Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pxa168_eth.c
Go to the documentation of this file.
1 /*
2  * PXA168 ethernet driver.
3  * Most of the code is derived from mv643xx ethernet driver.
4  *
5  * Copyright (C) 2010 Marvell International Ltd.
6  * Sachin Sanap <[email protected]>
7  * Zhangfei Gao <[email protected]>
8  * Philip Rakity <[email protected]>
9  * Mark Brown <[email protected]>
10  *
11  * This program is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU General Public License
13  * as published by the Free Software Foundation; either version 2
14  * of the License, or (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/in.h>
29 #include <linux/ip.h>
30 #include <linux/tcp.h>
31 #include <linux/udp.h>
32 #include <linux/etherdevice.h>
33 #include <linux/bitops.h>
34 #include <linux/delay.h>
35 #include <linux/ethtool.h>
36 #include <linux/platform_device.h>
37 #include <linux/module.h>
38 #include <linux/kernel.h>
39 #include <linux/workqueue.h>
40 #include <linux/clk.h>
41 #include <linux/phy.h>
42 #include <linux/io.h>
43 #include <linux/interrupt.h>
44 #include <linux/types.h>
45 #include <asm/pgtable.h>
46 #include <asm/cacheflush.h>
47 #include <linux/pxa168_eth.h>
48 
49 #define DRIVER_NAME "pxa168-eth"
50 #define DRIVER_VERSION "0.3"
51 
52 /*
53  * Registers
54  */
55 
56 #define PHY_ADDRESS 0x0000
57 #define SMI 0x0010
58 #define PORT_CONFIG 0x0400
59 #define PORT_CONFIG_EXT 0x0408
60 #define PORT_COMMAND 0x0410
61 #define PORT_STATUS 0x0418
62 #define HTPR 0x0428
63 #define SDMA_CONFIG 0x0440
64 #define SDMA_CMD 0x0448
65 #define INT_CAUSE 0x0450
66 #define INT_W_CLEAR 0x0454
67 #define INT_MASK 0x0458
68 #define ETH_F_RX_DESC_0 0x0480
69 #define ETH_C_RX_DESC_0 0x04A0
70 #define ETH_C_TX_DESC_1 0x04E4
71 
72 /* smi register */
73 #define SMI_BUSY (1 << 28) /* 0 - Write, 1 - Read */
74 #define SMI_R_VALID (1 << 27) /* 0 - Write, 1 - Read */
75 #define SMI_OP_W (0 << 26) /* Write operation */
76 #define SMI_OP_R (1 << 26) /* Read operation */
77 
78 #define PHY_WAIT_ITERATIONS 10
79 
80 #define PXA168_ETH_PHY_ADDR_DEFAULT 0
81 /* RX & TX descriptor command */
82 #define BUF_OWNED_BY_DMA (1 << 31)
83 
84 /* RX descriptor status */
85 #define RX_EN_INT (1 << 23)
86 #define RX_FIRST_DESC (1 << 17)
87 #define RX_LAST_DESC (1 << 16)
88 #define RX_ERROR (1 << 15)
89 
90 /* TX descriptor command */
91 #define TX_EN_INT (1 << 23)
92 #define TX_GEN_CRC (1 << 22)
93 #define TX_ZERO_PADDING (1 << 18)
94 #define TX_FIRST_DESC (1 << 17)
95 #define TX_LAST_DESC (1 << 16)
96 #define TX_ERROR (1 << 15)
97 
98 /* SDMA_CMD */
99 #define SDMA_CMD_AT (1 << 31)
100 #define SDMA_CMD_TXDL (1 << 24)
101 #define SDMA_CMD_TXDH (1 << 23)
102 #define SDMA_CMD_AR (1 << 15)
103 #define SDMA_CMD_ERD (1 << 7)
104 
105 /* Bit definitions of the Port Config Reg */
106 #define PCR_HS (1 << 12)
107 #define PCR_EN (1 << 7)
108 #define PCR_PM (1 << 0)
109 
110 /* Bit definitions of the Port Config Extend Reg */
111 #define PCXR_2BSM (1 << 28)
112 #define PCXR_DSCP_EN (1 << 21)
113 #define PCXR_MFL_1518 (0 << 14)
114 #define PCXR_MFL_1536 (1 << 14)
115 #define PCXR_MFL_2048 (2 << 14)
116 #define PCXR_MFL_64K (3 << 14)
117 #define PCXR_FLP (1 << 11)
118 #define PCXR_PRIO_TX_OFF 3
119 #define PCXR_TX_HIGH_PRI (7 << PCXR_PRIO_TX_OFF)
120 
121 /* Bit definitions of the SDMA Config Reg */
122 #define SDCR_BSZ_OFF 12
123 #define SDCR_BSZ8 (3 << SDCR_BSZ_OFF)
124 #define SDCR_BSZ4 (2 << SDCR_BSZ_OFF)
125 #define SDCR_BSZ2 (1 << SDCR_BSZ_OFF)
126 #define SDCR_BSZ1 (0 << SDCR_BSZ_OFF)
127 #define SDCR_BLMR (1 << 6)
128 #define SDCR_BLMT (1 << 7)
129 #define SDCR_RIFB (1 << 9)
130 #define SDCR_RC_OFF 2
131 #define SDCR_RC_MAX_RETRANS (0xf << SDCR_RC_OFF)
132 
133 /*
134  * Bit definitions of the Interrupt Cause Reg
135  * and Interrupt MASK Reg is the same
136  */
137 #define ICR_RXBUF (1 << 0)
138 #define ICR_TXBUF_H (1 << 2)
139 #define ICR_TXBUF_L (1 << 3)
140 #define ICR_TXEND_H (1 << 6)
141 #define ICR_TXEND_L (1 << 7)
142 #define ICR_RXERR (1 << 8)
143 #define ICR_TXERR_H (1 << 10)
144 #define ICR_TXERR_L (1 << 11)
145 #define ICR_TX_UDR (1 << 13)
146 #define ICR_MII_CH (1 << 28)
147 
148 #define ALL_INTS (ICR_TXBUF_H | ICR_TXBUF_L | ICR_TX_UDR |\
149  ICR_TXERR_H | ICR_TXERR_L |\
150  ICR_TXEND_H | ICR_TXEND_L |\
151  ICR_RXBUF | ICR_RXERR | ICR_MII_CH)
152 
153 #define ETH_HW_IP_ALIGN 2 /* hw aligns IP header */
154 
155 #define NUM_RX_DESCS 64
156 #define NUM_TX_DESCS 64
157 
158 #define HASH_ADD 0
159 #define HASH_DELETE 1
160 #define HASH_ADDR_TABLE_SIZE 0x4000 /* 16K (1/2K address - PCR_HS == 1) */
161 #define HOP_NUMBER 12
162 
163 /* Bit definitions for Port status */
164 #define PORT_SPEED_100 (1 << 0)
165 #define FULL_DUPLEX (1 << 1)
166 #define FLOW_CONTROL_ENABLED (1 << 2)
167 #define LINK_UP (1 << 3)
168 
169 /* Bit definitions for work to be done */
170 #define WORK_LINK (1 << 0)
171 #define WORK_TX_DONE (1 << 1)
172 
173 /*
174  * Misc definitions.
175  */
176 #define SKB_DMA_REALIGN ((PAGE_SIZE - NET_SKB_PAD) % SMP_CACHE_BYTES)
177 
178 struct rx_desc {
179  u32 cmd_sts; /* Descriptor command status */
180  u16 byte_cnt; /* Descriptor buffer byte count */
181  u16 buf_size; /* Buffer size */
182  u32 buf_ptr; /* Descriptor buffer pointer */
183  u32 next_desc_ptr; /* Next descriptor pointer */
184 };
185 
186 struct tx_desc {
187  u32 cmd_sts; /* Command/status field */
189  u16 byte_cnt; /* buffer byte count */
190  u32 buf_ptr; /* pointer to buffer for this descriptor */
191  u32 next_desc_ptr; /* Pointer to next descriptor */
192 };
193 
195  int port_num; /* User Ethernet port number */
196 
197  int rx_resource_err; /* Rx ring resource error flag */
198 
199  /* Next available and first returning Rx resource */
201 
202  /* Next available and first returning Tx resource */
204 
208  struct sk_buff **rx_skb;
209 
213  struct sk_buff **tx_skb;
214 
216 
217  struct net_device *dev;
220  int skb_size;
221 
222  /* Size of Tx Ring per queue */
224  /* Number of tx descriptors in use */
226  /* Size of Rx Ring per queue */
228  /* Number of rx descriptors in use */
230 
231  /*
232  * Used in case RX Ring is empty, which can occur when
233  * system does not have resources (skb's)
234  */
236  struct mii_bus *smi_bus;
237  struct phy_device *phy;
238 
239  /* clock */
240  struct clk *clk;
242  /*
243  * Ethernet controller base address.
244  */
245  void __iomem *base;
246 
247  /* Pointer to the hardware address filter table */
248  void *htpr;
250 };
251 
255 };
256 
257 /* Bit fields of a Hash Table Entry */
260  SKIP = 2,
263 };
264 
265 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd);
266 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd);
267 static int pxa168_init_hw(struct pxa168_eth_private *pep);
268 static void eth_port_reset(struct net_device *dev);
269 static void eth_port_start(struct net_device *dev);
270 static int pxa168_eth_open(struct net_device *dev);
271 static int pxa168_eth_stop(struct net_device *dev);
272 static int ethernet_phy_setup(struct net_device *dev);
273 
274 static inline u32 rdl(struct pxa168_eth_private *pep, int offset)
275 {
276  return readl(pep->base + offset);
277 }
278 
279 static inline void wrl(struct pxa168_eth_private *pep, int offset, u32 data)
280 {
281  writel(data, pep->base + offset);
282 }
283 
284 static void abort_dma(struct pxa168_eth_private *pep)
285 {
286  int delay;
287  int max_retries = 40;
288 
289  do {
291  udelay(100);
292 
293  delay = 10;
294  while ((rdl(pep, SDMA_CMD) & (SDMA_CMD_AR | SDMA_CMD_AT))
295  && delay-- > 0) {
296  udelay(10);
297  }
298  } while (max_retries-- > 0 && delay <= 0);
299 
300  if (max_retries <= 0)
301  printk(KERN_ERR "%s : DMA Stuck\n", __func__);
302 }
303 
304 static int ethernet_phy_get(struct pxa168_eth_private *pep)
305 {
306  unsigned int reg_data;
307 
308  reg_data = rdl(pep, PHY_ADDRESS);
309 
310  return (reg_data >> (5 * pep->port_num)) & 0x1f;
311 }
312 
313 static void ethernet_phy_set_addr(struct pxa168_eth_private *pep, int phy_addr)
314 {
315  u32 reg_data;
316  int addr_shift = 5 * pep->port_num;
317 
318  reg_data = rdl(pep, PHY_ADDRESS);
319  reg_data &= ~(0x1f << addr_shift);
320  reg_data |= (phy_addr & 0x1f) << addr_shift;
321  wrl(pep, PHY_ADDRESS, reg_data);
322 }
323 
324 static void ethernet_phy_reset(struct pxa168_eth_private *pep)
325 {
326  int data;
327 
328  data = phy_read(pep->phy, MII_BMCR);
329  if (data < 0)
330  return;
331 
332  data |= BMCR_RESET;
333  if (phy_write(pep->phy, MII_BMCR, data) < 0)
334  return;
335 
336  do {
337  data = phy_read(pep->phy, MII_BMCR);
338  } while (data >= 0 && data & BMCR_RESET);
339 }
340 
341 static void rxq_refill(struct net_device *dev)
342 {
343  struct pxa168_eth_private *pep = netdev_priv(dev);
344  struct sk_buff *skb;
345  struct rx_desc *p_used_rx_desc;
346  int used_rx_desc;
347 
348  while (pep->rx_desc_count < pep->rx_ring_size) {
349  int size;
350 
351  skb = netdev_alloc_skb(dev, pep->skb_size);
352  if (!skb)
353  break;
354  if (SKB_DMA_REALIGN)
355  skb_reserve(skb, SKB_DMA_REALIGN);
356  pep->rx_desc_count++;
357  /* Get 'used' Rx descriptor */
358  used_rx_desc = pep->rx_used_desc_q;
359  p_used_rx_desc = &pep->p_rx_desc_area[used_rx_desc];
360  size = skb->end - skb->data;
361  p_used_rx_desc->buf_ptr = dma_map_single(NULL,
362  skb->data,
363  size,
365  p_used_rx_desc->buf_size = size;
366  pep->rx_skb[used_rx_desc] = skb;
367 
368  /* Return the descriptor to DMA ownership */
369  wmb();
370  p_used_rx_desc->cmd_sts = BUF_OWNED_BY_DMA | RX_EN_INT;
371  wmb();
372 
373  /* Move the used descriptor pointer to the next descriptor */
374  pep->rx_used_desc_q = (used_rx_desc + 1) % pep->rx_ring_size;
375 
376  /* Any Rx return cancels the Rx resource error status */
377  pep->rx_resource_err = 0;
378 
379  skb_reserve(skb, ETH_HW_IP_ALIGN);
380  }
381 
382  /*
383  * If RX ring is empty of SKB, set a timer to try allocating
384  * again at a later time.
385  */
386  if (pep->rx_desc_count == 0) {
387  pep->timeout.expires = jiffies + (HZ / 10);
388  add_timer(&pep->timeout);
389  }
390 }
391 
392 static inline void rxq_refill_timer_wrapper(unsigned long data)
393 {
394  struct pxa168_eth_private *pep = (void *)data;
395  napi_schedule(&pep->napi);
396 }
397 
398 static inline u8 flip_8_bits(u8 x)
399 {
400  return (((x) & 0x01) << 3) | (((x) & 0x02) << 1)
401  | (((x) & 0x04) >> 1) | (((x) & 0x08) >> 3)
402  | (((x) & 0x10) << 3) | (((x) & 0x20) << 1)
403  | (((x) & 0x40) >> 1) | (((x) & 0x80) >> 3);
404 }
405 
406 static void nibble_swap_every_byte(unsigned char *mac_addr)
407 {
408  int i;
409  for (i = 0; i < ETH_ALEN; i++) {
410  mac_addr[i] = ((mac_addr[i] & 0x0f) << 4) |
411  ((mac_addr[i] & 0xf0) >> 4);
412  }
413 }
414 
415 static void inverse_every_nibble(unsigned char *mac_addr)
416 {
417  int i;
418  for (i = 0; i < ETH_ALEN; i++)
419  mac_addr[i] = flip_8_bits(mac_addr[i]);
420 }
421 
422 /*
423  * ----------------------------------------------------------------------------
424  * This function will calculate the hash function of the address.
425  * Inputs
426  * mac_addr_orig - MAC address.
427  * Outputs
428  * return the calculated entry.
429  */
430 static u32 hash_function(unsigned char *mac_addr_orig)
431 {
432  u32 hash_result;
433  u32 addr0;
434  u32 addr1;
435  u32 addr2;
436  u32 addr3;
437  unsigned char mac_addr[ETH_ALEN];
438 
439  /* Make a copy of MAC address since we are going to performe bit
440  * operations on it
441  */
442  memcpy(mac_addr, mac_addr_orig, ETH_ALEN);
443 
444  nibble_swap_every_byte(mac_addr);
445  inverse_every_nibble(mac_addr);
446 
447  addr0 = (mac_addr[5] >> 2) & 0x3f;
448  addr1 = (mac_addr[5] & 0x03) | (((mac_addr[4] & 0x7f)) << 2);
449  addr2 = ((mac_addr[4] & 0x80) >> 7) | mac_addr[3] << 1;
450  addr3 = (mac_addr[2] & 0xff) | ((mac_addr[1] & 1) << 8);
451 
452  hash_result = (addr0 << 9) | (addr1 ^ addr2 ^ addr3);
453  hash_result = hash_result & 0x07ff;
454  return hash_result;
455 }
456 
457 /*
458  * ----------------------------------------------------------------------------
459  * This function will add/del an entry to the address table.
460  * Inputs
461  * pep - ETHERNET .
462  * mac_addr - MAC address.
463  * skip - if 1, skip this address.Used in case of deleting an entry which is a
464  * part of chain in the hash table.We can't just delete the entry since
465  * that will break the chain.We need to defragment the tables time to
466  * time.
467  * rd - 0 Discard packet upon match.
468  * - 1 Receive packet upon match.
469  * Outputs
470  * address table entry is added/deleted.
471  * 0 if success.
472  * -ENOSPC if table full
473  */
474 static int add_del_hash_entry(struct pxa168_eth_private *pep,
475  unsigned char *mac_addr,
476  u32 rd, u32 skip, int del)
477 {
478  struct addr_table_entry *entry, *start;
479  u32 new_high;
480  u32 new_low;
481  u32 i;
482 
483  new_low = (((mac_addr[1] >> 4) & 0xf) << 15)
484  | (((mac_addr[1] >> 0) & 0xf) << 11)
485  | (((mac_addr[0] >> 4) & 0xf) << 7)
486  | (((mac_addr[0] >> 0) & 0xf) << 3)
487  | (((mac_addr[3] >> 4) & 0x1) << 31)
488  | (((mac_addr[3] >> 0) & 0xf) << 27)
489  | (((mac_addr[2] >> 4) & 0xf) << 23)
490  | (((mac_addr[2] >> 0) & 0xf) << 19)
491  | (skip << SKIP) | (rd << HASH_ENTRY_RECEIVE_DISCARD_BIT)
493 
494  new_high = (((mac_addr[5] >> 4) & 0xf) << 15)
495  | (((mac_addr[5] >> 0) & 0xf) << 11)
496  | (((mac_addr[4] >> 4) & 0xf) << 7)
497  | (((mac_addr[4] >> 0) & 0xf) << 3)
498  | (((mac_addr[3] >> 5) & 0x7) << 0);
499 
500  /*
501  * Pick the appropriate table, start scanning for free/reusable
502  * entries at the index obtained by hashing the specified MAC address
503  */
504  start = pep->htpr;
505  entry = start + hash_function(mac_addr);
506  for (i = 0; i < HOP_NUMBER; i++) {
507  if (!(le32_to_cpu(entry->lo) & HASH_ENTRY_VALID)) {
508  break;
509  } else {
510  /* if same address put in same position */
511  if (((le32_to_cpu(entry->lo) & 0xfffffff8) ==
512  (new_low & 0xfffffff8)) &&
513  (le32_to_cpu(entry->hi) == new_high)) {
514  break;
515  }
516  }
517  if (entry == start + 0x7ff)
518  entry = start;
519  else
520  entry++;
521  }
522 
523  if (((le32_to_cpu(entry->lo) & 0xfffffff8) != (new_low & 0xfffffff8)) &&
524  (le32_to_cpu(entry->hi) != new_high) && del)
525  return 0;
526 
527  if (i == HOP_NUMBER) {
528  if (!del) {
529  printk(KERN_INFO "%s: table section is full, need to "
530  "move to 16kB implementation?\n",
531  __FILE__);
532  return -ENOSPC;
533  } else
534  return 0;
535  }
536 
537  /*
538  * Update the selected entry
539  */
540  if (del) {
541  entry->hi = 0;
542  entry->lo = 0;
543  } else {
544  entry->hi = cpu_to_le32(new_high);
545  entry->lo = cpu_to_le32(new_low);
546  }
547 
548  return 0;
549 }
550 
551 /*
552  * ----------------------------------------------------------------------------
553  * Create an addressTable entry from MAC address info
554  * found in the specifed net_device struct
555  *
556  * Input : pointer to ethernet interface network device structure
557  * Output : N/A
558  */
559 static void update_hash_table_mac_address(struct pxa168_eth_private *pep,
560  unsigned char *oaddr,
561  unsigned char *addr)
562 {
563  /* Delete old entry */
564  if (oaddr)
565  add_del_hash_entry(pep, oaddr, 1, 0, HASH_DELETE);
566  /* Add new entry */
567  add_del_hash_entry(pep, addr, 1, 0, HASH_ADD);
568 }
569 
570 static int init_hash_table(struct pxa168_eth_private *pep)
571 {
572  /*
573  * Hardware expects CPU to build a hash table based on a predefined
574  * hash function and populate it based on hardware address. The
575  * location of the hash table is identified by 32-bit pointer stored
576  * in HTPR internal register. Two possible sizes exists for the hash
577  * table 8kB (256kB of DRAM required (4 x 64 kB banks)) and 1/2kB
578  * (16kB of DRAM required (4 x 4 kB banks)).We currently only support
579  * 1/2kB.
580  */
581  /* TODO: Add support for 8kB hash table and alternative hash
582  * function.Driver can dynamically switch to them if the 1/2kB hash
583  * table is full.
584  */
585  if (pep->htpr == NULL) {
586  pep->htpr = dma_alloc_coherent(pep->dev->dev.parent,
588  &pep->htpr_dma, GFP_KERNEL);
589  if (pep->htpr == NULL)
590  return -ENOMEM;
591  }
592  memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
593  wrl(pep, HTPR, pep->htpr_dma);
594  return 0;
595 }
596 
597 static void pxa168_eth_set_rx_mode(struct net_device *dev)
598 {
599  struct pxa168_eth_private *pep = netdev_priv(dev);
600  struct netdev_hw_addr *ha;
601  u32 val;
602 
603  val = rdl(pep, PORT_CONFIG);
604  if (dev->flags & IFF_PROMISC)
605  val |= PCR_PM;
606  else
607  val &= ~PCR_PM;
608  wrl(pep, PORT_CONFIG, val);
609 
610  /*
611  * Remove the old list of MAC address and add dev->addr
612  * and multicast address.
613  */
614  memset(pep->htpr, 0, HASH_ADDR_TABLE_SIZE);
615  update_hash_table_mac_address(pep, NULL, dev->dev_addr);
616 
617  netdev_for_each_mc_addr(ha, dev)
618  update_hash_table_mac_address(pep, NULL, ha->addr);
619 }
620 
621 static int pxa168_eth_set_mac_address(struct net_device *dev, void *addr)
622 {
623  struct sockaddr *sa = addr;
624  struct pxa168_eth_private *pep = netdev_priv(dev);
625  unsigned char oldMac[ETH_ALEN];
626 
627  if (!is_valid_ether_addr(sa->sa_data))
628  return -EADDRNOTAVAIL;
629  memcpy(oldMac, dev->dev_addr, ETH_ALEN);
630  dev->addr_assign_type &= ~NET_ADDR_RANDOM;
631  memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
632  netif_addr_lock_bh(dev);
633  update_hash_table_mac_address(pep, oldMac, dev->dev_addr);
634  netif_addr_unlock_bh(dev);
635  return 0;
636 }
637 
638 static void eth_port_start(struct net_device *dev)
639 {
640  unsigned int val = 0;
641  struct pxa168_eth_private *pep = netdev_priv(dev);
642  int tx_curr_desc, rx_curr_desc;
643 
644  /* Perform PHY reset, if there is a PHY. */
645  if (pep->phy != NULL) {
646  struct ethtool_cmd cmd;
647 
648  pxa168_get_settings(pep->dev, &cmd);
649  ethernet_phy_reset(pep);
650  pxa168_set_settings(pep->dev, &cmd);
651  }
652 
653  /* Assignment of Tx CTRP of given queue */
654  tx_curr_desc = pep->tx_curr_desc_q;
655  wrl(pep, ETH_C_TX_DESC_1,
656  (u32) (pep->tx_desc_dma + tx_curr_desc * sizeof(struct tx_desc)));
657 
658  /* Assignment of Rx CRDP of given queue */
659  rx_curr_desc = pep->rx_curr_desc_q;
660  wrl(pep, ETH_C_RX_DESC_0,
661  (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
662 
663  wrl(pep, ETH_F_RX_DESC_0,
664  (u32) (pep->rx_desc_dma + rx_curr_desc * sizeof(struct rx_desc)));
665 
666  /* Clear all interrupts */
667  wrl(pep, INT_CAUSE, 0);
668 
669  /* Enable all interrupts for receive, transmit and error. */
670  wrl(pep, INT_MASK, ALL_INTS);
671 
672  val = rdl(pep, PORT_CONFIG);
673  val |= PCR_EN;
674  wrl(pep, PORT_CONFIG, val);
675 
676  /* Start RX DMA engine */
677  val = rdl(pep, SDMA_CMD);
678  val |= SDMA_CMD_ERD;
679  wrl(pep, SDMA_CMD, val);
680 }
681 
682 static void eth_port_reset(struct net_device *dev)
683 {
684  struct pxa168_eth_private *pep = netdev_priv(dev);
685  unsigned int val = 0;
686 
687  /* Stop all interrupts for receive, transmit and error. */
688  wrl(pep, INT_MASK, 0);
689 
690  /* Clear all interrupts */
691  wrl(pep, INT_CAUSE, 0);
692 
693  /* Stop RX DMA */
694  val = rdl(pep, SDMA_CMD);
695  val &= ~SDMA_CMD_ERD; /* abort dma command */
696 
697  /* Abort any transmit and receive operations and put DMA
698  * in idle state.
699  */
700  abort_dma(pep);
701 
702  /* Disable port */
703  val = rdl(pep, PORT_CONFIG);
704  val &= ~PCR_EN;
705  wrl(pep, PORT_CONFIG, val);
706 }
707 
708 /*
709  * txq_reclaim - Free the tx desc data for completed descriptors
710  * If force is non-zero, frees uncompleted descriptors as well
711  */
712 static int txq_reclaim(struct net_device *dev, int force)
713 {
714  struct pxa168_eth_private *pep = netdev_priv(dev);
715  struct tx_desc *desc;
716  u32 cmd_sts;
717  struct sk_buff *skb;
718  int tx_index;
720  int count;
721  int released = 0;
722 
723  netif_tx_lock(dev);
724 
725  pep->work_todo &= ~WORK_TX_DONE;
726  while (pep->tx_desc_count > 0) {
727  tx_index = pep->tx_used_desc_q;
728  desc = &pep->p_tx_desc_area[tx_index];
729  cmd_sts = desc->cmd_sts;
730  if (!force && (cmd_sts & BUF_OWNED_BY_DMA)) {
731  if (released > 0) {
732  goto txq_reclaim_end;
733  } else {
734  released = -1;
735  goto txq_reclaim_end;
736  }
737  }
738  pep->tx_used_desc_q = (tx_index + 1) % pep->tx_ring_size;
739  pep->tx_desc_count--;
740  addr = desc->buf_ptr;
741  count = desc->byte_cnt;
742  skb = pep->tx_skb[tx_index];
743  if (skb)
744  pep->tx_skb[tx_index] = NULL;
745 
746  if (cmd_sts & TX_ERROR) {
747  if (net_ratelimit())
748  printk(KERN_ERR "%s: Error in TX\n", dev->name);
749  dev->stats.tx_errors++;
750  }
751  dma_unmap_single(NULL, addr, count, DMA_TO_DEVICE);
752  if (skb)
753  dev_kfree_skb_irq(skb);
754  released++;
755  }
756 txq_reclaim_end:
757  netif_tx_unlock(dev);
758  return released;
759 }
760 
761 static void pxa168_eth_tx_timeout(struct net_device *dev)
762 {
763  struct pxa168_eth_private *pep = netdev_priv(dev);
764 
765  printk(KERN_INFO "%s: TX timeout desc_count %d\n",
766  dev->name, pep->tx_desc_count);
767 
769 }
770 
771 static void pxa168_eth_tx_timeout_task(struct work_struct *work)
772 {
773  struct pxa168_eth_private *pep = container_of(work,
774  struct pxa168_eth_private,
776  struct net_device *dev = pep->dev;
777  pxa168_eth_stop(dev);
778  pxa168_eth_open(dev);
779 }
780 
781 static int rxq_process(struct net_device *dev, int budget)
782 {
783  struct pxa168_eth_private *pep = netdev_priv(dev);
784  struct net_device_stats *stats = &dev->stats;
785  unsigned int received_packets = 0;
786  struct sk_buff *skb;
787 
788  while (budget-- > 0) {
789  int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
790  struct rx_desc *rx_desc;
791  unsigned int cmd_sts;
792 
793  /* Do not process Rx ring in case of Rx ring resource error */
794  if (pep->rx_resource_err)
795  break;
796  rx_curr_desc = pep->rx_curr_desc_q;
797  rx_used_desc = pep->rx_used_desc_q;
798  rx_desc = &pep->p_rx_desc_area[rx_curr_desc];
799  cmd_sts = rx_desc->cmd_sts;
800  rmb();
801  if (cmd_sts & (BUF_OWNED_BY_DMA))
802  break;
803  skb = pep->rx_skb[rx_curr_desc];
804  pep->rx_skb[rx_curr_desc] = NULL;
805 
806  rx_next_curr_desc = (rx_curr_desc + 1) % pep->rx_ring_size;
807  pep->rx_curr_desc_q = rx_next_curr_desc;
808 
809  /* Rx descriptors exhausted. */
810  /* Set the Rx ring resource error flag */
811  if (rx_next_curr_desc == rx_used_desc)
812  pep->rx_resource_err = 1;
813  pep->rx_desc_count--;
814  dma_unmap_single(NULL, rx_desc->buf_ptr,
815  rx_desc->buf_size,
817  received_packets++;
818  /*
819  * Update statistics.
820  * Note byte count includes 4 byte CRC count
821  */
822  stats->rx_packets++;
823  stats->rx_bytes += rx_desc->byte_cnt;
824  /*
825  * In case received a packet without first / last bits on OR
826  * the error summary bit is on, the packets needs to be droped.
827  */
828  if (((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
830  || (cmd_sts & RX_ERROR)) {
831 
832  stats->rx_dropped++;
833  if ((cmd_sts & (RX_FIRST_DESC | RX_LAST_DESC)) !=
835  if (net_ratelimit())
837  "%s: Rx pkt on multiple desc\n",
838  dev->name);
839  }
840  if (cmd_sts & RX_ERROR)
841  stats->rx_errors++;
842  dev_kfree_skb_irq(skb);
843  } else {
844  /*
845  * The -4 is for the CRC in the trailer of the
846  * received packet
847  */
848  skb_put(skb, rx_desc->byte_cnt - 4);
849  skb->protocol = eth_type_trans(skb, dev);
850  netif_receive_skb(skb);
851  }
852  }
853  /* Fill RX ring with skb's */
854  rxq_refill(dev);
855  return received_packets;
856 }
857 
858 static int pxa168_eth_collect_events(struct pxa168_eth_private *pep,
859  struct net_device *dev)
860 {
861  u32 icr;
862  int ret = 0;
863 
864  icr = rdl(pep, INT_CAUSE);
865  if (icr == 0)
866  return IRQ_NONE;
867 
868  wrl(pep, INT_CAUSE, ~icr);
869  if (icr & (ICR_TXBUF_H | ICR_TXBUF_L)) {
870  pep->work_todo |= WORK_TX_DONE;
871  ret = 1;
872  }
873  if (icr & ICR_RXBUF)
874  ret = 1;
875  if (icr & ICR_MII_CH) {
876  pep->work_todo |= WORK_LINK;
877  ret = 1;
878  }
879  return ret;
880 }
881 
882 static void handle_link_event(struct pxa168_eth_private *pep)
883 {
884  struct net_device *dev = pep->dev;
886  int speed;
887  int duplex;
888  int fc;
889 
890  port_status = rdl(pep, PORT_STATUS);
891  if (!(port_status & LINK_UP)) {
892  if (netif_carrier_ok(dev)) {
893  printk(KERN_INFO "%s: link down\n", dev->name);
894  netif_carrier_off(dev);
895  txq_reclaim(dev, 1);
896  }
897  return;
898  }
899  if (port_status & PORT_SPEED_100)
900  speed = 100;
901  else
902  speed = 10;
903 
904  duplex = (port_status & FULL_DUPLEX) ? 1 : 0;
905  fc = (port_status & FLOW_CONTROL_ENABLED) ? 1 : 0;
906  printk(KERN_INFO "%s: link up, %d Mb/s, %s duplex, "
907  "flow control %sabled\n", dev->name,
908  speed, duplex ? "full" : "half", fc ? "en" : "dis");
909  if (!netif_carrier_ok(dev))
910  netif_carrier_on(dev);
911 }
912 
913 static irqreturn_t pxa168_eth_int_handler(int irq, void *dev_id)
914 {
915  struct net_device *dev = (struct net_device *)dev_id;
916  struct pxa168_eth_private *pep = netdev_priv(dev);
917 
918  if (unlikely(!pxa168_eth_collect_events(pep, dev)))
919  return IRQ_NONE;
920  /* Disable interrupts */
921  wrl(pep, INT_MASK, 0);
922  napi_schedule(&pep->napi);
923  return IRQ_HANDLED;
924 }
925 
926 static void pxa168_eth_recalc_skb_size(struct pxa168_eth_private *pep)
927 {
928  int skb_size;
929 
930  /*
931  * Reserve 2+14 bytes for an ethernet header (the hardware
932  * automatically prepends 2 bytes of dummy data to each
933  * received packet), 16 bytes for up to four VLAN tags, and
934  * 4 bytes for the trailing FCS -- 36 bytes total.
935  */
936  skb_size = pep->dev->mtu + 36;
937 
938  /*
939  * Make sure that the skb size is a multiple of 8 bytes, as
940  * the lower three bits of the receive descriptor's buffer
941  * size field are ignored by the hardware.
942  */
943  pep->skb_size = (skb_size + 7) & ~7;
944 
945  /*
946  * If NET_SKB_PAD is smaller than a cache line,
947  * netdev_alloc_skb() will cause skb->data to be misaligned
948  * to a cache line boundary. If this is the case, include
949  * some extra space to allow re-aligning the data area.
950  */
951  pep->skb_size += SKB_DMA_REALIGN;
952 
953 }
954 
955 static int set_port_config_ext(struct pxa168_eth_private *pep)
956 {
957  int skb_size;
958 
959  pxa168_eth_recalc_skb_size(pep);
960  if (pep->skb_size <= 1518)
961  skb_size = PCXR_MFL_1518;
962  else if (pep->skb_size <= 1536)
963  skb_size = PCXR_MFL_1536;
964  else if (pep->skb_size <= 2048)
965  skb_size = PCXR_MFL_2048;
966  else
967  skb_size = PCXR_MFL_64K;
968 
969  /* Extended Port Configuration */
970  wrl(pep,
971  PORT_CONFIG_EXT, PCXR_2BSM | /* Two byte prefix aligns IP hdr */
972  PCXR_DSCP_EN | /* Enable DSCP in IP */
973  skb_size | PCXR_FLP | /* do not force link pass */
974  PCXR_TX_HIGH_PRI); /* Transmit - high priority queue */
975 
976  return 0;
977 }
978 
979 static int pxa168_init_hw(struct pxa168_eth_private *pep)
980 {
981  int err = 0;
982 
983  /* Disable interrupts */
984  wrl(pep, INT_MASK, 0);
985  wrl(pep, INT_CAUSE, 0);
986  /* Write to ICR to clear interrupts. */
987  wrl(pep, INT_W_CLEAR, 0);
988  /* Abort any transmit and receive operations and put DMA
989  * in idle state.
990  */
991  abort_dma(pep);
992  /* Initialize address hash table */
993  err = init_hash_table(pep);
994  if (err)
995  return err;
996  /* SDMA configuration */
997  wrl(pep, SDMA_CONFIG, SDCR_BSZ8 | /* Burst size = 32 bytes */
998  SDCR_RIFB | /* Rx interrupt on frame */
999  SDCR_BLMT | /* Little endian transmit */
1000  SDCR_BLMR | /* Little endian receive */
1001  SDCR_RC_MAX_RETRANS); /* Max retransmit count */
1002  /* Port Configuration */
1003  wrl(pep, PORT_CONFIG, PCR_HS); /* Hash size is 1/2kb */
1004  set_port_config_ext(pep);
1005 
1006  return err;
1007 }
1008 
1009 static int rxq_init(struct net_device *dev)
1010 {
1011  struct pxa168_eth_private *pep = netdev_priv(dev);
1012  struct rx_desc *p_rx_desc;
1013  int size = 0, i = 0;
1014  int rx_desc_num = pep->rx_ring_size;
1015 
1016  /* Allocate RX skb rings */
1017  pep->rx_skb = kmalloc(sizeof(*pep->rx_skb) * pep->rx_ring_size,
1018  GFP_KERNEL);
1019  if (!pep->rx_skb)
1020  return -ENOMEM;
1021 
1022  /* Allocate RX ring */
1023  pep->rx_desc_count = 0;
1024  size = pep->rx_ring_size * sizeof(struct rx_desc);
1025  pep->rx_desc_area_size = size;
1026  pep->p_rx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1027  &pep->rx_desc_dma, GFP_KERNEL);
1028  if (!pep->p_rx_desc_area) {
1029  printk(KERN_ERR "%s: Cannot alloc RX ring (size %d bytes)\n",
1030  dev->name, size);
1031  goto out;
1032  }
1033  memset((void *)pep->p_rx_desc_area, 0, size);
1034  /* initialize the next_desc_ptr links in the Rx descriptors ring */
1035  p_rx_desc = pep->p_rx_desc_area;
1036  for (i = 0; i < rx_desc_num; i++) {
1037  p_rx_desc[i].next_desc_ptr = pep->rx_desc_dma +
1038  ((i + 1) % rx_desc_num) * sizeof(struct rx_desc);
1039  }
1040  /* Save Rx desc pointer to driver struct. */
1041  pep->rx_curr_desc_q = 0;
1042  pep->rx_used_desc_q = 0;
1043  pep->rx_desc_area_size = rx_desc_num * sizeof(struct rx_desc);
1044  return 0;
1045 out:
1046  kfree(pep->rx_skb);
1047  return -ENOMEM;
1048 }
1049 
1050 static void rxq_deinit(struct net_device *dev)
1051 {
1052  struct pxa168_eth_private *pep = netdev_priv(dev);
1053  int curr;
1054 
1055  /* Free preallocated skb's on RX rings */
1056  for (curr = 0; pep->rx_desc_count && curr < pep->rx_ring_size; curr++) {
1057  if (pep->rx_skb[curr]) {
1058  dev_kfree_skb(pep->rx_skb[curr]);
1059  pep->rx_desc_count--;
1060  }
1061  }
1062  if (pep->rx_desc_count)
1064  "Error in freeing Rx Ring. %d skb's still\n",
1065  pep->rx_desc_count);
1066  /* Free RX ring */
1067  if (pep->p_rx_desc_area)
1068  dma_free_coherent(pep->dev->dev.parent, pep->rx_desc_area_size,
1069  pep->p_rx_desc_area, pep->rx_desc_dma);
1070  kfree(pep->rx_skb);
1071 }
1072 
1073 static int txq_init(struct net_device *dev)
1074 {
1075  struct pxa168_eth_private *pep = netdev_priv(dev);
1076  struct tx_desc *p_tx_desc;
1077  int size = 0, i = 0;
1078  int tx_desc_num = pep->tx_ring_size;
1079 
1080  pep->tx_skb = kmalloc(sizeof(*pep->tx_skb) * pep->tx_ring_size,
1081  GFP_KERNEL);
1082  if (!pep->tx_skb)
1083  return -ENOMEM;
1084 
1085  /* Allocate TX ring */
1086  pep->tx_desc_count = 0;
1087  size = pep->tx_ring_size * sizeof(struct tx_desc);
1088  pep->tx_desc_area_size = size;
1089  pep->p_tx_desc_area = dma_alloc_coherent(pep->dev->dev.parent, size,
1090  &pep->tx_desc_dma, GFP_KERNEL);
1091  if (!pep->p_tx_desc_area) {
1092  printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
1093  dev->name, size);
1094  goto out;
1095  }
1096  memset((void *)pep->p_tx_desc_area, 0, pep->tx_desc_area_size);
1097  /* Initialize the next_desc_ptr links in the Tx descriptors ring */
1098  p_tx_desc = pep->p_tx_desc_area;
1099  for (i = 0; i < tx_desc_num; i++) {
1100  p_tx_desc[i].next_desc_ptr = pep->tx_desc_dma +
1101  ((i + 1) % tx_desc_num) * sizeof(struct tx_desc);
1102  }
1103  pep->tx_curr_desc_q = 0;
1104  pep->tx_used_desc_q = 0;
1105  pep->tx_desc_area_size = tx_desc_num * sizeof(struct tx_desc);
1106  return 0;
1107 out:
1108  kfree(pep->tx_skb);
1109  return -ENOMEM;
1110 }
1111 
1112 static void txq_deinit(struct net_device *dev)
1113 {
1114  struct pxa168_eth_private *pep = netdev_priv(dev);
1115 
1116  /* Free outstanding skb's on TX ring */
1117  txq_reclaim(dev, 1);
1118  BUG_ON(pep->tx_used_desc_q != pep->tx_curr_desc_q);
1119  /* Free TX ring */
1120  if (pep->p_tx_desc_area)
1121  dma_free_coherent(pep->dev->dev.parent, pep->tx_desc_area_size,
1122  pep->p_tx_desc_area, pep->tx_desc_dma);
1123  kfree(pep->tx_skb);
1124 }
1125 
1126 static int pxa168_eth_open(struct net_device *dev)
1127 {
1128  struct pxa168_eth_private *pep = netdev_priv(dev);
1129  int err;
1130 
1131  err = request_irq(dev->irq, pxa168_eth_int_handler,
1132  IRQF_DISABLED, dev->name, dev);
1133  if (err) {
1134  dev_printk(KERN_ERR, &dev->dev, "can't assign irq\n");
1135  return -EAGAIN;
1136  }
1137  pep->rx_resource_err = 0;
1138  err = rxq_init(dev);
1139  if (err != 0)
1140  goto out_free_irq;
1141  err = txq_init(dev);
1142  if (err != 0)
1143  goto out_free_rx_skb;
1144  pep->rx_used_desc_q = 0;
1145  pep->rx_curr_desc_q = 0;
1146 
1147  /* Fill RX ring with skb's */
1148  rxq_refill(dev);
1149  pep->rx_used_desc_q = 0;
1150  pep->rx_curr_desc_q = 0;
1151  netif_carrier_off(dev);
1152  eth_port_start(dev);
1153  napi_enable(&pep->napi);
1154  return 0;
1155 out_free_rx_skb:
1156  rxq_deinit(dev);
1157 out_free_irq:
1158  free_irq(dev->irq, dev);
1159  return err;
1160 }
1161 
1162 static int pxa168_eth_stop(struct net_device *dev)
1163 {
1164  struct pxa168_eth_private *pep = netdev_priv(dev);
1165  eth_port_reset(dev);
1166 
1167  /* Disable interrupts */
1168  wrl(pep, INT_MASK, 0);
1169  wrl(pep, INT_CAUSE, 0);
1170  /* Write to ICR to clear interrupts. */
1171  wrl(pep, INT_W_CLEAR, 0);
1172  napi_disable(&pep->napi);
1173  del_timer_sync(&pep->timeout);
1174  netif_carrier_off(dev);
1175  free_irq(dev->irq, dev);
1176  rxq_deinit(dev);
1177  txq_deinit(dev);
1178 
1179  return 0;
1180 }
1181 
1182 static int pxa168_eth_change_mtu(struct net_device *dev, int mtu)
1183 {
1184  int retval;
1185  struct pxa168_eth_private *pep = netdev_priv(dev);
1186 
1187  if ((mtu > 9500) || (mtu < 68))
1188  return -EINVAL;
1189 
1190  dev->mtu = mtu;
1191  retval = set_port_config_ext(pep);
1192 
1193  if (!netif_running(dev))
1194  return 0;
1195 
1196  /*
1197  * Stop and then re-open the interface. This will allocate RX
1198  * skbs of the new MTU.
1199  * There is a possible danger that the open will not succeed,
1200  * due to memory being full.
1201  */
1202  pxa168_eth_stop(dev);
1203  if (pxa168_eth_open(dev)) {
1204  dev_printk(KERN_ERR, &dev->dev,
1205  "fatal error on re-opening device after "
1206  "MTU change\n");
1207  }
1208 
1209  return 0;
1210 }
1211 
1212 static int eth_alloc_tx_desc_index(struct pxa168_eth_private *pep)
1213 {
1214  int tx_desc_curr;
1215 
1216  tx_desc_curr = pep->tx_curr_desc_q;
1217  pep->tx_curr_desc_q = (tx_desc_curr + 1) % pep->tx_ring_size;
1218  BUG_ON(pep->tx_curr_desc_q == pep->tx_used_desc_q);
1219  pep->tx_desc_count++;
1220 
1221  return tx_desc_curr;
1222 }
1223 
1224 static int pxa168_rx_poll(struct napi_struct *napi, int budget)
1225 {
1226  struct pxa168_eth_private *pep =
1227  container_of(napi, struct pxa168_eth_private, napi);
1228  struct net_device *dev = pep->dev;
1229  int work_done = 0;
1230 
1231  if (unlikely(pep->work_todo & WORK_LINK)) {
1232  pep->work_todo &= ~(WORK_LINK);
1233  handle_link_event(pep);
1234  }
1235  /*
1236  * We call txq_reclaim every time since in NAPI interupts are disabled
1237  * and due to this we miss the TX_DONE interrupt,which is not updated in
1238  * interrupt status register.
1239  */
1240  txq_reclaim(dev, 0);
1241  if (netif_queue_stopped(dev)
1242  && pep->tx_ring_size - pep->tx_desc_count > 1) {
1243  netif_wake_queue(dev);
1244  }
1245  work_done = rxq_process(dev, budget);
1246  if (work_done < budget) {
1247  napi_complete(napi);
1248  wrl(pep, INT_MASK, ALL_INTS);
1249  }
1250 
1251  return work_done;
1252 }
1253 
1254 static int pxa168_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1255 {
1256  struct pxa168_eth_private *pep = netdev_priv(dev);
1257  struct net_device_stats *stats = &dev->stats;
1258  struct tx_desc *desc;
1259  int tx_index;
1260  int length;
1261 
1262  tx_index = eth_alloc_tx_desc_index(pep);
1263  desc = &pep->p_tx_desc_area[tx_index];
1264  length = skb->len;
1265  pep->tx_skb[tx_index] = skb;
1266  desc->byte_cnt = length;
1267  desc->buf_ptr = dma_map_single(NULL, skb->data, length, DMA_TO_DEVICE);
1268 
1269  skb_tx_timestamp(skb);
1270 
1271  wmb();
1272  desc->cmd_sts = BUF_OWNED_BY_DMA | TX_GEN_CRC | TX_FIRST_DESC |
1274  wmb();
1276 
1277  stats->tx_bytes += length;
1278  stats->tx_packets++;
1279  dev->trans_start = jiffies;
1280  if (pep->tx_ring_size - pep->tx_desc_count <= 1) {
1281  /* We handled the current skb, but now we are out of space.*/
1282  netif_stop_queue(dev);
1283  }
1284 
1285  return NETDEV_TX_OK;
1286 }
1287 
1288 static int smi_wait_ready(struct pxa168_eth_private *pep)
1289 {
1290  int i = 0;
1291 
1292  /* wait for the SMI register to become available */
1293  for (i = 0; rdl(pep, SMI) & SMI_BUSY; i++) {
1294  if (i == PHY_WAIT_ITERATIONS)
1295  return -ETIMEDOUT;
1296  msleep(10);
1297  }
1298 
1299  return 0;
1300 }
1301 
1302 static int pxa168_smi_read(struct mii_bus *bus, int phy_addr, int regnum)
1303 {
1304  struct pxa168_eth_private *pep = bus->priv;
1305  int i = 0;
1306  int val;
1307 
1308  if (smi_wait_ready(pep)) {
1309  printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1310  return -ETIMEDOUT;
1311  }
1312  wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) | SMI_OP_R);
1313  /* now wait for the data to be valid */
1314  for (i = 0; !((val = rdl(pep, SMI)) & SMI_R_VALID); i++) {
1315  if (i == PHY_WAIT_ITERATIONS) {
1317  "pxa168_eth: SMI bus read not valid\n");
1318  return -ENODEV;
1319  }
1320  msleep(10);
1321  }
1322 
1323  return val & 0xffff;
1324 }
1325 
1326 static int pxa168_smi_write(struct mii_bus *bus, int phy_addr, int regnum,
1327  u16 value)
1328 {
1329  struct pxa168_eth_private *pep = bus->priv;
1330 
1331  if (smi_wait_ready(pep)) {
1332  printk(KERN_WARNING "pxa168_eth: SMI bus busy timeout\n");
1333  return -ETIMEDOUT;
1334  }
1335 
1336  wrl(pep, SMI, (phy_addr << 16) | (regnum << 21) |
1337  SMI_OP_W | (value & 0xffff));
1338 
1339  if (smi_wait_ready(pep)) {
1340  printk(KERN_ERR "pxa168_eth: SMI bus busy timeout\n");
1341  return -ETIMEDOUT;
1342  }
1343 
1344  return 0;
1345 }
1346 
1347 static int pxa168_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr,
1348  int cmd)
1349 {
1350  struct pxa168_eth_private *pep = netdev_priv(dev);
1351  if (pep->phy != NULL)
1352  return phy_mii_ioctl(pep->phy, ifr, cmd);
1353 
1354  return -EOPNOTSUPP;
1355 }
1356 
1357 static struct phy_device *phy_scan(struct pxa168_eth_private *pep, int phy_addr)
1358 {
1359  struct mii_bus *bus = pep->smi_bus;
1360  struct phy_device *phydev;
1361  int start;
1362  int num;
1363  int i;
1364 
1365  if (phy_addr == PXA168_ETH_PHY_ADDR_DEFAULT) {
1366  /* Scan entire range */
1367  start = ethernet_phy_get(pep);
1368  num = 32;
1369  } else {
1370  /* Use phy addr specific to platform */
1371  start = phy_addr & 0x1f;
1372  num = 1;
1373  }
1374  phydev = NULL;
1375  for (i = 0; i < num; i++) {
1376  int addr = (start + i) & 0x1f;
1377  if (bus->phy_map[addr] == NULL)
1378  mdiobus_scan(bus, addr);
1379 
1380  if (phydev == NULL) {
1381  phydev = bus->phy_map[addr];
1382  if (phydev != NULL)
1383  ethernet_phy_set_addr(pep, addr);
1384  }
1385  }
1386 
1387  return phydev;
1388 }
1389 
1390 static void phy_init(struct pxa168_eth_private *pep, int speed, int duplex)
1391 {
1392  struct phy_device *phy = pep->phy;
1393  ethernet_phy_reset(pep);
1394 
1395  phy_attach(pep->dev, dev_name(&phy->dev), 0, PHY_INTERFACE_MODE_MII);
1396 
1397  if (speed == 0) {
1398  phy->autoneg = AUTONEG_ENABLE;
1399  phy->speed = 0;
1400  phy->duplex = 0;
1401  phy->supported &= PHY_BASIC_FEATURES;
1403  } else {
1404  phy->autoneg = AUTONEG_DISABLE;
1405  phy->advertising = 0;
1406  phy->speed = speed;
1407  phy->duplex = duplex;
1408  }
1409  phy_start_aneg(phy);
1410 }
1411 
1412 static int ethernet_phy_setup(struct net_device *dev)
1413 {
1414  struct pxa168_eth_private *pep = netdev_priv(dev);
1415 
1416  if (pep->pd->init)
1417  pep->pd->init();
1418  pep->phy = phy_scan(pep, pep->pd->phy_addr & 0x1f);
1419  if (pep->phy != NULL)
1420  phy_init(pep, pep->pd->speed, pep->pd->duplex);
1421  update_hash_table_mac_address(pep, NULL, dev->dev_addr);
1422 
1423  return 0;
1424 }
1425 
1426 static int pxa168_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1427 {
1428  struct pxa168_eth_private *pep = netdev_priv(dev);
1429  int err;
1430 
1431  err = phy_read_status(pep->phy);
1432  if (err == 0)
1433  err = phy_ethtool_gset(pep->phy, cmd);
1434 
1435  return err;
1436 }
1437 
1438 static int pxa168_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1439 {
1440  struct pxa168_eth_private *pep = netdev_priv(dev);
1441 
1442  return phy_ethtool_sset(pep->phy, cmd);
1443 }
1444 
1445 static void pxa168_get_drvinfo(struct net_device *dev,
1446  struct ethtool_drvinfo *info)
1447 {
1448  strncpy(info->driver, DRIVER_NAME, 32);
1449  strncpy(info->version, DRIVER_VERSION, 32);
1450  strncpy(info->fw_version, "N/A", 32);
1451  strncpy(info->bus_info, "N/A", 32);
1452 }
1453 
1454 static const struct ethtool_ops pxa168_ethtool_ops = {
1455  .get_settings = pxa168_get_settings,
1456  .set_settings = pxa168_set_settings,
1457  .get_drvinfo = pxa168_get_drvinfo,
1458  .get_link = ethtool_op_get_link,
1459  .get_ts_info = ethtool_op_get_ts_info,
1460 };
1461 
1462 static const struct net_device_ops pxa168_eth_netdev_ops = {
1463  .ndo_open = pxa168_eth_open,
1464  .ndo_stop = pxa168_eth_stop,
1465  .ndo_start_xmit = pxa168_eth_start_xmit,
1466  .ndo_set_rx_mode = pxa168_eth_set_rx_mode,
1467  .ndo_set_mac_address = pxa168_eth_set_mac_address,
1468  .ndo_validate_addr = eth_validate_addr,
1469  .ndo_do_ioctl = pxa168_eth_do_ioctl,
1470  .ndo_change_mtu = pxa168_eth_change_mtu,
1471  .ndo_tx_timeout = pxa168_eth_tx_timeout,
1472 };
1473 
1474 static int pxa168_eth_probe(struct platform_device *pdev)
1475 {
1476  struct pxa168_eth_private *pep = NULL;
1477  struct net_device *dev = NULL;
1478  struct resource *res;
1479  struct clk *clk;
1480  int err;
1481 
1482  printk(KERN_NOTICE "PXA168 10/100 Ethernet Driver\n");
1483 
1484  clk = clk_get(&pdev->dev, "MFUCLK");
1485  if (IS_ERR(clk)) {
1486  printk(KERN_ERR "%s: Fast Ethernet failed to get clock\n",
1487  DRIVER_NAME);
1488  return -ENODEV;
1489  }
1490  clk_enable(clk);
1491 
1492  dev = alloc_etherdev(sizeof(struct pxa168_eth_private));
1493  if (!dev) {
1494  err = -ENOMEM;
1495  goto err_clk;
1496  }
1497 
1498  platform_set_drvdata(pdev, dev);
1499  pep = netdev_priv(dev);
1500  pep->dev = dev;
1501  pep->clk = clk;
1502  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1503  if (res == NULL) {
1504  err = -ENODEV;
1505  goto err_netdev;
1506  }
1507  pep->base = ioremap(res->start, resource_size(res));
1508  if (pep->base == NULL) {
1509  err = -ENOMEM;
1510  goto err_netdev;
1511  }
1512  res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1513  BUG_ON(!res);
1514  dev->irq = res->start;
1515  dev->netdev_ops = &pxa168_eth_netdev_ops;
1516  dev->watchdog_timeo = 2 * HZ;
1517  dev->base_addr = 0;
1518  SET_ETHTOOL_OPS(dev, &pxa168_ethtool_ops);
1519 
1520  INIT_WORK(&pep->tx_timeout_task, pxa168_eth_tx_timeout_task);
1521 
1522  printk(KERN_INFO "%s:Using random mac address\n", DRIVER_NAME);
1523  eth_hw_addr_random(dev);
1524 
1525  pep->pd = pdev->dev.platform_data;
1526  pep->rx_ring_size = NUM_RX_DESCS;
1527  if (pep->pd->rx_queue_size)
1528  pep->rx_ring_size = pep->pd->rx_queue_size;
1529 
1530  pep->tx_ring_size = NUM_TX_DESCS;
1531  if (pep->pd->tx_queue_size)
1532  pep->tx_ring_size = pep->pd->tx_queue_size;
1533 
1534  pep->port_num = pep->pd->port_number;
1535  /* Hardware supports only 3 ports */
1536  BUG_ON(pep->port_num > 2);
1537  netif_napi_add(dev, &pep->napi, pxa168_rx_poll, pep->rx_ring_size);
1538 
1539  memset(&pep->timeout, 0, sizeof(struct timer_list));
1540  init_timer(&pep->timeout);
1541  pep->timeout.function = rxq_refill_timer_wrapper;
1542  pep->timeout.data = (unsigned long)pep;
1543 
1544  pep->smi_bus = mdiobus_alloc();
1545  if (pep->smi_bus == NULL) {
1546  err = -ENOMEM;
1547  goto err_base;
1548  }
1549  pep->smi_bus->priv = pep;
1550  pep->smi_bus->name = "pxa168_eth smi";
1551  pep->smi_bus->read = pxa168_smi_read;
1552  pep->smi_bus->write = pxa168_smi_write;
1553  snprintf(pep->smi_bus->id, MII_BUS_ID_SIZE, "%s-%d",
1554  pdev->name, pdev->id);
1555  pep->smi_bus->parent = &pdev->dev;
1556  pep->smi_bus->phy_mask = 0xffffffff;
1557  err = mdiobus_register(pep->smi_bus);
1558  if (err)
1559  goto err_free_mdio;
1560 
1561  pxa168_init_hw(pep);
1562  err = ethernet_phy_setup(dev);
1563  if (err)
1564  goto err_mdiobus;
1565  SET_NETDEV_DEV(dev, &pdev->dev);
1566  err = register_netdev(dev);
1567  if (err)
1568  goto err_mdiobus;
1569  return 0;
1570 
1571 err_mdiobus:
1573 err_free_mdio:
1574  mdiobus_free(pep->smi_bus);
1575 err_base:
1576  iounmap(pep->base);
1577 err_netdev:
1578  free_netdev(dev);
1579 err_clk:
1580  clk_disable(clk);
1581  clk_put(clk);
1582  return err;
1583 }
1584 
1585 static int pxa168_eth_remove(struct platform_device *pdev)
1586 {
1587  struct net_device *dev = platform_get_drvdata(pdev);
1588  struct pxa168_eth_private *pep = netdev_priv(dev);
1589 
1590  if (pep->htpr) {
1591  dma_free_coherent(pep->dev->dev.parent, HASH_ADDR_TABLE_SIZE,
1592  pep->htpr, pep->htpr_dma);
1593  pep->htpr = NULL;
1594  }
1595  if (pep->clk) {
1596  clk_disable(pep->clk);
1597  clk_put(pep->clk);
1598  pep->clk = NULL;
1599  }
1600  if (pep->phy != NULL)
1601  phy_detach(pep->phy);
1602 
1603  iounmap(pep->base);
1604  pep->base = NULL;
1606  mdiobus_free(pep->smi_bus);
1607  unregister_netdev(dev);
1609  free_netdev(dev);
1610  platform_set_drvdata(pdev, NULL);
1611  return 0;
1612 }
1613 
1614 static void pxa168_eth_shutdown(struct platform_device *pdev)
1615 {
1616  struct net_device *dev = platform_get_drvdata(pdev);
1617  eth_port_reset(dev);
1618 }
1619 
1620 #ifdef CONFIG_PM
1621 static int pxa168_eth_resume(struct platform_device *pdev)
1622 {
1623  return -ENOSYS;
1624 }
1625 
1626 static int pxa168_eth_suspend(struct platform_device *pdev, pm_message_t state)
1627 {
1628  return -ENOSYS;
1629 }
1630 
1631 #else
1632 #define pxa168_eth_resume NULL
1633 #define pxa168_eth_suspend NULL
1634 #endif
1635 
1636 static struct platform_driver pxa168_eth_driver = {
1637  .probe = pxa168_eth_probe,
1638  .remove = pxa168_eth_remove,
1639  .shutdown = pxa168_eth_shutdown,
1640  .resume = pxa168_eth_resume,
1641  .suspend = pxa168_eth_suspend,
1642  .driver = {
1643  .name = DRIVER_NAME,
1644  },
1645 };
1646 
1647 module_platform_driver(pxa168_eth_driver);
1648 
1649 MODULE_LICENSE("GPL");
1650 MODULE_DESCRIPTION("Ethernet driver for Marvell PXA168");
1651 MODULE_ALIAS("platform:pxa168_eth");