inline u16 skb_tx_hash(const struct net_device *dev,
2070  const struct sk_buff *skb)
2071 {
2072  return __skb_tx_hash(dev, skb, dev->real_num_tx_queues);
2073 }
2074 
2081 static inline bool netif_is_multiqueue(const struct net_device *dev)
2082 {
2083  return dev->num_tx_queues > 1;
2084 }
2085 
2086 extern int netif_set_real_num_tx_queues(struct net_device *dev,
2087  unsigned int txq);
2088 
2089 #ifdef CONFIG_RPS
2090 extern int netif_set_real_num_rx_queues(struct net_device *dev,
2091  unsigned int rxq);
2092 #else
2093 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
2094  unsigned int rxq)
2095 {
2096  return 0;
2097 }
2098 #endif
2099 
2100 static inline int netif_copy_real_num_queues(struct net_device *to_dev,
2101  const struct net_device *from_dev)
2102 {
2103  int err;
2104 
2105  err = netif_set_real_num_tx_queues(to_dev,
2106  from_dev->real_num_tx_queues);
2107  if (err)
2108  return err;
2109 #ifdef CONFIG_RPS
2110  return netif_set_real_num_rx_queues(to_dev,
2111  from_dev->real_num_rx_queues);
2112 #else
2113  return 0;
2114 #endif
2115 }
2116 
2117 #define DEFAULT_MAX_NUM_RSS_QUEUES (8)
2118 extern int netif_get_num_default_rss_queues(void);
2119 
2120 /* Use this variant when it is known for sure that it
2121  * is executing from hardware interrupt context or with hardware interrupts
2122  * disabled.
2123  */
2124 extern void dev_kfree_skb_irq(struct sk_buff *skb);
2125 
2126 /* Use this variant in places where it could be invoked
2127  * from either hardware interrupt or other context, with hardware interrupts
2128  * either disabled or enabled.
2129  */
2130 extern void dev_kfree_skb_any(struct sk_buff *skb);
2131 
2132 extern int netif_rx(struct sk_buff *skb);
2133 extern int netif_rx_ni(struct sk_buff *skb);
2134 extern int netif_receive_skb(struct sk_buff *skb);
2135 extern gro_result_t dev_gro_receive(struct napi_struct *napi,
2136  struct sk_buff *skb);
2137 extern gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb);
2138 extern gro_result_t napi_gro_receive(struct napi_struct *napi,
2139  struct sk_buff *skb);
2140 extern void napi_gro_flush(struct napi_struct *napi, bool flush_old);
2141 extern struct sk_buff * napi_get_frags(struct napi_struct *napi);
2142 extern gro_result_t napi_frags_finish(struct napi_struct *napi,
2143  struct sk_buff *skb,
2144  gro_result_t ret);
2145 extern gro_result_t napi_gro_frags(struct napi_struct *napi);
2146 
2147 static inline void napi_free_frags(struct napi_struct *napi)
2148 {
2149  kfree_skb(napi->skb);
2150  napi->skb = NULL;
2151 }
2152 
2153 extern int netdev_rx_handler_register(struct net_device *dev,
2154  rx_handler_func_t *rx_handler,
2155  void *rx_handler_data);
2156 extern void netdev_rx_handler_unregister(struct net_device *dev);
2157 
2158 extern bool dev_valid_name(const char *name);
2159 extern int dev_ioctl(struct net *net, unsigned int cmd, void __user *);
2160 extern int dev_ethtool(struct net *net, struct ifreq *);
2161 extern unsigned int dev_get_flags(const struct net_device *);
2162 extern int __dev_change_flags(struct net_device *, unsigned int flags);
2163 extern int dev_change_flags(struct net_device *, unsigned int);
2164 extern void __dev_notify_flags(struct net_device *, unsigned int old_flags);
2165 extern int dev_change_name(struct net_device *, const char *);
2166 extern int dev_set_alias(struct net_device *, const char *, size_t);
2167 extern int dev_change_net_namespace(struct net_device *,
2168  struct net *, const char *);
2169 extern int dev_set_mtu(struct net_device *, int);
2170 extern void dev_set_group(struct net_device *, int);
2171 extern int dev_set_mac_address(struct net_device *,
2172  struct sockaddr *);
2173 extern int dev_hard_start_xmit(struct sk_buff *skb,
2174  struct net_device *dev,
2175  struct netdev_queue *txq);
2176 extern int dev_forward_skb(struct net_device *dev,
2177  struct sk_buff *skb);
2178 
2179 extern int netdev_budget;
2180 
2181 /* Called by rtnetlink.c:rtnl_unlock() */
2182 extern void netdev_run_todo(void);
2183 
2190 static inline void dev_put(struct net_device *dev)
2191 {
2192  this_cpu_dec(*dev->pcpu_refcnt);
2193 }
2194 
2201 static inline void dev_hold(struct net_device *dev)
2202 {
2203  this_cpu_inc(*dev->pcpu_refcnt);
2204 }
2205 
2206 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
2207  * and _off may be called from IRQ context, but it is caller
2208  * who is responsible for serialization of these calls.
2209  *
2210  * The name carrier is inappropriate, these functions should really be
2211  * called netif_lowerlayer_*() because they represent the state of any
2212  * kind of lower layer not just hardware media.
2213  */
2214 
2215 extern void linkwatch_init_dev(struct net_device *dev);
2216 extern void linkwatch_fire_event(struct net_device *dev);
2217 extern void linkwatch_forget_dev(struct net_device *dev);
2218 
2225 static inline bool netif_carrier_ok(const struct net_device *dev)
2226 {
2227  return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
2228 }
2229 
2230 extern unsigned long dev_trans_start(struct net_device *dev);
2231 
2232 extern void __netdev_watchdog_up(struct net_device *dev);
2233 
2234 extern void netif_carrier_on(struct net_device *dev);
2235 
2236 extern void netif_carrier_off(struct net_device *dev);
2237 
2251 static inline void netif_dormant_on(struct net_device *dev)
2252 {
2254  linkwatch_fire_event(dev);
2255 }
2256 
2263 static inline void netif_dormant_off(struct net_device *dev)
2264 {
2266  linkwatch_fire_event(dev);
2267 }
2268 
2275 static inline bool netif_dormant(const struct net_device *dev)
2276 {
2277  return test_bit(__LINK_STATE_DORMANT, &dev->state);
2278 }
2279 
2280 
2287 static inline bool netif_oper_up(const struct net_device *dev)
2288 {
2289  return (dev->operstate == IF_OPER_UP ||
2290  dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
2291 }
2292 
2299 static inline bool netif_device_present(struct net_device *dev)
2300 {
2301  return test_bit(__LINK_STATE_PRESENT, &dev->state);
2302 }
2303 
2304 extern void netif_device_detach(struct net_device *dev);
2305 
2306 extern void netif_device_attach(struct net_device *dev);
2307 
2308 /*
2309  * Network interface message level settings
2310  */
2312 enum {
2313  NETIF_MSG_DRV = 0x0001,
2315  NETIF_MSG_LINK = 0x0004,
2318  NETIF_MSG_IFUP = 0x0020,
2322  NETIF_MSG_INTR = 0x0200,
2325  NETIF_MSG_PKTDATA = 0x1000,
2326  NETIF_MSG_HW = 0x2000,
2327  NETIF_MSG_WOL = 0x4000,
2328 };
2330 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
2331 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
2332 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
2333 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
2334 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
2335 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
2336 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
2337 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
2338 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
2339 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
2340 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
2341 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
2342 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
2343 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
2344 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
2345 
2346 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
2347 {
2348  /* use default */
2349  if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
2350  return default_msg_enable_bits;
2351  if (debug_value == 0) /* no output */
2352  return 0;
2353  /* set low N bits */
2354  return (1 << debug_value) - 1;
2355 }
2356 
2357 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
2358 {
2359  spin_lock(&txq->_xmit_lock);
2360  txq->xmit_lock_owner = cpu;
2361 }
2362 
2363 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
2364 {
2365  spin_lock_bh(&txq->_xmit_lock);
2367 }
2368 
2369 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
2370 {
2371  bool ok = spin_trylock(&txq->_xmit_lock);
2372  if (likely(ok))
2374  return ok;
2375 }
2376 
2377 static inline void __netif_tx_unlock(struct netdev_queue *txq)
2378 {
2379  txq->xmit_lock_owner = -1;
2380  spin_unlock(&txq->_xmit_lock);
2381 }
2382 
2383 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
2384 {
2385  txq->xmit_lock_owner = -1;
2386  spin_unlock_bh(&txq->_xmit_lock);
2387 }
2388 
2389 static inline void txq_trans_update(struct netdev_queue *txq)
2390 {
2391  if (txq->xmit_lock_owner != -1)
2392  txq->trans_start = jiffies;
2393 }
2394 
2401 static inline void netif_tx_lock(struct net_device *dev)
2402 {
2403  unsigned int i;
2404  int cpu;
2405 
2406  spin_lock(&dev->tx_global_lock);
2407  cpu = smp_processor_id();
2408  for (i = 0; i < dev->num_tx_queues; i++) {
2409  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2410 
2411  /* We are the only thread of execution doing a
2412  * freeze, but we have to grab the _xmit_lock in
2413  * order to synchronize with threads which are in
2414  * the ->hard_start_xmit() handler and already
2415  * checked the frozen bit.
2416  */
2417  __netif_tx_lock(txq, cpu);
2419  __netif_tx_unlock(txq);
2420  }
2421 }
2422 
2423 static inline void netif_tx_lock_bh(struct net_device *dev)
2424 {
2425  local_bh_disable();
2426  netif_tx_lock(dev);
2427 }
2428 
2429 static inline void netif_tx_unlock(struct net_device *dev)
2430 {
2431  unsigned int i;
2432 
2433  for (i = 0; i < dev->num_tx_queues; i++) {
2434  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2435 
2436  /* No need to grab the _xmit_lock here. If the
2437  * queue is not stopped for another reason, we
2438  * force a schedule.
2439  */
2441  netif_schedule_queue(txq);
2442  }
2443  spin_unlock(&dev->tx_global_lock);
2444 }
2445 
2446 static inline void netif_tx_unlock_bh(struct net_device *dev)
2447 {
2448  netif_tx_unlock(dev);
2450 }
2451 
2452 #define HARD_TX_LOCK(dev, txq, cpu) { \
2453  if ((dev->features & NETIF_F_LLTX) == 0) { \
2454  __netif_tx_lock(txq, cpu); \
2455  } \
2456 }
2457 
2458 #define HARD_TX_UNLOCK(dev, txq) { \
2459  if ((dev->features & NETIF_F_LLTX) == 0) { \
2460  __netif_tx_unlock(txq); \
2461  } \
2462 }
2463 
2464 static inline void netif_tx_disable(struct net_device *dev)
2465 {
2466  unsigned int i;
2467  int cpu;
2468 
2469  local_bh_disable();
2470  cpu = smp_processor_id();
2471  for (i = 0; i < dev->num_tx_queues; i++) {
2472  struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
2473 
2474  __netif_tx_lock(txq, cpu);
2475  netif_tx_stop_queue(txq);
2476  __netif_tx_unlock(txq);
2477  }
2478  local_bh_enable();
2479 }
2480 
2481 static inline void netif_addr_lock(struct net_device *dev)
2482 {
2483  spin_lock(&dev->addr_list_lock);
2484 }
2485 
2486 static inline void netif_addr_lock_nested(struct net_device *dev)
2487 {
2489 }
2490 
2491 static inline void netif_addr_lock_bh(struct net_device *dev)
2492 {
2493  spin_lock_bh(&dev->addr_list_lock);
2494 }
2495 
2496 static inline void netif_addr_unlock(struct net_device *dev)
2497 {
2498  spin_unlock(&dev->addr_list_lock);
2499 }
2500 
2501 static inline void netif_addr_unlock_bh(struct net_device *dev)
2502 {
2503  spin_unlock_bh(&dev->addr_list_lock);
2504 }
2505 
2506 /*
2507  * dev_addrs walker. Should be used only for read access. Call with
2508  * rcu_read_lock held.
2509  */
2510 #define for_each_dev_addr(dev, ha) \
2511  list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
2512 
2513 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
2514 
2515 extern void ether_setup(struct net_device *dev);
2516 
2517 /* Support for loadable net-drivers */
2518 extern struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
2519  void (*setup)(struct net_device *),
2520  unsigned int txqs, unsigned int rxqs);
2521 #define alloc_netdev(sizeof_priv, name, setup) \
2522  alloc_netdev_mqs(sizeof_priv, name, setup, 1, 1)
2523 
2524 #define alloc_netdev_mq(sizeof_priv, name, setup, count) \
2525  alloc_netdev_mqs(sizeof_priv, name, setup, count, count)
2526 
2527 extern int register_netdev(struct net_device *dev);
2528 extern void unregister_netdev(struct net_device *dev);
2529 
2530 /* General hardware address lists handling functions */
2531 extern int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
2532  struct netdev_hw_addr_list *from_list,
2533  int addr_len, unsigned char addr_type);
2534 extern void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
2535  struct netdev_hw_addr_list *from_list,
2536  int addr_len, unsigned char addr_type);
2537 extern int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
2538  struct netdev_hw_addr_list *from_list,
2539  int addr_len);
2540 extern void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
2541  struct netdev_hw_addr_list *from_list,
2542  int addr_len);
2543 extern void __hw_addr_flush(struct netdev_hw_addr_list *list);
2544 extern void __hw_addr_init(struct netdev_hw_addr_list *list);
2545 
2546 /* Functions used for device addresses handling */
2547 extern int dev_addr_add(struct net_device *dev, const unsigned char *addr,
2548  unsigned char addr_type);
2549 extern int dev_addr_del(struct net_device *dev, const unsigned char *addr,
2550  unsigned char addr_type);
2551 extern int dev_addr_add_multiple(struct net_device *to_dev,
2552  struct net_device *from_dev,
2553  unsigned char addr_type);
2554 extern int dev_addr_del_multiple(struct net_device *to_dev,
2555  struct net_device *from_dev,
2556  unsigned char addr_type);
2557 extern void dev_addr_flush(struct net_device *dev);
2558 extern int dev_addr_init(struct net_device *dev);
2559 
2560 /* Functions used for unicast addresses handling */
2561 extern int dev_uc_add(struct net_device *dev, const unsigned char *addr);
2562 extern int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
2563 extern int dev_uc_del(struct net_device *dev, const unsigned char *addr);
2564 extern int dev_uc_sync(struct net_device *to, struct net_device *from);
2565 extern void dev_uc_unsync(struct net_device *to, struct net_device *from);
2566 extern void dev_uc_flush(struct net_device *dev);
2567 extern void dev_uc_init(struct net_device *dev);
2568 
2569 /* Functions used for multicast addresses handling */
2570 extern int dev_mc_add(struct net_device *dev, const unsigned char *addr);
2571 extern int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
2572 extern int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
2573 extern int dev_mc_del(struct net_device *dev, const unsigned char *addr);
2574 extern int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
2575 extern int dev_mc_sync(struct net_device *to, struct net_device *from);
2576 extern void dev_mc_unsync(struct net_device *to, struct net_device *from);
2577 extern void dev_mc_flush(struct net_device *dev);
2578 extern void dev_mc_init(struct net_device *dev);
2579 
2580 /* Functions used for secondary unicast and multicast support */
2581 extern void dev_set_rx_mode(struct net_device *dev);
2582 extern void __dev_set_rx_mode(struct net_device *dev);
2583 extern int dev_set_promiscuity(struct net_device *dev, int inc);
2584 extern int dev_set_allmulti(struct net_device *dev, int inc);
2585 extern void netdev_state_change(struct net_device *dev);
2586 extern void netdev_notify_peers(struct net_device *dev);
2587 extern void netdev_features_change(struct net_device *dev);
2588 /* Load a device via the kmod */
2589 extern void dev_load(struct net *net, const char *name);
2590 extern void dev_mcast_init(void);
2591 extern struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
2592  struct rtnl_link_stats64 *storage);
2593 extern void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
2594  const struct net_device_stats *netdev_stats);
2595 
2596 extern int netdev_max_backlog;
2597 extern int netdev_tstamp_prequeue;
2598 extern int weight_p;
2599 extern int bpf_jit_enable;
2600 extern int netdev_set_master(struct net_device *dev, struct net_device *master);
2601 extern int netdev_set_bond_master(struct net_device *dev,
2602  struct net_device *master);
2603 extern int skb_checksum_help(struct sk_buff *skb);
2604 extern struct sk_buff *skb_gso_segment(struct sk_buff *skb,
2606 #ifdef CONFIG_BUG
2607 extern void netdev_rx_csum_fault(struct net_device *dev);
2608 #else
2609 static inline void netdev_rx_csum_fault(struct net_device *dev)
2610 {
2611 }
2612 #endif
2613 /* rx skb timestamps */
2614 extern void net_enable_timestamp(void);
2615 extern void net_disable_timestamp(void);
2616 
2617 #ifdef CONFIG_PROC_FS
2618 extern void *dev_seq_start(struct seq_file *seq, loff_t *pos);
2619 extern void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos);
2620 extern void dev_seq_stop(struct seq_file *seq, void *v);
2621 #endif
2622 
2623 extern int netdev_class_create_file(struct class_attribute *class_attr);
2624 extern void netdev_class_remove_file(struct class_attribute *class_attr);
2625 
2627 
2628 extern const char *netdev_drivername(const struct net_device *dev);
2629 
2630 extern void linkwatch_run_queue(void);
2631 
2632 static inline netdev_features_t netdev_get_wanted_features(
2633  struct net_device *dev)
2634 {
2635  return (dev->features & ~dev->hw_features) | dev->wanted_features;
2636 }
2639 int __netdev_update_features(struct net_device *dev);
2640 void netdev_update_features(struct net_device *dev);
2641 void netdev_change_features(struct net_device *dev);
2642 
2643 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
2644  struct net_device *dev);
2645 
2647 
2648 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
2649 {
2651 
2652  /* check flags correspondence */
2653  BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
2654  BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_UFO >> NETIF_F_GSO_SHIFT));
2655  BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
2656  BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
2657  BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
2658  BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
2659 
2660  return (features & feature) == feature;
2661 }
2662 
2663 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
2664 {
2665  return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
2666  (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
2667 }
2668 
2669 static inline bool netif_needs_gso(struct sk_buff *skb,
2670  netdev_features_t features)
2671 {
2672  return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
2673  unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
2674  (skb->ip_summed != CHECKSUM_UNNECESSARY)));
2675 }
2676 
2677 static inline void netif_set_gso_max_size(struct net_device *dev,
2678  unsigned int size)
2679 {
2680  dev->gso_max_size = size;
2681 }
2682 
2683 static inline bool netif_is_bond_slave(struct net_device *dev)
2684 {
2685  return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
2686 }
2687 
2688 static inline bool netif_supports_nofcs(struct net_device *dev)
2689 {
2690  return dev->priv_flags & IFF_SUPP_NOFCS;
2691 }
2692 
2694 
2695 /* Logging, debugging and troubleshooting/diagnostic helpers. */
2696 
2697 /* netdev_printk helpers, similar to dev_printk */
2698 
2699 static inline const char *netdev_name(const struct net_device *dev)
2700 {
2701  if (dev->reg_state != NETREG_REGISTERED)
2702  return "(unregistered net_device)";
2703  return dev->name;
2705 
2706 extern __printf(3, 4)
2708  const char *format, ...);
2709 extern __printf(2, 3)
2710 int netdev_emerg(const struct net_device *dev, const char *format, ...);
2711 extern __printf(2, 3)
2712 int netdev_alert(const struct net_device *dev, const char *format, ...);
2713 extern __printf(2, 3)
2714 int netdev_crit(const struct net_device *dev, const char *format, ...);
2715 extern __printf(2, 3)
2716 int netdev_err(const struct net_device *dev, const char *format, ...);
2717 extern __printf(2, 3)
2718 int netdev_warn(const struct net_device *dev, const char *format, ...);
2719 extern __printf(2, 3)
2720 int netdev_notice(const struct net_device *dev, const char *format, ...);
2721 extern __printf(2, 3)
2722 int netdev_info(const struct net_device *dev, const char *format, ...);
2723 
2724 #define MODULE_ALIAS_NETDEV(device) \
2725  MODULE_ALIAS("netdev-" device)
2726 
2727 #if defined(CONFIG_DYNAMIC_DEBUG)
2728 #define netdev_dbg(__dev, format, args...) \
2729 do { \
2730  dynamic_netdev_dbg(__dev, format, ##args); \
2731 } while (0)
2732 #elif defined(DEBUG)
2733 #define netdev_dbg(__dev, format, args...) \
2734  netdev_printk(KERN_DEBUG, __dev, format, ##args)
2735 #else
2736 #define netdev_dbg(__dev, format, args...) \
2737 ({ \
2738  if (0) \
2739  netdev_printk(KERN_DEBUG, __dev, format, ##args); \
2740  0; \
2741 })
2742 #endif
2743 
2744 #if defined(VERBOSE_DEBUG)
2745 #define netdev_vdbg netdev_dbg
2746 #else
2747 
2748 #define netdev_vdbg(dev, format, args...) \
2749 ({ \
2750  if (0) \
2751  netdev_printk(KERN_DEBUG, dev, format, ##args); \
2752  0; \
2753 })
2754 #endif
2755 
2756 /*
2757  * netdev_WARN() acts like dev_printk(), but with the key difference
2758  * of using a WARN/WARN_ON to get the message out, including the
2759  * file/line information and a backtrace.
2760  */
2761 #define netdev_WARN(dev, format, args...) \
2762  WARN(1, "netdevice: %s\n" format, netdev_name(dev), ##args);
2764 /* netif printk helpers, similar to netdev_printk */
2765 
2766 #define netif_printk(priv, type, level, dev, fmt, args...) \
2767 do { \
2768  if (netif_msg_##type(priv)) \
2769  netdev_printk(level, (dev), fmt, ##args); \
2770 } while (0)
2771 
2772 #define netif_level(level, priv, type, dev, fmt, args...) \
2773 do { \
2774  if (netif_msg_##type(priv)) \
2775  netdev_##level(dev, fmt, ##args); \
2776 } while (0)
2778 #define netif_emerg(priv, type, dev, fmt, args...) \
2779  netif_level(emerg, priv, type, dev, fmt, ##args)
2780 #define netif_alert(priv, type, dev, fmt, args...) \
2781  netif_level(alert, priv, type, dev, fmt, ##args)
2782 #define netif_crit(priv, type, dev, fmt, args...) \
2783  netif_level(crit, priv, type, dev, fmt, ##args)
2784 #define netif_err(priv, type, dev, fmt, args...) \
2785  netif_level(err, priv, type, dev, fmt, ##args)
2786 #define netif_warn(priv, type, dev, fmt, args...) \
2787  netif_level(warn, priv, type, dev, fmt, ##args)
2788 #define netif_notice(priv, type, dev, fmt, args...) \
2789  netif_level(notice, priv, type, dev, fmt, ##args)
2790 #define netif_info(priv, type, dev, fmt, args...) \
2791  netif_level(info, priv, type, dev, fmt, ##args)
2792 
2793 #if defined(CONFIG_DYNAMIC_DEBUG)
2794 #define netif_dbg(priv, type, netdev, format, args...) \
2795 do { \
2796  if (netif_msg_##type(priv)) \
2797  dynamic_netdev_dbg(netdev, format, ##args); \
2798 } while (0)
2799 #elif defined(DEBUG)
2800 #define netif_dbg(priv, type, dev, format, args...) \
2801  netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
2802 #else
2803 #define netif_dbg(priv, type, dev, format, args...) \
2804 ({ \
2805  if (0) \
2806  netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2807  0; \
2808 })
2809 #endif
2810 
2811 #if defined(VERBOSE_DEBUG)
2812 #define netif_vdbg netif_dbg
2813 #else
2814 #define netif_vdbg(priv, type, dev, format, args...) \
2815 ({ \
2816  if (0) \
2817  netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
2818  0; \
2819 })
2820 #endif
2821 
2822 #endif /* _LINUX_NETDEVICE_H */