Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
omap_hsmmc.c
Go to the documentation of this file.
1 /*
2  * drivers/mmc/host/omap_hsmmc.c
3  *
4  * Driver for OMAP2430/3430 MMC controller.
5  *
6  * Copyright (C) 2007 Texas Instruments.
7  *
8  * Authors:
9  * Syed Mohammed Khasim <[email protected]>
10  * Madhusudhan <[email protected]>
11  * Mohit Jalori <[email protected]>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/platform_device.h>
28 #include <linux/timer.h>
29 #include <linux/clk.h>
30 #include <linux/of.h>
31 #include <linux/of_gpio.h>
32 #include <linux/of_device.h>
33 #include <linux/omap-dma.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/core.h>
36 #include <linux/mmc/mmc.h>
37 #include <linux/io.h>
38 #include <linux/gpio.h>
40 #include <linux/pm_runtime.h>
41 #include <mach/hardware.h>
42 #include <plat/mmc.h>
43 #include <plat/cpu.h>
44 
45 /* OMAP HSMMC Host Controller Registers */
46 #define OMAP_HSMMC_SYSSTATUS 0x0014
47 #define OMAP_HSMMC_CON 0x002C
48 #define OMAP_HSMMC_BLK 0x0104
49 #define OMAP_HSMMC_ARG 0x0108
50 #define OMAP_HSMMC_CMD 0x010C
51 #define OMAP_HSMMC_RSP10 0x0110
52 #define OMAP_HSMMC_RSP32 0x0114
53 #define OMAP_HSMMC_RSP54 0x0118
54 #define OMAP_HSMMC_RSP76 0x011C
55 #define OMAP_HSMMC_DATA 0x0120
56 #define OMAP_HSMMC_HCTL 0x0128
57 #define OMAP_HSMMC_SYSCTL 0x012C
58 #define OMAP_HSMMC_STAT 0x0130
59 #define OMAP_HSMMC_IE 0x0134
60 #define OMAP_HSMMC_ISE 0x0138
61 #define OMAP_HSMMC_CAPA 0x0140
62 
63 #define VS18 (1 << 26)
64 #define VS30 (1 << 25)
65 #define SDVS18 (0x5 << 9)
66 #define SDVS30 (0x6 << 9)
67 #define SDVS33 (0x7 << 9)
68 #define SDVS_MASK 0x00000E00
69 #define SDVSCLR 0xFFFFF1FF
70 #define SDVSDET 0x00000400
71 #define AUTOIDLE 0x1
72 #define SDBP (1 << 8)
73 #define DTO 0xe
74 #define ICE 0x1
75 #define ICS 0x2
76 #define CEN (1 << 2)
77 #define CLKD_MASK 0x0000FFC0
78 #define CLKD_SHIFT 6
79 #define DTO_MASK 0x000F0000
80 #define DTO_SHIFT 16
81 #define INT_EN_MASK 0x307F0033
82 #define BWR_ENABLE (1 << 4)
83 #define BRR_ENABLE (1 << 5)
84 #define DTO_ENABLE (1 << 20)
85 #define INIT_STREAM (1 << 1)
86 #define DP_SELECT (1 << 21)
87 #define DDIR (1 << 4)
88 #define DMA_EN 0x1
89 #define MSBS (1 << 5)
90 #define BCE (1 << 1)
91 #define FOUR_BIT (1 << 1)
92 #define DDR (1 << 19)
93 #define DW8 (1 << 5)
94 #define CC 0x1
95 #define TC 0x02
96 #define OD 0x1
97 #define ERR (1 << 15)
98 #define CMD_TIMEOUT (1 << 16)
99 #define DATA_TIMEOUT (1 << 20)
100 #define CMD_CRC (1 << 17)
101 #define DATA_CRC (1 << 21)
102 #define CARD_ERR (1 << 28)
103 #define STAT_CLEAR 0xFFFFFFFF
104 #define INIT_STREAM_CMD 0x00000000
105 #define DUAL_VOLT_OCR_BIT 7
106 #define SRC (1 << 25)
107 #define SRD (1 << 26)
108 #define SOFTRESET (1 << 1)
109 #define RESETDONE (1 << 0)
110 
111 #define MMC_AUTOSUSPEND_DELAY 100
112 #define MMC_TIMEOUT_MS 20
113 #define OMAP_MMC_MIN_CLOCK 400000
114 #define OMAP_MMC_MAX_CLOCK 52000000
115 #define DRIVER_NAME "omap_hsmmc"
116 
117 /*
118  * One controller can have multiple slots, like on some omap boards using
119  * omap.c controller driver. Luckily this is not currently done on any known
120  * omap_hsmmc.c device.
121  */
122 #define mmc_slot(host) (host->pdata->slots[host->slot_id])
123 
124 /*
125  * MMC Host controller read/write API's
126  */
127 #define OMAP_HSMMC_READ(base, reg) \
128  __raw_readl((base) + OMAP_HSMMC_##reg)
129 
130 #define OMAP_HSMMC_WRITE(base, reg, val) \
131  __raw_writel((val), (base) + OMAP_HSMMC_##reg)
132 
134  unsigned int dma_len;
136 };
137 
139  struct device *dev;
140  struct mmc_host *mmc;
141  struct mmc_request *mrq;
142  struct mmc_command *cmd;
143  struct mmc_data *data;
144  struct clk *fclk;
145  struct clk *dbclk;
146  /*
147  * vcc == configured supply
148  * vcc_aux == optional
149  * - MMC1, supply for DAT4..DAT7
150  * - MMC2/MMC2, external level shifter voltage supply, for
151  * chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
152  */
153  struct regulator *vcc;
155  void __iomem *base;
157  spinlock_t irq_lock; /* Prevent races with irq handler */
158  unsigned int dma_len;
159  unsigned int dma_sg_idx;
160  unsigned char bus_mode;
161  unsigned char power_mode;
163  int irq;
165  struct dma_chan *tx_chan;
166  struct dma_chan *rx_chan;
167  int slot_id;
172  int use_reg;
175 
177 };
178 
179 static int omap_hsmmc_card_detect(struct device *dev, int slot)
180 {
181  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
182  struct omap_mmc_platform_data *mmc = host->pdata;
183 
184  /* NOTE: assumes card detect signal is active-low */
185  return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
186 }
187 
188 static int omap_hsmmc_get_wp(struct device *dev, int slot)
189 {
190  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
191  struct omap_mmc_platform_data *mmc = host->pdata;
192 
193  /* NOTE: assumes write protect signal is active-high */
194  return gpio_get_value_cansleep(mmc->slots[0].gpio_wp);
195 }
196 
197 static int omap_hsmmc_get_cover_state(struct device *dev, int slot)
198 {
199  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
200  struct omap_mmc_platform_data *mmc = host->pdata;
201 
202  /* NOTE: assumes card detect signal is active-low */
203  return !gpio_get_value_cansleep(mmc->slots[0].switch_pin);
204 }
205 
206 #ifdef CONFIG_PM
207 
208 static int omap_hsmmc_suspend_cdirq(struct device *dev, int slot)
209 {
210  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
211  struct omap_mmc_platform_data *mmc = host->pdata;
212 
213  disable_irq(mmc->slots[0].card_detect_irq);
214  return 0;
215 }
216 
217 static int omap_hsmmc_resume_cdirq(struct device *dev, int slot)
218 {
219  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
220  struct omap_mmc_platform_data *mmc = host->pdata;
221 
222  enable_irq(mmc->slots[0].card_detect_irq);
223  return 0;
224 }
225 
226 #else
227 
228 #define omap_hsmmc_suspend_cdirq NULL
229 #define omap_hsmmc_resume_cdirq NULL
230 
231 #endif
232 
233 #ifdef CONFIG_REGULATOR
234 
235 static int omap_hsmmc_set_power(struct device *dev, int slot, int power_on,
236  int vdd)
237 {
238  struct omap_hsmmc_host *host =
239  platform_get_drvdata(to_platform_device(dev));
240  int ret = 0;
241 
242  /*
243  * If we don't see a Vcc regulator, assume it's a fixed
244  * voltage always-on regulator.
245  */
246  if (!host->vcc)
247  return 0;
248  /*
249  * With DT, never turn OFF the regulator. This is because
250  * the pbias cell programming support is still missing when
251  * booting with Device tree
252  */
253  if (dev->of_node && !vdd)
254  return 0;
255 
256  if (mmc_slot(host).before_set_reg)
257  mmc_slot(host).before_set_reg(dev, slot, power_on, vdd);
258 
259  /*
260  * Assume Vcc regulator is used only to power the card ... OMAP
261  * VDDS is used to power the pins, optionally with a transceiver to
262  * support cards using voltages other than VDDS (1.8V nominal). When a
263  * transceiver is used, DAT3..7 are muxed as transceiver control pins.
264  *
265  * In some cases this regulator won't support enable/disable;
266  * e.g. it's a fixed rail for a WLAN chip.
267  *
268  * In other cases vcc_aux switches interface power. Example, for
269  * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
270  * chips/cards need an interface voltage rail too.
271  */
272  if (power_on) {
273  ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
274  /* Enable interface voltage rail, if needed */
275  if (ret == 0 && host->vcc_aux) {
276  ret = regulator_enable(host->vcc_aux);
277  if (ret < 0)
278  ret = mmc_regulator_set_ocr(host->mmc,
279  host->vcc, 0);
280  }
281  } else {
282  /* Shut down the rail */
283  if (host->vcc_aux)
284  ret = regulator_disable(host->vcc_aux);
285  if (!ret) {
286  /* Then proceed to shut down the local regulator */
287  ret = mmc_regulator_set_ocr(host->mmc,
288  host->vcc, 0);
289  }
290  }
291 
292  if (mmc_slot(host).after_set_reg)
293  mmc_slot(host).after_set_reg(dev, slot, power_on, vdd);
294 
295  return ret;
296 }
297 
298 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
299 {
300  struct regulator *reg;
301  int ocr_value = 0;
302 
303  reg = regulator_get(host->dev, "vmmc");
304  if (IS_ERR(reg)) {
305  dev_dbg(host->dev, "vmmc regulator missing\n");
306  return PTR_ERR(reg);
307  } else {
308  mmc_slot(host).set_power = omap_hsmmc_set_power;
309  host->vcc = reg;
310  ocr_value = mmc_regulator_get_ocrmask(reg);
311  if (!mmc_slot(host).ocr_mask) {
312  mmc_slot(host).ocr_mask = ocr_value;
313  } else {
314  if (!(mmc_slot(host).ocr_mask & ocr_value)) {
315  dev_err(host->dev, "ocrmask %x is not supported\n",
316  mmc_slot(host).ocr_mask);
317  mmc_slot(host).ocr_mask = 0;
318  return -EINVAL;
319  }
320  }
321 
322  /* Allow an aux regulator */
323  reg = regulator_get(host->dev, "vmmc_aux");
324  host->vcc_aux = IS_ERR(reg) ? NULL : reg;
325 
326  /* For eMMC do not power off when not in sleep state */
327  if (mmc_slot(host).no_regulator_off_init)
328  return 0;
329  /*
330  * UGLY HACK: workaround regulator framework bugs.
331  * When the bootloader leaves a supply active, it's
332  * initialized with zero usecount ... and we can't
333  * disable it without first enabling it. Until the
334  * framework is fixed, we need a workaround like this
335  * (which is safe for MMC, but not in general).
336  */
337  if (regulator_is_enabled(host->vcc) > 0 ||
338  (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
339  int vdd = ffs(mmc_slot(host).ocr_mask) - 1;
340 
341  mmc_slot(host).set_power(host->dev, host->slot_id,
342  1, vdd);
343  mmc_slot(host).set_power(host->dev, host->slot_id,
344  0, 0);
345  }
346  }
347 
348  return 0;
349 }
350 
351 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
352 {
353  regulator_put(host->vcc);
354  regulator_put(host->vcc_aux);
355  mmc_slot(host).set_power = NULL;
356 }
357 
358 static inline int omap_hsmmc_have_reg(void)
359 {
360  return 1;
361 }
362 
363 #else
364 
365 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
366 {
367  return -EINVAL;
368 }
369 
370 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
371 {
372 }
373 
374 static inline int omap_hsmmc_have_reg(void)
375 {
376  return 0;
377 }
378 
379 #endif
380 
381 static int omap_hsmmc_gpio_init(struct omap_mmc_platform_data *pdata)
382 {
383  int ret;
384 
385  if (gpio_is_valid(pdata->slots[0].switch_pin)) {
386  if (pdata->slots[0].cover)
387  pdata->slots[0].get_cover_state =
388  omap_hsmmc_get_cover_state;
389  else
390  pdata->slots[0].card_detect = omap_hsmmc_card_detect;
391  pdata->slots[0].card_detect_irq =
392  gpio_to_irq(pdata->slots[0].switch_pin);
393  ret = gpio_request(pdata->slots[0].switch_pin, "mmc_cd");
394  if (ret)
395  return ret;
396  ret = gpio_direction_input(pdata->slots[0].switch_pin);
397  if (ret)
398  goto err_free_sp;
399  } else
400  pdata->slots[0].switch_pin = -EINVAL;
401 
402  if (gpio_is_valid(pdata->slots[0].gpio_wp)) {
403  pdata->slots[0].get_ro = omap_hsmmc_get_wp;
404  ret = gpio_request(pdata->slots[0].gpio_wp, "mmc_wp");
405  if (ret)
406  goto err_free_cd;
407  ret = gpio_direction_input(pdata->slots[0].gpio_wp);
408  if (ret)
409  goto err_free_wp;
410  } else
411  pdata->slots[0].gpio_wp = -EINVAL;
412 
413  return 0;
414 
415 err_free_wp:
416  gpio_free(pdata->slots[0].gpio_wp);
417 err_free_cd:
418  if (gpio_is_valid(pdata->slots[0].switch_pin))
419 err_free_sp:
420  gpio_free(pdata->slots[0].switch_pin);
421  return ret;
422 }
423 
424 static void omap_hsmmc_gpio_free(struct omap_mmc_platform_data *pdata)
425 {
426  if (gpio_is_valid(pdata->slots[0].gpio_wp))
427  gpio_free(pdata->slots[0].gpio_wp);
428  if (gpio_is_valid(pdata->slots[0].switch_pin))
429  gpio_free(pdata->slots[0].switch_pin);
430 }
431 
432 /*
433  * Start clock to the card
434  */
435 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
436 {
437  OMAP_HSMMC_WRITE(host->base, SYSCTL,
438  OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
439 }
440 
441 /*
442  * Stop clock to the card
443  */
444 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
445 {
446  OMAP_HSMMC_WRITE(host->base, SYSCTL,
447  OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
448  if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
449  dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
450 }
451 
452 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
453  struct mmc_command *cmd)
454 {
455  unsigned int irq_mask;
456 
457  if (host->use_dma)
458  irq_mask = INT_EN_MASK & ~(BRR_ENABLE | BWR_ENABLE);
459  else
460  irq_mask = INT_EN_MASK;
461 
462  /* Disable timeout for erases */
463  if (cmd->opcode == MMC_ERASE)
464  irq_mask &= ~DTO_ENABLE;
465 
467  OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
468  OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
469 }
470 
471 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
472 {
473  OMAP_HSMMC_WRITE(host->base, ISE, 0);
474  OMAP_HSMMC_WRITE(host->base, IE, 0);
476 }
477 
478 /* Calculate divisor for the given clock frequency */
479 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
480 {
481  u16 dsor = 0;
482 
483  if (ios->clock) {
484  dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
485  if (dsor > 250)
486  dsor = 250;
487  }
488 
489  return dsor;
490 }
491 
492 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
493 {
494  struct mmc_ios *ios = &host->mmc->ios;
495  unsigned long regval;
496  unsigned long timeout;
497 
498  dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
499 
500  omap_hsmmc_stop_clock(host);
501 
502  regval = OMAP_HSMMC_READ(host->base, SYSCTL);
503  regval = regval & ~(CLKD_MASK | DTO_MASK);
504  regval = regval | (calc_divisor(host, ios) << 6) | (DTO << 16);
505  OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
506  OMAP_HSMMC_WRITE(host->base, SYSCTL,
507  OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
508 
509  /* Wait till the ICS bit is set */
511  while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
512  && time_before(jiffies, timeout))
513  cpu_relax();
514 
515  omap_hsmmc_start_clock(host);
516 }
517 
518 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
519 {
520  struct mmc_ios *ios = &host->mmc->ios;
521  u32 con;
522 
523  con = OMAP_HSMMC_READ(host->base, CON);
524  if (ios->timing == MMC_TIMING_UHS_DDR50)
525  con |= DDR; /* configure in DDR mode */
526  else
527  con &= ~DDR;
528  switch (ios->bus_width) {
529  case MMC_BUS_WIDTH_8:
530  OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
531  break;
532  case MMC_BUS_WIDTH_4:
533  OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
534  OMAP_HSMMC_WRITE(host->base, HCTL,
535  OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
536  break;
537  case MMC_BUS_WIDTH_1:
538  OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
539  OMAP_HSMMC_WRITE(host->base, HCTL,
540  OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
541  break;
542  }
543 }
544 
545 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
546 {
547  struct mmc_ios *ios = &host->mmc->ios;
548  u32 con;
549 
550  con = OMAP_HSMMC_READ(host->base, CON);
551  if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
552  OMAP_HSMMC_WRITE(host->base, CON, con | OD);
553  else
554  OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
555 }
556 
557 #ifdef CONFIG_PM
558 
559 /*
560  * Restore the MMC host context, if it was lost as result of a
561  * power state change.
562  */
563 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
564 {
565  struct mmc_ios *ios = &host->mmc->ios;
566  struct omap_mmc_platform_data *pdata = host->pdata;
567  int context_loss = 0;
568  u32 hctl, capa;
569  unsigned long timeout;
570 
571  if (pdata->get_context_loss_count) {
572  context_loss = pdata->get_context_loss_count(host->dev);
573  if (context_loss < 0)
574  return 1;
575  }
576 
577  dev_dbg(mmc_dev(host->mmc), "context was %slost\n",
578  context_loss == host->context_loss ? "not " : "");
579  if (host->context_loss == context_loss)
580  return 1;
581 
582  if (!OMAP_HSMMC_READ(host->base, SYSSTATUS) & RESETDONE)
583  return 1;
584 
585  if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
586  if (host->power_mode != MMC_POWER_OFF &&
587  (1 << ios->vdd) <= MMC_VDD_23_24)
588  hctl = SDVS18;
589  else
590  hctl = SDVS30;
591  capa = VS30 | VS18;
592  } else {
593  hctl = SDVS18;
594  capa = VS18;
595  }
596 
597  OMAP_HSMMC_WRITE(host->base, HCTL,
598  OMAP_HSMMC_READ(host->base, HCTL) | hctl);
599 
600  OMAP_HSMMC_WRITE(host->base, CAPA,
601  OMAP_HSMMC_READ(host->base, CAPA) | capa);
602 
603  OMAP_HSMMC_WRITE(host->base, HCTL,
604  OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
605 
607  while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
608  && time_before(jiffies, timeout))
609  ;
610 
611  omap_hsmmc_disable_irq(host);
612 
613  /* Do not initialize card-specific things if the power is off */
614  if (host->power_mode == MMC_POWER_OFF)
615  goto out;
616 
617  omap_hsmmc_set_bus_width(host);
618 
619  omap_hsmmc_set_clock(host);
620 
621  omap_hsmmc_set_bus_mode(host);
622 
623 out:
624  host->context_loss = context_loss;
625 
626  dev_dbg(mmc_dev(host->mmc), "context is restored\n");
627  return 0;
628 }
629 
630 /*
631  * Save the MMC host context (store the number of power state changes so far).
632  */
633 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
634 {
635  struct omap_mmc_platform_data *pdata = host->pdata;
636  int context_loss;
637 
638  if (pdata->get_context_loss_count) {
639  context_loss = pdata->get_context_loss_count(host->dev);
640  if (context_loss < 0)
641  return;
642  host->context_loss = context_loss;
643  }
644 }
645 
646 #else
647 
648 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
649 {
650  return 0;
651 }
652 
653 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
654 {
655 }
656 
657 #endif
658 
659 /*
660  * Send init stream sequence to card
661  * before sending IDLE command
662  */
663 static void send_init_stream(struct omap_hsmmc_host *host)
664 {
665  int reg = 0;
666  unsigned long timeout;
667 
668  if (host->protect_card)
669  return;
670 
671  disable_irq(host->irq);
672 
674  OMAP_HSMMC_WRITE(host->base, CON,
675  OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
677 
679  while ((reg != CC) && time_before(jiffies, timeout))
680  reg = OMAP_HSMMC_READ(host->base, STAT) & CC;
681 
682  OMAP_HSMMC_WRITE(host->base, CON,
683  OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
684 
686  OMAP_HSMMC_READ(host->base, STAT);
687 
688  enable_irq(host->irq);
689 }
690 
691 static inline
692 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
693 {
694  int r = 1;
695 
696  if (mmc_slot(host).get_cover_state)
697  r = mmc_slot(host).get_cover_state(host->dev, host->slot_id);
698  return r;
699 }
700 
701 static ssize_t
702 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
703  char *buf)
704 {
705  struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
706  struct omap_hsmmc_host *host = mmc_priv(mmc);
707 
708  return sprintf(buf, "%s\n",
709  omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
710 }
711 
712 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
713 
714 static ssize_t
715 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
716  char *buf)
717 {
718  struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
719  struct omap_hsmmc_host *host = mmc_priv(mmc);
720 
721  return sprintf(buf, "%s\n", mmc_slot(host).name);
722 }
723 
724 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
725 
726 /*
727  * Configure the response type and send the cmd.
728  */
729 static void
730 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
731  struct mmc_data *data)
732 {
733  int cmdreg = 0, resptype = 0, cmdtype = 0;
734 
735  dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
736  mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
737  host->cmd = cmd;
738 
739  omap_hsmmc_enable_irq(host, cmd);
740 
741  host->response_busy = 0;
742  if (cmd->flags & MMC_RSP_PRESENT) {
743  if (cmd->flags & MMC_RSP_136)
744  resptype = 1;
745  else if (cmd->flags & MMC_RSP_BUSY) {
746  resptype = 3;
747  host->response_busy = 1;
748  } else
749  resptype = 2;
750  }
751 
752  /*
753  * Unlike OMAP1 controller, the cmdtype does not seem to be based on
754  * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
755  * a val of 0x3, rest 0x0.
756  */
757  if (cmd == host->mrq->stop)
758  cmdtype = 0x3;
759 
760  cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
761 
762  if (data) {
763  cmdreg |= DP_SELECT | MSBS | BCE;
764  if (data->flags & MMC_DATA_READ)
765  cmdreg |= DDIR;
766  else
767  cmdreg &= ~(DDIR);
768  }
769 
770  if (host->use_dma)
771  cmdreg |= DMA_EN;
772 
773  host->req_in_progress = 1;
774 
775  OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
776  OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
777 }
778 
779 static int
780 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
781 {
782  if (data->flags & MMC_DATA_WRITE)
783  return DMA_TO_DEVICE;
784  else
785  return DMA_FROM_DEVICE;
786 }
787 
788 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
789  struct mmc_data *data)
790 {
791  return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
792 }
793 
794 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
795 {
796  int dma_ch;
797  unsigned long flags;
798 
799  spin_lock_irqsave(&host->irq_lock, flags);
800  host->req_in_progress = 0;
801  dma_ch = host->dma_ch;
802  spin_unlock_irqrestore(&host->irq_lock, flags);
803 
804  omap_hsmmc_disable_irq(host);
805  /* Do not complete the request if DMA is still in progress */
806  if (mrq->data && host->use_dma && dma_ch != -1)
807  return;
808  host->mrq = NULL;
809  mmc_request_done(host->mmc, mrq);
810 }
811 
812 /*
813  * Notify the transfer complete to MMC core
814  */
815 static void
816 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
817 {
818  if (!data) {
819  struct mmc_request *mrq = host->mrq;
820 
821  /* TC before CC from CMD6 - don't know why, but it happens */
822  if (host->cmd && host->cmd->opcode == 6 &&
823  host->response_busy) {
824  host->response_busy = 0;
825  return;
826  }
827 
828  omap_hsmmc_request_done(host, mrq);
829  return;
830  }
831 
832  host->data = NULL;
833 
834  if (!data->error)
835  data->bytes_xfered += data->blocks * (data->blksz);
836  else
837  data->bytes_xfered = 0;
838 
839  if (!data->stop) {
840  omap_hsmmc_request_done(host, data->mrq);
841  return;
842  }
843  omap_hsmmc_start_command(host, data->stop, NULL);
844 }
845 
846 /*
847  * Notify the core about command completion
848  */
849 static void
850 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
851 {
852  host->cmd = NULL;
853 
854  if (cmd->flags & MMC_RSP_PRESENT) {
855  if (cmd->flags & MMC_RSP_136) {
856  /* response type 2 */
857  cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
858  cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
859  cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
860  cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
861  } else {
862  /* response types 1, 1b, 3, 4, 5, 6 */
863  cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
864  }
865  }
866  if ((host->data == NULL && !host->response_busy) || cmd->error)
867  omap_hsmmc_request_done(host, cmd->mrq);
868 }
869 
870 /*
871  * DMA clean up for command errors
872  */
873 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
874 {
875  int dma_ch;
876  unsigned long flags;
877 
878  host->data->error = errno;
879 
880  spin_lock_irqsave(&host->irq_lock, flags);
881  dma_ch = host->dma_ch;
882  host->dma_ch = -1;
883  spin_unlock_irqrestore(&host->irq_lock, flags);
884 
885  if (host->use_dma && dma_ch != -1) {
886  struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
887 
888  dmaengine_terminate_all(chan);
889  dma_unmap_sg(chan->device->dev,
890  host->data->sg, host->data->sg_len,
891  omap_hsmmc_get_dma_dir(host, host->data));
892 
893  host->data->host_cookie = 0;
894  }
895  host->data = NULL;
896 }
897 
898 /*
899  * Readable error output
900  */
901 #ifdef CONFIG_MMC_DEBUG
902 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
903 {
904  /* --- means reserved bit without definition at documentation */
905  static const char *omap_hsmmc_status_bits[] = {
906  "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
907  "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
908  "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
909  "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
910  };
911  char res[256];
912  char *buf = res;
913  int len, i;
914 
915  len = sprintf(buf, "MMC IRQ 0x%x :", status);
916  buf += len;
917 
918  for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
919  if (status & (1 << i)) {
920  len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
921  buf += len;
922  }
923 
924  dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
925 }
926 #else
927 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
928  u32 status)
929 {
930 }
931 #endif /* CONFIG_MMC_DEBUG */
932 
933 /*
934  * MMC controller internal state machines reset
935  *
936  * Used to reset command or data internal state machines, using respectively
937  * SRC or SRD bit of SYSCTL register
938  * Can be called from interrupt context
939  */
940 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
941  unsigned long bit)
942 {
943  unsigned long i = 0;
944  unsigned long limit = (loops_per_jiffy *
946 
947  OMAP_HSMMC_WRITE(host->base, SYSCTL,
948  OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
949 
950  /*
951  * OMAP4 ES2 and greater has an updated reset logic.
952  * Monitor a 0->1 transition first
953  */
955  while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
956  && (i++ < limit))
957  cpu_relax();
958  }
959  i = 0;
960 
961  while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
962  (i++ < limit))
963  cpu_relax();
964 
965  if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
966  dev_err(mmc_dev(host->mmc),
967  "Timeout waiting on controller reset in %s\n",
968  __func__);
969 }
970 
971 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host, int err)
972 {
973  omap_hsmmc_reset_controller_fsm(host, SRC);
974  host->cmd->error = err;
975 
976  if (host->data) {
977  omap_hsmmc_reset_controller_fsm(host, SRD);
978  omap_hsmmc_dma_cleanup(host, err);
979  }
980 
981 }
982 
983 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
984 {
985  struct mmc_data *data;
986  int end_cmd = 0, end_trans = 0;
987 
988  data = host->data;
989  dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
990 
991  if (status & ERR) {
992  omap_hsmmc_dbg_report_irq(host, status);
993  if (status & (CMD_TIMEOUT | DATA_TIMEOUT))
994  hsmmc_command_incomplete(host, -ETIMEDOUT);
995  else if (status & (CMD_CRC | DATA_CRC))
996  hsmmc_command_incomplete(host, -EILSEQ);
997 
998  end_cmd = 1;
999  if (host->data || host->response_busy) {
1000  end_trans = 1;
1001  host->response_busy = 0;
1002  }
1003  }
1004 
1005  if (end_cmd || ((status & CC) && host->cmd))
1006  omap_hsmmc_cmd_done(host, host->cmd);
1007  if ((end_trans || (status & TC)) && host->mrq)
1008  omap_hsmmc_xfer_done(host, data);
1009 }
1010 
1011 /*
1012  * MMC controller IRQ handler
1013  */
1014 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1015 {
1016  struct omap_hsmmc_host *host = dev_id;
1017  int status;
1018 
1019  status = OMAP_HSMMC_READ(host->base, STAT);
1020  while (status & INT_EN_MASK && host->req_in_progress) {
1021  omap_hsmmc_do_irq(host, status);
1022 
1023  /* Flush posted write */
1024  OMAP_HSMMC_WRITE(host->base, STAT, status);
1025  status = OMAP_HSMMC_READ(host->base, STAT);
1026  }
1027 
1028  return IRQ_HANDLED;
1029 }
1030 
1031 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1032 {
1033  unsigned long i;
1034 
1035  OMAP_HSMMC_WRITE(host->base, HCTL,
1036  OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1037  for (i = 0; i < loops_per_jiffy; i++) {
1038  if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1039  break;
1040  cpu_relax();
1041  }
1042 }
1043 
1044 /*
1045  * Switch MMC interface voltage ... only relevant for MMC1.
1046  *
1047  * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1048  * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1049  * Some chips, like eMMC ones, use internal transceivers.
1050  */
1051 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1052 {
1053  u32 reg_val = 0;
1054  int ret;
1055 
1056  /* Disable the clocks */
1057  pm_runtime_put_sync(host->dev);
1058  if (host->dbclk)
1059  clk_disable_unprepare(host->dbclk);
1060 
1061  /* Turn the power off */
1062  ret = mmc_slot(host).set_power(host->dev, host->slot_id, 0, 0);
1063 
1064  /* Turn the power ON with given VDD 1.8 or 3.0v */
1065  if (!ret)
1066  ret = mmc_slot(host).set_power(host->dev, host->slot_id, 1,
1067  vdd);
1068  pm_runtime_get_sync(host->dev);
1069  if (host->dbclk)
1070  clk_prepare_enable(host->dbclk);
1071 
1072  if (ret != 0)
1073  goto err;
1074 
1075  OMAP_HSMMC_WRITE(host->base, HCTL,
1076  OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1077  reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1078 
1079  /*
1080  * If a MMC dual voltage card is detected, the set_ios fn calls
1081  * this fn with VDD bit set for 1.8V. Upon card removal from the
1082  * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1083  *
1084  * Cope with a bit of slop in the range ... per data sheets:
1085  * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1086  * but recommended values are 1.71V to 1.89V
1087  * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1088  * but recommended values are 2.7V to 3.3V
1089  *
1090  * Board setup code shouldn't permit anything very out-of-range.
1091  * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1092  * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1093  */
1094  if ((1 << vdd) <= MMC_VDD_23_24)
1095  reg_val |= SDVS18;
1096  else
1097  reg_val |= SDVS30;
1098 
1099  OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1100  set_sd_bus_power(host);
1101 
1102  return 0;
1103 err:
1104  dev_dbg(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1105  return ret;
1106 }
1107 
1108 /* Protect the card while the cover is open */
1109 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1110 {
1111  if (!mmc_slot(host).get_cover_state)
1112  return;
1113 
1114  host->reqs_blocked = 0;
1115  if (mmc_slot(host).get_cover_state(host->dev, host->slot_id)) {
1116  if (host->protect_card) {
1117  dev_info(host->dev, "%s: cover is closed, "
1118  "card is now accessible\n",
1119  mmc_hostname(host->mmc));
1120  host->protect_card = 0;
1121  }
1122  } else {
1123  if (!host->protect_card) {
1124  dev_info(host->dev, "%s: cover is open, "
1125  "card is now inaccessible\n",
1126  mmc_hostname(host->mmc));
1127  host->protect_card = 1;
1128  }
1129  }
1130 }
1131 
1132 /*
1133  * irq handler to notify the core about card insertion/removal
1134  */
1135 static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1136 {
1137  struct omap_hsmmc_host *host = dev_id;
1138  struct omap_mmc_slot_data *slot = &mmc_slot(host);
1139  int carddetect;
1140 
1141  if (host->suspended)
1142  return IRQ_HANDLED;
1143 
1144  sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1145 
1146  if (slot->card_detect)
1147  carddetect = slot->card_detect(host->dev, host->slot_id);
1148  else {
1149  omap_hsmmc_protect_card(host);
1150  carddetect = -ENOSYS;
1151  }
1152 
1153  if (carddetect)
1154  mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1155  else
1156  mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1157  return IRQ_HANDLED;
1158 }
1159 
1160 static void omap_hsmmc_dma_callback(void *param)
1161 {
1162  struct omap_hsmmc_host *host = param;
1163  struct dma_chan *chan;
1164  struct mmc_data *data;
1165  int req_in_progress;
1166 
1167  spin_lock_irq(&host->irq_lock);
1168  if (host->dma_ch < 0) {
1169  spin_unlock_irq(&host->irq_lock);
1170  return;
1171  }
1172 
1173  data = host->mrq->data;
1174  chan = omap_hsmmc_get_dma_chan(host, data);
1175  if (!data->host_cookie)
1176  dma_unmap_sg(chan->device->dev,
1177  data->sg, data->sg_len,
1178  omap_hsmmc_get_dma_dir(host, data));
1179 
1180  req_in_progress = host->req_in_progress;
1181  host->dma_ch = -1;
1182  spin_unlock_irq(&host->irq_lock);
1183 
1184  /* If DMA has finished after TC, complete the request */
1185  if (!req_in_progress) {
1186  struct mmc_request *mrq = host->mrq;
1187 
1188  host->mrq = NULL;
1189  mmc_request_done(host->mmc, mrq);
1190  }
1191 }
1192 
1193 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1194  struct mmc_data *data,
1195  struct omap_hsmmc_next *next,
1196  struct dma_chan *chan)
1197 {
1198  int dma_len;
1199 
1200  if (!next && data->host_cookie &&
1201  data->host_cookie != host->next_data.cookie) {
1202  dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1203  " host->next_data.cookie %d\n",
1204  __func__, data->host_cookie, host->next_data.cookie);
1205  data->host_cookie = 0;
1206  }
1207 
1208  /* Check if next job is already prepared */
1209  if (next ||
1210  (!next && data->host_cookie != host->next_data.cookie)) {
1211  dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1212  omap_hsmmc_get_dma_dir(host, data));
1213 
1214  } else {
1215  dma_len = host->next_data.dma_len;
1216  host->next_data.dma_len = 0;
1217  }
1218 
1219 
1220  if (dma_len == 0)
1221  return -EINVAL;
1222 
1223  if (next) {
1224  next->dma_len = dma_len;
1225  data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1226  } else
1227  host->dma_len = dma_len;
1228 
1229  return 0;
1230 }
1231 
1232 /*
1233  * Routine to configure and start DMA for the MMC card
1234  */
1235 static int omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host,
1236  struct mmc_request *req)
1237 {
1238  struct dma_slave_config cfg;
1239  struct dma_async_tx_descriptor *tx;
1240  int ret = 0, i;
1241  struct mmc_data *data = req->data;
1242  struct dma_chan *chan;
1243 
1244  /* Sanity check: all the SG entries must be aligned by block size. */
1245  for (i = 0; i < data->sg_len; i++) {
1246  struct scatterlist *sgl;
1247 
1248  sgl = data->sg + i;
1249  if (sgl->length % data->blksz)
1250  return -EINVAL;
1251  }
1252  if ((data->blksz % 4) != 0)
1253  /* REVISIT: The MMC buffer increments only when MSB is written.
1254  * Return error for blksz which is non multiple of four.
1255  */
1256  return -EINVAL;
1257 
1258  BUG_ON(host->dma_ch != -1);
1259 
1260  chan = omap_hsmmc_get_dma_chan(host, data);
1261 
1262  cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1263  cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1264  cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1265  cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1266  cfg.src_maxburst = data->blksz / 4;
1267  cfg.dst_maxburst = data->blksz / 4;
1268 
1269  ret = dmaengine_slave_config(chan, &cfg);
1270  if (ret)
1271  return ret;
1272 
1273  ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1274  if (ret)
1275  return ret;
1276 
1277  tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1280  if (!tx) {
1281  dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1282  /* FIXME: cleanup */
1283  return -1;
1284  }
1285 
1286  tx->callback = omap_hsmmc_dma_callback;
1287  tx->callback_param = host;
1288 
1289  /* Does not fail */
1290  dmaengine_submit(tx);
1291 
1292  host->dma_ch = 1;
1293 
1294  dma_async_issue_pending(chan);
1295 
1296  return 0;
1297 }
1298 
1299 static void set_data_timeout(struct omap_hsmmc_host *host,
1300  unsigned int timeout_ns,
1301  unsigned int timeout_clks)
1302 {
1303  unsigned int timeout, cycle_ns;
1304  uint32_t reg, clkd, dto = 0;
1305 
1306  reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1307  clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1308  if (clkd == 0)
1309  clkd = 1;
1310 
1311  cycle_ns = 1000000000 / (clk_get_rate(host->fclk) / clkd);
1312  timeout = timeout_ns / cycle_ns;
1313  timeout += timeout_clks;
1314  if (timeout) {
1315  while ((timeout & 0x80000000) == 0) {
1316  dto += 1;
1317  timeout <<= 1;
1318  }
1319  dto = 31 - dto;
1320  timeout <<= 1;
1321  if (timeout && dto)
1322  dto += 1;
1323  if (dto >= 13)
1324  dto -= 13;
1325  else
1326  dto = 0;
1327  if (dto > 14)
1328  dto = 14;
1329  }
1330 
1331  reg &= ~DTO_MASK;
1332  reg |= dto << DTO_SHIFT;
1333  OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1334 }
1335 
1336 /*
1337  * Configure block length for MMC/SD cards and initiate the transfer.
1338  */
1339 static int
1340 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1341 {
1342  int ret;
1343  host->data = req->data;
1344 
1345  if (req->data == NULL) {
1346  OMAP_HSMMC_WRITE(host->base, BLK, 0);
1347  /*
1348  * Set an arbitrary 100ms data timeout for commands with
1349  * busy signal.
1350  */
1351  if (req->cmd->flags & MMC_RSP_BUSY)
1352  set_data_timeout(host, 100000000U, 0);
1353  return 0;
1354  }
1355 
1356  OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1357  | (req->data->blocks << 16));
1358  set_data_timeout(host, req->data->timeout_ns, req->data->timeout_clks);
1359 
1360  if (host->use_dma) {
1361  ret = omap_hsmmc_start_dma_transfer(host, req);
1362  if (ret != 0) {
1363  dev_dbg(mmc_dev(host->mmc), "MMC start dma failure\n");
1364  return ret;
1365  }
1366  }
1367  return 0;
1368 }
1369 
1370 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1371  int err)
1372 {
1373  struct omap_hsmmc_host *host = mmc_priv(mmc);
1374  struct mmc_data *data = mrq->data;
1375 
1376  if (host->use_dma && data->host_cookie) {
1377  struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1378 
1379  dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1380  omap_hsmmc_get_dma_dir(host, data));
1381  data->host_cookie = 0;
1382  }
1383 }
1384 
1385 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1386  bool is_first_req)
1387 {
1388  struct omap_hsmmc_host *host = mmc_priv(mmc);
1389 
1390  if (mrq->data->host_cookie) {
1391  mrq->data->host_cookie = 0;
1392  return ;
1393  }
1394 
1395  if (host->use_dma) {
1396  struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1397 
1398  if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1399  &host->next_data, c))
1400  mrq->data->host_cookie = 0;
1401  }
1402 }
1403 
1404 /*
1405  * Request function. for read/write operation
1406  */
1407 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1408 {
1409  struct omap_hsmmc_host *host = mmc_priv(mmc);
1410  int err;
1411 
1412  BUG_ON(host->req_in_progress);
1413  BUG_ON(host->dma_ch != -1);
1414  if (host->protect_card) {
1415  if (host->reqs_blocked < 3) {
1416  /*
1417  * Ensure the controller is left in a consistent
1418  * state by resetting the command and data state
1419  * machines.
1420  */
1421  omap_hsmmc_reset_controller_fsm(host, SRD);
1422  omap_hsmmc_reset_controller_fsm(host, SRC);
1423  host->reqs_blocked += 1;
1424  }
1425  req->cmd->error = -EBADF;
1426  if (req->data)
1427  req->data->error = -EBADF;
1428  req->cmd->retries = 0;
1429  mmc_request_done(mmc, req);
1430  return;
1431  } else if (host->reqs_blocked)
1432  host->reqs_blocked = 0;
1433  WARN_ON(host->mrq != NULL);
1434  host->mrq = req;
1435  err = omap_hsmmc_prepare_data(host, req);
1436  if (err) {
1437  req->cmd->error = err;
1438  if (req->data)
1439  req->data->error = err;
1440  host->mrq = NULL;
1441  mmc_request_done(mmc, req);
1442  return;
1443  }
1444 
1445  omap_hsmmc_start_command(host, req->cmd, req->data);
1446 }
1447 
1448 /* Routine to configure clock values. Exposed API to core */
1449 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1450 {
1451  struct omap_hsmmc_host *host = mmc_priv(mmc);
1452  int do_send_init_stream = 0;
1453 
1454  pm_runtime_get_sync(host->dev);
1455 
1456  if (ios->power_mode != host->power_mode) {
1457  switch (ios->power_mode) {
1458  case MMC_POWER_OFF:
1459  mmc_slot(host).set_power(host->dev, host->slot_id,
1460  0, 0);
1461  break;
1462  case MMC_POWER_UP:
1463  mmc_slot(host).set_power(host->dev, host->slot_id,
1464  1, ios->vdd);
1465  break;
1466  case MMC_POWER_ON:
1467  do_send_init_stream = 1;
1468  break;
1469  }
1470  host->power_mode = ios->power_mode;
1471  }
1472 
1473  /* FIXME: set registers based only on changes to ios */
1474 
1475  omap_hsmmc_set_bus_width(host);
1476 
1477  if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1478  /* Only MMC1 can interface at 3V without some flavor
1479  * of external transceiver; but they all handle 1.8V.
1480  */
1481  if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1482  (ios->vdd == DUAL_VOLT_OCR_BIT) &&
1483  /*
1484  * With pbias cell programming missing, this
1485  * can't be allowed when booting with device
1486  * tree.
1487  */
1488  !host->dev->of_node) {
1489  /*
1490  * The mmc_select_voltage fn of the core does
1491  * not seem to set the power_mode to
1492  * MMC_POWER_UP upon recalculating the voltage.
1493  * vdd 1.8v.
1494  */
1495  if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1496  dev_dbg(mmc_dev(host->mmc),
1497  "Switch operation failed\n");
1498  }
1499  }
1500 
1501  omap_hsmmc_set_clock(host);
1502 
1503  if (do_send_init_stream)
1504  send_init_stream(host);
1505 
1506  omap_hsmmc_set_bus_mode(host);
1507 
1508  pm_runtime_put_autosuspend(host->dev);
1509 }
1510 
1511 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1512 {
1513  struct omap_hsmmc_host *host = mmc_priv(mmc);
1514 
1515  if (!mmc_slot(host).card_detect)
1516  return -ENOSYS;
1517  return mmc_slot(host).card_detect(host->dev, host->slot_id);
1518 }
1519 
1520 static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1521 {
1522  struct omap_hsmmc_host *host = mmc_priv(mmc);
1523 
1524  if (!mmc_slot(host).get_ro)
1525  return -ENOSYS;
1526  return mmc_slot(host).get_ro(host->dev, 0);
1527 }
1528 
1529 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1530 {
1531  struct omap_hsmmc_host *host = mmc_priv(mmc);
1532 
1533  if (mmc_slot(host).init_card)
1534  mmc_slot(host).init_card(card);
1535 }
1536 
1537 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1538 {
1539  u32 hctl, capa, value;
1540 
1541  /* Only MMC1 supports 3.0V */
1542  if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1543  hctl = SDVS30;
1544  capa = VS30 | VS18;
1545  } else {
1546  hctl = SDVS18;
1547  capa = VS18;
1548  }
1549 
1550  value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1551  OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1552 
1553  value = OMAP_HSMMC_READ(host->base, CAPA);
1554  OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1555 
1556  /* Set SD bus power bit */
1557  set_sd_bus_power(host);
1558 }
1559 
1560 static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1561 {
1562  struct omap_hsmmc_host *host = mmc_priv(mmc);
1563 
1564  pm_runtime_get_sync(host->dev);
1565 
1566  return 0;
1567 }
1568 
1569 static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1570 {
1571  struct omap_hsmmc_host *host = mmc_priv(mmc);
1572 
1573  pm_runtime_mark_last_busy(host->dev);
1574  pm_runtime_put_autosuspend(host->dev);
1575 
1576  return 0;
1577 }
1578 
1579 static const struct mmc_host_ops omap_hsmmc_ops = {
1580  .enable = omap_hsmmc_enable_fclk,
1581  .disable = omap_hsmmc_disable_fclk,
1582  .post_req = omap_hsmmc_post_req,
1583  .pre_req = omap_hsmmc_pre_req,
1584  .request = omap_hsmmc_request,
1585  .set_ios = omap_hsmmc_set_ios,
1586  .get_cd = omap_hsmmc_get_cd,
1587  .get_ro = omap_hsmmc_get_ro,
1588  .init_card = omap_hsmmc_init_card,
1589  /* NYET -- enable_sdio_irq */
1590 };
1591 
1592 #ifdef CONFIG_DEBUG_FS
1593 
1594 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1595 {
1596  struct mmc_host *mmc = s->private;
1597  struct omap_hsmmc_host *host = mmc_priv(mmc);
1598  int context_loss = 0;
1599 
1600  if (host->pdata->get_context_loss_count)
1601  context_loss = host->pdata->get_context_loss_count(host->dev);
1602 
1603  seq_printf(s, "mmc%d:\n ctx_loss:\t%d:%d\n\nregs:\n",
1604  mmc->index, host->context_loss, context_loss);
1605 
1606  if (host->suspended) {
1607  seq_printf(s, "host suspended, can't read registers\n");
1608  return 0;
1609  }
1610 
1611  pm_runtime_get_sync(host->dev);
1612 
1613  seq_printf(s, "CON:\t\t0x%08x\n",
1614  OMAP_HSMMC_READ(host->base, CON));
1615  seq_printf(s, "HCTL:\t\t0x%08x\n",
1616  OMAP_HSMMC_READ(host->base, HCTL));
1617  seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1618  OMAP_HSMMC_READ(host->base, SYSCTL));
1619  seq_printf(s, "IE:\t\t0x%08x\n",
1620  OMAP_HSMMC_READ(host->base, IE));
1621  seq_printf(s, "ISE:\t\t0x%08x\n",
1622  OMAP_HSMMC_READ(host->base, ISE));
1623  seq_printf(s, "CAPA:\t\t0x%08x\n",
1624  OMAP_HSMMC_READ(host->base, CAPA));
1625 
1626  pm_runtime_mark_last_busy(host->dev);
1627  pm_runtime_put_autosuspend(host->dev);
1628 
1629  return 0;
1630 }
1631 
1632 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1633 {
1634  return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1635 }
1636 
1637 static const struct file_operations mmc_regs_fops = {
1638  .open = omap_hsmmc_regs_open,
1639  .read = seq_read,
1640  .llseek = seq_lseek,
1641  .release = single_release,
1642 };
1643 
1644 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1645 {
1646  if (mmc->debugfs_root)
1648  mmc, &mmc_regs_fops);
1649 }
1650 
1651 #else
1652 
1653 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1654 {
1655 }
1656 
1657 #endif
1658 
1659 #ifdef CONFIG_OF
1660 static u16 omap4_reg_offset = 0x100;
1661 
1662 static const struct of_device_id omap_mmc_of_match[] = {
1663  {
1664  .compatible = "ti,omap2-hsmmc",
1665  },
1666  {
1667  .compatible = "ti,omap3-hsmmc",
1668  },
1669  {
1670  .compatible = "ti,omap4-hsmmc",
1671  .data = &omap4_reg_offset,
1672  },
1673  {},
1674 };
1675 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1676 
1677 static struct omap_mmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1678 {
1679  struct omap_mmc_platform_data *pdata;
1680  struct device_node *np = dev->of_node;
1681  u32 bus_width;
1682 
1683  pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1684  if (!pdata)
1685  return NULL; /* out of memory */
1686 
1687  if (of_find_property(np, "ti,dual-volt", NULL))
1689 
1690  /* This driver only supports 1 slot */
1691  pdata->nr_slots = 1;
1692  pdata->slots[0].switch_pin = of_get_named_gpio(np, "cd-gpios", 0);
1693  pdata->slots[0].gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1694 
1695  if (of_find_property(np, "ti,non-removable", NULL)) {
1696  pdata->slots[0].nonremovable = true;
1697  pdata->slots[0].no_regulator_off_init = true;
1698  }
1699  of_property_read_u32(np, "bus-width", &bus_width);
1700  if (bus_width == 4)
1701  pdata->slots[0].caps |= MMC_CAP_4_BIT_DATA;
1702  else if (bus_width == 8)
1703  pdata->slots[0].caps |= MMC_CAP_8_BIT_DATA;
1704 
1705  if (of_find_property(np, "ti,needs-special-reset", NULL))
1706  pdata->slots[0].features |= HSMMC_HAS_UPDATED_RESET;
1707 
1708  return pdata;
1709 }
1710 #else
1711 static inline struct omap_mmc_platform_data
1712  *of_get_hsmmc_pdata(struct device *dev)
1713 {
1714  return NULL;
1715 }
1716 #endif
1717 
1718 static int __devinit omap_hsmmc_probe(struct platform_device *pdev)
1719 {
1720  struct omap_mmc_platform_data *pdata = pdev->dev.platform_data;
1721  struct mmc_host *mmc;
1722  struct omap_hsmmc_host *host = NULL;
1723  struct resource *res;
1724  int ret, irq;
1725  const struct of_device_id *match;
1727  unsigned tx_req, rx_req;
1728 
1729  match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
1730  if (match) {
1731  pdata = of_get_hsmmc_pdata(&pdev->dev);
1732  if (match->data) {
1733  const u16 *offsetp = match->data;
1734  pdata->reg_offset = *offsetp;
1735  }
1736  }
1737 
1738  if (pdata == NULL) {
1739  dev_err(&pdev->dev, "Platform Data is missing\n");
1740  return -ENXIO;
1741  }
1742 
1743  if (pdata->nr_slots == 0) {
1744  dev_err(&pdev->dev, "No Slots\n");
1745  return -ENXIO;
1746  }
1747 
1748  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1749  irq = platform_get_irq(pdev, 0);
1750  if (res == NULL || irq < 0)
1751  return -ENXIO;
1752 
1753  res = request_mem_region(res->start, resource_size(res), pdev->name);
1754  if (res == NULL)
1755  return -EBUSY;
1756 
1757  ret = omap_hsmmc_gpio_init(pdata);
1758  if (ret)
1759  goto err;
1760 
1761  mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
1762  if (!mmc) {
1763  ret = -ENOMEM;
1764  goto err_alloc;
1765  }
1766 
1767  host = mmc_priv(mmc);
1768  host->mmc = mmc;
1769  host->pdata = pdata;
1770  host->dev = &pdev->dev;
1771  host->use_dma = 1;
1772  host->dma_ch = -1;
1773  host->irq = irq;
1774  host->slot_id = 0;
1775  host->mapbase = res->start + pdata->reg_offset;
1776  host->base = ioremap(host->mapbase, SZ_4K);
1777  host->power_mode = MMC_POWER_OFF;
1778  host->next_data.cookie = 1;
1779 
1780  platform_set_drvdata(pdev, host);
1781 
1782  mmc->ops = &omap_hsmmc_ops;
1783 
1784  /*
1785  * If regulator_disable can only put vcc_aux to sleep then there is
1786  * no off state.
1787  */
1788  if (mmc_slot(host).vcc_aux_disable_is_sleep)
1789  mmc_slot(host).no_off = 1;
1790 
1791  mmc->f_min = OMAP_MMC_MIN_CLOCK;
1792 
1793  if (pdata->max_freq > 0)
1794  mmc->f_max = pdata->max_freq;
1795  else
1796  mmc->f_max = OMAP_MMC_MAX_CLOCK;
1797 
1798  spin_lock_init(&host->irq_lock);
1799 
1800  host->fclk = clk_get(&pdev->dev, "fck");
1801  if (IS_ERR(host->fclk)) {
1802  ret = PTR_ERR(host->fclk);
1803  host->fclk = NULL;
1804  goto err1;
1805  }
1806 
1807  if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
1808  dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
1809  mmc->caps2 |= MMC_CAP2_NO_MULTI_READ;
1810  }
1811 
1812  pm_runtime_enable(host->dev);
1813  pm_runtime_get_sync(host->dev);
1815  pm_runtime_use_autosuspend(host->dev);
1816 
1817  omap_hsmmc_context_save(host);
1818 
1819  host->dbclk = clk_get(&pdev->dev, "mmchsdb_fck");
1820  /*
1821  * MMC can still work without debounce clock.
1822  */
1823  if (IS_ERR(host->dbclk)) {
1824  dev_warn(mmc_dev(host->mmc), "Failed to get debounce clk\n");
1825  host->dbclk = NULL;
1826  } else if (clk_prepare_enable(host->dbclk) != 0) {
1827  dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
1828  clk_put(host->dbclk);
1829  host->dbclk = NULL;
1830  }
1831 
1832  /* Since we do only SG emulation, we can have as many segs
1833  * as we want. */
1834  mmc->max_segs = 1024;
1835 
1836  mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
1837  mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
1838  mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
1839  mmc->max_seg_size = mmc->max_req_size;
1840 
1843 
1844  mmc->caps |= mmc_slot(host).caps;
1845  if (mmc->caps & MMC_CAP_8_BIT_DATA)
1846  mmc->caps |= MMC_CAP_4_BIT_DATA;
1847 
1848  if (mmc_slot(host).nonremovable)
1849  mmc->caps |= MMC_CAP_NONREMOVABLE;
1850 
1851  mmc->pm_caps = mmc_slot(host).pm_caps;
1852 
1853  omap_hsmmc_conf_bus_power(host);
1854 
1855  res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
1856  if (!res) {
1857  dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
1858  ret = -ENXIO;
1859  goto err_irq;
1860  }
1861  tx_req = res->start;
1862 
1863  res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
1864  if (!res) {
1865  dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
1866  ret = -ENXIO;
1867  goto err_irq;
1868  }
1869  rx_req = res->start;
1870 
1871  dma_cap_zero(mask);
1872  dma_cap_set(DMA_SLAVE, mask);
1873 
1874  host->rx_chan = dma_request_channel(mask, omap_dma_filter_fn, &rx_req);
1875  if (!host->rx_chan) {
1876  dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
1877  ret = -ENXIO;
1878  goto err_irq;
1879  }
1880 
1881  host->tx_chan = dma_request_channel(mask, omap_dma_filter_fn, &tx_req);
1882  if (!host->tx_chan) {
1883  dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
1884  ret = -ENXIO;
1885  goto err_irq;
1886  }
1887 
1888  /* Request IRQ for MMC operations */
1889  ret = request_irq(host->irq, omap_hsmmc_irq, 0,
1890  mmc_hostname(mmc), host);
1891  if (ret) {
1892  dev_dbg(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
1893  goto err_irq;
1894  }
1895 
1896  if (pdata->init != NULL) {
1897  if (pdata->init(&pdev->dev) != 0) {
1898  dev_dbg(mmc_dev(host->mmc),
1899  "Unable to configure MMC IRQs\n");
1900  goto err_irq_cd_init;
1901  }
1902  }
1903 
1904  if (omap_hsmmc_have_reg() && !mmc_slot(host).set_power) {
1905  ret = omap_hsmmc_reg_get(host);
1906  if (ret)
1907  goto err_reg;
1908  host->use_reg = 1;
1909  }
1910 
1911  mmc->ocr_avail = mmc_slot(host).ocr_mask;
1912 
1913  /* Request IRQ for card detect */
1914  if ((mmc_slot(host).card_detect_irq)) {
1915  ret = request_threaded_irq(mmc_slot(host).card_detect_irq,
1916  NULL,
1917  omap_hsmmc_detect,
1919  mmc_hostname(mmc), host);
1920  if (ret) {
1921  dev_dbg(mmc_dev(host->mmc),
1922  "Unable to grab MMC CD IRQ\n");
1923  goto err_irq_cd;
1924  }
1927  }
1928 
1929  omap_hsmmc_disable_irq(host);
1930 
1931  omap_hsmmc_protect_card(host);
1932 
1933  mmc_add_host(mmc);
1934 
1935  if (mmc_slot(host).name != NULL) {
1936  ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
1937  if (ret < 0)
1938  goto err_slot_name;
1939  }
1940  if (mmc_slot(host).card_detect_irq && mmc_slot(host).get_cover_state) {
1941  ret = device_create_file(&mmc->class_dev,
1942  &dev_attr_cover_switch);
1943  if (ret < 0)
1944  goto err_slot_name;
1945  }
1946 
1947  omap_hsmmc_debugfs(mmc);
1948  pm_runtime_mark_last_busy(host->dev);
1949  pm_runtime_put_autosuspend(host->dev);
1950 
1951  return 0;
1952 
1953 err_slot_name:
1954  mmc_remove_host(mmc);
1955  free_irq(mmc_slot(host).card_detect_irq, host);
1956 err_irq_cd:
1957  if (host->use_reg)
1958  omap_hsmmc_reg_put(host);
1959 err_reg:
1960  if (host->pdata->cleanup)
1961  host->pdata->cleanup(&pdev->dev);
1962 err_irq_cd_init:
1963  free_irq(host->irq, host);
1964 err_irq:
1965  if (host->tx_chan)
1967  if (host->rx_chan)
1969  pm_runtime_put_sync(host->dev);
1970  pm_runtime_disable(host->dev);
1971  clk_put(host->fclk);
1972  if (host->dbclk) {
1973  clk_disable_unprepare(host->dbclk);
1974  clk_put(host->dbclk);
1975  }
1976 err1:
1977  iounmap(host->base);
1978  platform_set_drvdata(pdev, NULL);
1979  mmc_free_host(mmc);
1980 err_alloc:
1981  omap_hsmmc_gpio_free(pdata);
1982 err:
1983  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1984  if (res)
1985  release_mem_region(res->start, resource_size(res));
1986  return ret;
1987 }
1988 
1989 static int __devexit omap_hsmmc_remove(struct platform_device *pdev)
1990 {
1991  struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
1992  struct resource *res;
1993 
1994  pm_runtime_get_sync(host->dev);
1995  mmc_remove_host(host->mmc);
1996  if (host->use_reg)
1997  omap_hsmmc_reg_put(host);
1998  if (host->pdata->cleanup)
1999  host->pdata->cleanup(&pdev->dev);
2000  free_irq(host->irq, host);
2001  if (mmc_slot(host).card_detect_irq)
2002  free_irq(mmc_slot(host).card_detect_irq, host);
2003 
2004  if (host->tx_chan)
2006  if (host->rx_chan)
2008 
2009  pm_runtime_put_sync(host->dev);
2010  pm_runtime_disable(host->dev);
2011  clk_put(host->fclk);
2012  if (host->dbclk) {
2013  clk_disable_unprepare(host->dbclk);
2014  clk_put(host->dbclk);
2015  }
2016 
2017  omap_hsmmc_gpio_free(host->pdata);
2018  iounmap(host->base);
2019  mmc_free_host(host->mmc);
2020 
2021  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2022  if (res)
2023  release_mem_region(res->start, resource_size(res));
2024  platform_set_drvdata(pdev, NULL);
2025 
2026  return 0;
2027 }
2028 
2029 #ifdef CONFIG_PM
2030 static int omap_hsmmc_suspend(struct device *dev)
2031 {
2032  int ret = 0;
2033  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2034 
2035  if (!host)
2036  return 0;
2037 
2038  if (host && host->suspended)
2039  return 0;
2040 
2041  pm_runtime_get_sync(host->dev);
2042  host->suspended = 1;
2043  if (host->pdata->suspend) {
2044  ret = host->pdata->suspend(dev, host->slot_id);
2045  if (ret) {
2046  dev_dbg(dev, "Unable to handle MMC board"
2047  " level suspend\n");
2048  host->suspended = 0;
2049  return ret;
2050  }
2051  }
2052  ret = mmc_suspend_host(host->mmc);
2053 
2054  if (ret) {
2055  host->suspended = 0;
2056  if (host->pdata->resume) {
2057  if (host->pdata->resume(dev, host->slot_id))
2058  dev_dbg(dev, "Unmask interrupt failed\n");
2059  }
2060  goto err;
2061  }
2062 
2063  if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2064  omap_hsmmc_disable_irq(host);
2065  OMAP_HSMMC_WRITE(host->base, HCTL,
2066  OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2067  }
2068 
2069  if (host->dbclk)
2070  clk_disable_unprepare(host->dbclk);
2071 err:
2072  pm_runtime_put_sync(host->dev);
2073  return ret;
2074 }
2075 
2076 /* Routine to resume the MMC device */
2077 static int omap_hsmmc_resume(struct device *dev)
2078 {
2079  int ret = 0;
2080  struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2081 
2082  if (!host)
2083  return 0;
2084 
2085  if (host && !host->suspended)
2086  return 0;
2087 
2088  pm_runtime_get_sync(host->dev);
2089 
2090  if (host->dbclk)
2091  clk_prepare_enable(host->dbclk);
2092 
2093  if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2094  omap_hsmmc_conf_bus_power(host);
2095 
2096  if (host->pdata->resume) {
2097  ret = host->pdata->resume(dev, host->slot_id);
2098  if (ret)
2099  dev_dbg(dev, "Unmask interrupt failed\n");
2100  }
2101 
2102  omap_hsmmc_protect_card(host);
2103 
2104  /* Notify the core to resume the host */
2105  ret = mmc_resume_host(host->mmc);
2106  if (ret == 0)
2107  host->suspended = 0;
2108 
2109  pm_runtime_mark_last_busy(host->dev);
2110  pm_runtime_put_autosuspend(host->dev);
2111 
2112  return ret;
2113 
2114 }
2115 
2116 #else
2117 #define omap_hsmmc_suspend NULL
2118 #define omap_hsmmc_resume NULL
2119 #endif
2120 
2121 static int omap_hsmmc_runtime_suspend(struct device *dev)
2122 {
2123  struct omap_hsmmc_host *host;
2124 
2125  host = platform_get_drvdata(to_platform_device(dev));
2126  omap_hsmmc_context_save(host);
2127  dev_dbg(dev, "disabled\n");
2128 
2129  return 0;
2130 }
2131 
2132 static int omap_hsmmc_runtime_resume(struct device *dev)
2133 {
2134  struct omap_hsmmc_host *host;
2135 
2136  host = platform_get_drvdata(to_platform_device(dev));
2137  omap_hsmmc_context_restore(host);
2138  dev_dbg(dev, "enabled\n");
2139 
2140  return 0;
2141 }
2142 
2143 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2144  .suspend = omap_hsmmc_suspend,
2145  .resume = omap_hsmmc_resume,
2146  .runtime_suspend = omap_hsmmc_runtime_suspend,
2147  .runtime_resume = omap_hsmmc_runtime_resume,
2148 };
2149 
2150 static struct platform_driver omap_hsmmc_driver = {
2151  .probe = omap_hsmmc_probe,
2152  .remove = __devexit_p(omap_hsmmc_remove),
2153  .driver = {
2154  .name = DRIVER_NAME,
2155  .owner = THIS_MODULE,
2156  .pm = &omap_hsmmc_dev_pm_ops,
2157  .of_match_table = of_match_ptr(omap_mmc_of_match),
2158  },
2159 };
2160 
2161 module_platform_driver(omap_hsmmc_driver);
2162 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2163 MODULE_LICENSE("GPL");
2164 MODULE_ALIAS("platform:" DRIVER_NAME);
2165 MODULE_AUTHOR("Texas Instruments Inc");