Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
xhci-mem.c
Go to the documentation of this file.
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22 
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 
28 #include "xhci.h"
29 
30 /*
31  * Allocates a generic ring segment from the ring pool, sets the dma address,
32  * initializes the segment to zero, and sets the private next pointer to NULL.
33  *
34  * Section 4.11.1.1:
35  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36  */
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
38  unsigned int cycle_state, gfp_t flags)
39 {
40  struct xhci_segment *seg;
42  int i;
43 
44  seg = kzalloc(sizeof *seg, flags);
45  if (!seg)
46  return NULL;
47 
48  seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
49  if (!seg->trbs) {
50  kfree(seg);
51  return NULL;
52  }
53 
54  memset(seg->trbs, 0, SEGMENT_SIZE);
55  /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56  if (cycle_state == 0) {
57  for (i = 0; i < TRBS_PER_SEGMENT; i++)
58  seg->trbs[i].link.control |= TRB_CYCLE;
59  }
60  seg->dma = dma;
61  seg->next = NULL;
62 
63  return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68  if (seg->trbs) {
69  dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70  seg->trbs = NULL;
71  }
72  kfree(seg);
73 }
74 
75 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
76  struct xhci_segment *first)
77 {
78  struct xhci_segment *seg;
79 
80  seg = first->next;
81  while (seg != first) {
82  struct xhci_segment *next = seg->next;
83  xhci_segment_free(xhci, seg);
84  seg = next;
85  }
86  xhci_segment_free(xhci, first);
87 }
88 
89 /*
90  * Make the prev segment point to the next segment.
91  *
92  * Change the last TRB in the prev segment to be a Link TRB which points to the
93  * DMA address of the next segment. The caller needs to set any Link TRB
94  * related flags, such as End TRB, Toggle Cycle, and no snoop.
95  */
96 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
97  struct xhci_segment *next, enum xhci_ring_type type)
98 {
99  u32 val;
100 
101  if (!prev || !next)
102  return;
103  prev->next = next;
104  if (type != TYPE_EVENT) {
105  prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
106  cpu_to_le64(next->dma);
107 
108  /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
109  val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
110  val &= ~TRB_TYPE_BITMASK;
111  val |= TRB_TYPE(TRB_LINK);
112  /* Always set the chain bit with 0.95 hardware */
113  /* Set chain bit for isoc rings on AMD 0.96 host */
114  if (xhci_link_trb_quirk(xhci) ||
115  (type == TYPE_ISOC &&
116  (xhci->quirks & XHCI_AMD_0x96_HOST)))
117  val |= TRB_CHAIN;
118  prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
119  }
120 }
121 
122 /*
123  * Link the ring to the new segments.
124  * Set Toggle Cycle for the new ring if needed.
125  */
126 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
127  struct xhci_segment *first, struct xhci_segment *last,
128  unsigned int num_segs)
129 {
130  struct xhci_segment *next;
131 
132  if (!ring || !first || !last)
133  return;
134 
135  next = ring->enq_seg->next;
136  xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
137  xhci_link_segments(xhci, last, next, ring->type);
138  ring->num_segs += num_segs;
139  ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
140 
141  if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
142  ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144  last->trbs[TRBS_PER_SEGMENT-1].link.control
146  ring->last_seg = last;
147  }
148 }
149 
150 /* XXX: Do we need the hcd structure in all these functions? */
151 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
152 {
153  if (!ring)
154  return;
155 
156  if (ring->first_seg)
157  xhci_free_segments_for_ring(xhci, ring->first_seg);
158 
159  kfree(ring);
160 }
161 
162 static void xhci_initialize_ring_info(struct xhci_ring *ring,
163  unsigned int cycle_state)
164 {
165  /* The ring is empty, so the enqueue pointer == dequeue pointer */
166  ring->enqueue = ring->first_seg->trbs;
167  ring->enq_seg = ring->first_seg;
168  ring->dequeue = ring->enqueue;
169  ring->deq_seg = ring->first_seg;
170  /* The ring is initialized to 0. The producer must write 1 to the cycle
171  * bit to handover ownership of the TRB, so PCS = 1. The consumer must
172  * compare CCS to the cycle bit to check ownership, so CCS = 1.
173  *
174  * New rings are initialized with cycle state equal to 1; if we are
175  * handling ring expansion, set the cycle state equal to the old ring.
176  */
177  ring->cycle_state = cycle_state;
178  /* Not necessary for new rings, but needed for re-initialized rings */
179  ring->enq_updates = 0;
180  ring->deq_updates = 0;
181 
182  /*
183  * Each segment has a link TRB, and leave an extra TRB for SW
184  * accounting purpose
185  */
186  ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
187 }
188 
189 /* Allocate segments and link them for a ring */
190 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
191  struct xhci_segment **first, struct xhci_segment **last,
192  unsigned int num_segs, unsigned int cycle_state,
193  enum xhci_ring_type type, gfp_t flags)
194 {
195  struct xhci_segment *prev;
196 
197  prev = xhci_segment_alloc(xhci, cycle_state, flags);
198  if (!prev)
199  return -ENOMEM;
200  num_segs--;
201 
202  *first = prev;
203  while (num_segs > 0) {
204  struct xhci_segment *next;
205 
206  next = xhci_segment_alloc(xhci, cycle_state, flags);
207  if (!next) {
208  xhci_free_segments_for_ring(xhci, *first);
209  return -ENOMEM;
210  }
211  xhci_link_segments(xhci, prev, next, type);
212 
213  prev = next;
214  num_segs--;
215  }
216  xhci_link_segments(xhci, prev, *first, type);
217  *last = prev;
218 
219  return 0;
220 }
221 
229 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
230  unsigned int num_segs, unsigned int cycle_state,
231  enum xhci_ring_type type, gfp_t flags)
232 {
233  struct xhci_ring *ring;
234  int ret;
235 
236  ring = kzalloc(sizeof *(ring), flags);
237  if (!ring)
238  return NULL;
239 
240  ring->num_segs = num_segs;
241  INIT_LIST_HEAD(&ring->td_list);
242  ring->type = type;
243  if (num_segs == 0)
244  return ring;
245 
246  ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
247  &ring->last_seg, num_segs, cycle_state, type, flags);
248  if (ret)
249  goto fail;
250 
251  /* Only event ring does not use link TRB */
252  if (type != TYPE_EVENT) {
253  /* See section 4.9.2.1 and 6.4.4.1 */
254  ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
256  }
257  xhci_initialize_ring_info(ring, cycle_state);
258  return ring;
259 
260 fail:
261  xhci_ring_free(xhci, ring);
262  return NULL;
263 }
264 
266  struct xhci_virt_device *virt_dev,
267  unsigned int ep_index)
268 {
269  int rings_cached;
270 
271  rings_cached = virt_dev->num_rings_cached;
272  if (rings_cached < XHCI_MAX_RINGS_CACHED) {
273  virt_dev->ring_cache[rings_cached] =
274  virt_dev->eps[ep_index].ring;
275  virt_dev->num_rings_cached++;
276  xhci_dbg(xhci, "Cached old ring, "
277  "%d ring%s cached\n",
278  virt_dev->num_rings_cached,
279  (virt_dev->num_rings_cached > 1) ? "s" : "");
280  } else {
281  xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
282  xhci_dbg(xhci, "Ring cache full (%d rings), "
283  "freeing ring\n",
284  virt_dev->num_rings_cached);
285  }
286  virt_dev->eps[ep_index].ring = NULL;
287 }
288 
289 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
290  * pointers to the beginning of the ring.
291  */
292 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
293  struct xhci_ring *ring, unsigned int cycle_state,
294  enum xhci_ring_type type)
295 {
296  struct xhci_segment *seg = ring->first_seg;
297  int i;
298 
299  do {
300  memset(seg->trbs, 0,
301  sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
302  if (cycle_state == 0) {
303  for (i = 0; i < TRBS_PER_SEGMENT; i++)
304  seg->trbs[i].link.control |= TRB_CYCLE;
305  }
306  /* All endpoint rings have link TRBs */
307  xhci_link_segments(xhci, seg, seg->next, type);
308  seg = seg->next;
309  } while (seg != ring->first_seg);
310  ring->type = type;
311  xhci_initialize_ring_info(ring, cycle_state);
312  /* td list should be empty since all URBs have been cancelled,
313  * but just in case...
314  */
315  INIT_LIST_HEAD(&ring->td_list);
316 }
317 
318 /*
319  * Expand an existing ring.
320  * Look for a cached ring or allocate a new ring which has same segment numbers
321  * and link the two rings.
322  */
323 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
324  unsigned int num_trbs, gfp_t flags)
325 {
326  struct xhci_segment *first;
327  struct xhci_segment *last;
328  unsigned int num_segs;
329  unsigned int num_segs_needed;
330  int ret;
331 
332  num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
333  (TRBS_PER_SEGMENT - 1);
334 
335  /* Allocate number of segments we needed, or double the ring size */
336  num_segs = ring->num_segs > num_segs_needed ?
337  ring->num_segs : num_segs_needed;
338 
339  ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
340  num_segs, ring->cycle_state, ring->type, flags);
341  if (ret)
342  return -ENOMEM;
343 
344  xhci_link_rings(xhci, ring, first, last, num_segs);
345  xhci_dbg(xhci, "ring expansion succeed, now has %d segments\n",
346  ring->num_segs);
347 
348  return 0;
349 }
350 
351 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
352 
353 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
354  int type, gfp_t flags)
355 {
356  struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
357  if (!ctx)
358  return NULL;
359 
360  BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
361  ctx->type = type;
362  ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
363  if (type == XHCI_CTX_TYPE_INPUT)
364  ctx->size += CTX_SIZE(xhci->hcc_params);
365 
366  ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
367  memset(ctx->bytes, 0, ctx->size);
368  return ctx;
369 }
370 
371 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
372  struct xhci_container_ctx *ctx)
373 {
374  if (!ctx)
375  return;
376  dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
377  kfree(ctx);
378 }
379 
381  struct xhci_container_ctx *ctx)
382 {
384  return (struct xhci_input_control_ctx *)ctx->bytes;
385 }
386 
388  struct xhci_container_ctx *ctx)
389 {
390  if (ctx->type == XHCI_CTX_TYPE_DEVICE)
391  return (struct xhci_slot_ctx *)ctx->bytes;
392 
393  return (struct xhci_slot_ctx *)
394  (ctx->bytes + CTX_SIZE(xhci->hcc_params));
395 }
396 
397 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
398  struct xhci_container_ctx *ctx,
399  unsigned int ep_index)
400 {
401  /* increment ep index by offset of start of ep ctx array */
402  ep_index++;
403  if (ctx->type == XHCI_CTX_TYPE_INPUT)
404  ep_index++;
405 
406  return (struct xhci_ep_ctx *)
407  (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
408 }
409 
410 
411 /***************** Streams structures manipulation *************************/
412 
413 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
414  unsigned int num_stream_ctxs,
415  struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
416 {
417  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
418 
419  if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
420  dma_free_coherent(&pdev->dev,
421  sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
422  stream_ctx, dma);
423  else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
424  return dma_pool_free(xhci->small_streams_pool,
425  stream_ctx, dma);
426  else
427  return dma_pool_free(xhci->medium_streams_pool,
428  stream_ctx, dma);
429 }
430 
431 /*
432  * The stream context array for each endpoint with bulk streams enabled can
433  * vary in size, based on:
434  * - how many streams the endpoint supports,
435  * - the maximum primary stream array size the host controller supports,
436  * - and how many streams the device driver asks for.
437  *
438  * The stream context array must be a power of 2, and can be as small as
439  * 64 bytes or as large as 1MB.
440  */
441 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
442  unsigned int num_stream_ctxs, dma_addr_t *dma,
443  gfp_t mem_flags)
444 {
445  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
446 
447  if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
448  return dma_alloc_coherent(&pdev->dev,
449  sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
450  dma, mem_flags);
451  else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
452  return dma_pool_alloc(xhci->small_streams_pool,
453  mem_flags, dma);
454  else
455  return dma_pool_alloc(xhci->medium_streams_pool,
456  mem_flags, dma);
457 }
458 
460  struct xhci_virt_ep *ep,
461  u64 address)
462 {
463  if (ep->ep_state & EP_HAS_STREAMS)
464  return radix_tree_lookup(&ep->stream_info->trb_address_map,
465  address >> SEGMENT_SHIFT);
466  return ep->ring;
467 }
468 
469 /* Only use this when you know stream_info is valid */
470 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
471 static struct xhci_ring *dma_to_stream_ring(
473  u64 address)
474 {
475  return radix_tree_lookup(&stream_info->trb_address_map,
476  address >> SEGMENT_SHIFT);
477 }
478 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
479 
481  struct xhci_virt_device *dev,
482  unsigned int ep_index,
483  unsigned int stream_id)
484 {
485  struct xhci_virt_ep *ep = &dev->eps[ep_index];
486 
487  if (stream_id == 0)
488  return ep->ring;
489  if (!ep->stream_info)
490  return NULL;
491 
492  if (stream_id > ep->stream_info->num_streams)
493  return NULL;
494  return ep->stream_info->stream_rings[stream_id];
495 }
496 
497 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
498 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
499  unsigned int num_streams,
501 {
502  u32 cur_stream;
503  struct xhci_ring *cur_ring;
504  u64 addr;
505 
506  for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
507  struct xhci_ring *mapped_ring;
508  int trb_size = sizeof(union xhci_trb);
509 
510  cur_ring = stream_info->stream_rings[cur_stream];
511  for (addr = cur_ring->first_seg->dma;
512  addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
513  addr += trb_size) {
514  mapped_ring = dma_to_stream_ring(stream_info, addr);
515  if (cur_ring != mapped_ring) {
516  xhci_warn(xhci, "WARN: DMA address 0x%08llx "
517  "didn't map to stream ID %u; "
518  "mapped to ring %p\n",
519  (unsigned long long) addr,
520  cur_stream,
521  mapped_ring);
522  return -EINVAL;
523  }
524  }
525  /* One TRB after the end of the ring segment shouldn't return a
526  * pointer to the current ring (although it may be a part of a
527  * different ring).
528  */
529  mapped_ring = dma_to_stream_ring(stream_info, addr);
530  if (mapped_ring != cur_ring) {
531  /* One TRB before should also fail */
532  addr = cur_ring->first_seg->dma - trb_size;
533  mapped_ring = dma_to_stream_ring(stream_info, addr);
534  }
535  if (mapped_ring == cur_ring) {
536  xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
537  "mapped to valid stream ID %u; "
538  "mapped ring = %p\n",
539  (unsigned long long) addr,
540  cur_stream,
541  mapped_ring);
542  return -EINVAL;
543  }
544  }
545  return 0;
546 }
547 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
548 
549 /*
550  * Change an endpoint's internal structure so it supports stream IDs. The
551  * number of requested streams includes stream 0, which cannot be used by device
552  * drivers.
553  *
554  * The number of stream contexts in the stream context array may be bigger than
555  * the number of streams the driver wants to use. This is because the number of
556  * stream context array entries must be a power of two.
557  *
558  * We need a radix tree for mapping physical addresses of TRBs to which stream
559  * ID they belong to. We need to do this because the host controller won't tell
560  * us which stream ring the TRB came from. We could store the stream ID in an
561  * event data TRB, but that doesn't help us for the cancellation case, since the
562  * endpoint may stop before it reaches that event data TRB.
563  *
564  * The radix tree maps the upper portion of the TRB DMA address to a ring
565  * segment that has the same upper portion of DMA addresses. For example, say I
566  * have segments of size 1KB, that are always 64-byte aligned. A segment may
567  * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
568  * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
569  * pass the radix tree a key to get the right stream ID:
570  *
571  * 0x10c90fff >> 10 = 0x43243
572  * 0x10c912c0 >> 10 = 0x43244
573  * 0x10c91400 >> 10 = 0x43245
574  *
575  * Obviously, only those TRBs with DMA addresses that are within the segment
576  * will make the radix tree return the stream ID for that ring.
577  *
578  * Caveats for the radix tree:
579  *
580  * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
581  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
582  * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
583  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
584  * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
585  * extended systems (where the DMA address can be bigger than 32-bits),
586  * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
587  */
589  unsigned int num_stream_ctxs,
590  unsigned int num_streams, gfp_t mem_flags)
591 {
593  u32 cur_stream;
594  struct xhci_ring *cur_ring;
595  unsigned long key;
596  u64 addr;
597  int ret;
598 
599  xhci_dbg(xhci, "Allocating %u streams and %u "
600  "stream context array entries.\n",
601  num_streams, num_stream_ctxs);
603  xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
604  return NULL;
605  }
606  xhci->cmd_ring_reserved_trbs++;
607 
608  stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
609  if (!stream_info)
610  goto cleanup_trbs;
611 
612  stream_info->num_streams = num_streams;
613  stream_info->num_stream_ctxs = num_stream_ctxs;
614 
615  /* Initialize the array of virtual pointers to stream rings. */
616  stream_info->stream_rings = kzalloc(
617  sizeof(struct xhci_ring *)*num_streams,
618  mem_flags);
619  if (!stream_info->stream_rings)
620  goto cleanup_info;
621 
622  /* Initialize the array of DMA addresses for stream rings for the HW. */
623  stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
624  num_stream_ctxs, &stream_info->ctx_array_dma,
625  mem_flags);
626  if (!stream_info->stream_ctx_array)
627  goto cleanup_ctx;
628  memset(stream_info->stream_ctx_array, 0,
629  sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
630 
631  /* Allocate everything needed to free the stream rings later */
632  stream_info->free_streams_command =
633  xhci_alloc_command(xhci, true, true, mem_flags);
634  if (!stream_info->free_streams_command)
635  goto cleanup_ctx;
636 
638 
639  /* Allocate rings for all the streams that the driver will use,
640  * and add their segment DMA addresses to the radix tree.
641  * Stream 0 is reserved.
642  */
643  for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
644  stream_info->stream_rings[cur_stream] =
645  xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
646  cur_ring = stream_info->stream_rings[cur_stream];
647  if (!cur_ring)
648  goto cleanup_rings;
649  cur_ring->stream_id = cur_stream;
650  /* Set deq ptr, cycle bit, and stream context type */
651  addr = cur_ring->first_seg->dma |
653  cur_ring->cycle_state;
654  stream_info->stream_ctx_array[cur_stream].stream_ring =
655  cpu_to_le64(addr);
656  xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
657  cur_stream, (unsigned long long) addr);
658 
659  key = (unsigned long)
660  (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
661  ret = radix_tree_insert(&stream_info->trb_address_map,
662  key, cur_ring);
663  if (ret) {
664  xhci_ring_free(xhci, cur_ring);
665  stream_info->stream_rings[cur_stream] = NULL;
666  goto cleanup_rings;
667  }
668  }
669  /* Leave the other unused stream ring pointers in the stream context
670  * array initialized to zero. This will cause the xHC to give us an
671  * error if the device asks for a stream ID we don't have setup (if it
672  * was any other way, the host controller would assume the ring is
673  * "empty" and wait forever for data to be queued to that stream ID).
674  */
675 #if XHCI_DEBUG
676  /* Do a little test on the radix tree to make sure it returns the
677  * correct values.
678  */
679  if (xhci_test_radix_tree(xhci, num_streams, stream_info))
680  goto cleanup_rings;
681 #endif
682 
683  return stream_info;
684 
685 cleanup_rings:
686  for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
687  cur_ring = stream_info->stream_rings[cur_stream];
688  if (cur_ring) {
689  addr = cur_ring->first_seg->dma;
690  radix_tree_delete(&stream_info->trb_address_map,
691  addr >> SEGMENT_SHIFT);
692  xhci_ring_free(xhci, cur_ring);
693  stream_info->stream_rings[cur_stream] = NULL;
694  }
695  }
696  xhci_free_command(xhci, stream_info->free_streams_command);
697 cleanup_ctx:
698  kfree(stream_info->stream_rings);
699 cleanup_info:
700  kfree(stream_info);
701 cleanup_trbs:
702  xhci->cmd_ring_reserved_trbs--;
703  return NULL;
704 }
705 /*
706  * Sets the MaxPStreams field and the Linear Stream Array field.
707  * Sets the dequeue pointer to the stream context array.
708  */
710  struct xhci_ep_ctx *ep_ctx,
711  struct xhci_stream_info *stream_info)
712 {
713  u32 max_primary_streams;
714  /* MaxPStreams is the number of stream context array entries, not the
715  * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
716  * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
717  */
718  max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
719  xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
720  1 << (max_primary_streams + 1));
722  ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
723  | EP_HAS_LSA);
724  ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
725 }
726 
727 /*
728  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
729  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
730  * not at the beginning of the ring).
731  */
733  struct xhci_ep_ctx *ep_ctx,
734  struct xhci_virt_ep *ep)
735 {
738  addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
739  ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
740 }
741 
742 /* Frees all stream contexts associated with the endpoint,
743  *
744  * Caller should fix the endpoint context streams fields.
745  */
746 void xhci_free_stream_info(struct xhci_hcd *xhci,
747  struct xhci_stream_info *stream_info)
748 {
749  int cur_stream;
750  struct xhci_ring *cur_ring;
752 
753  if (!stream_info)
754  return;
755 
756  for (cur_stream = 1; cur_stream < stream_info->num_streams;
757  cur_stream++) {
758  cur_ring = stream_info->stream_rings[cur_stream];
759  if (cur_ring) {
760  addr = cur_ring->first_seg->dma;
761  radix_tree_delete(&stream_info->trb_address_map,
762  addr >> SEGMENT_SHIFT);
763  xhci_ring_free(xhci, cur_ring);
764  stream_info->stream_rings[cur_stream] = NULL;
765  }
766  }
767  xhci_free_command(xhci, stream_info->free_streams_command);
768  xhci->cmd_ring_reserved_trbs--;
769  if (stream_info->stream_ctx_array)
770  xhci_free_stream_ctx(xhci,
771  stream_info->num_stream_ctxs,
772  stream_info->stream_ctx_array,
773  stream_info->ctx_array_dma);
774 
775  if (stream_info)
776  kfree(stream_info->stream_rings);
777  kfree(stream_info);
778 }
779 
780 
781 /***************** Device context manipulation *************************/
782 
783 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
784  struct xhci_virt_ep *ep)
785 {
787  ep->stop_cmd_timer.data = (unsigned long) ep;
789  ep->xhci = xhci;
790 }
791 
792 static void xhci_free_tt_info(struct xhci_hcd *xhci,
793  struct xhci_virt_device *virt_dev,
794  int slot_id)
795 {
796  struct list_head *tt_list_head;
797  struct xhci_tt_bw_info *tt_info, *next;
798  bool slot_found = false;
799 
800  /* If the device never made it past the Set Address stage,
801  * it may not have the real_port set correctly.
802  */
803  if (virt_dev->real_port == 0 ||
804  virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
805  xhci_dbg(xhci, "Bad real port.\n");
806  return;
807  }
808 
809  tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
810  list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
811  /* Multi-TT hubs will have more than one entry */
812  if (tt_info->slot_id == slot_id) {
813  slot_found = true;
814  list_del(&tt_info->tt_list);
815  kfree(tt_info);
816  } else if (slot_found) {
817  break;
818  }
819  }
820 }
821 
822 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
823  struct xhci_virt_device *virt_dev,
824  struct usb_device *hdev,
825  struct usb_tt *tt, gfp_t mem_flags)
826 {
827  struct xhci_tt_bw_info *tt_info;
828  unsigned int num_ports;
829  int i, j;
830 
831  if (!tt->multi)
832  num_ports = 1;
833  else
834  num_ports = hdev->maxchild;
835 
836  for (i = 0; i < num_ports; i++, tt_info++) {
837  struct xhci_interval_bw_table *bw_table;
838 
839  tt_info = kzalloc(sizeof(*tt_info), mem_flags);
840  if (!tt_info)
841  goto free_tts;
842  INIT_LIST_HEAD(&tt_info->tt_list);
843  list_add(&tt_info->tt_list,
844  &xhci->rh_bw[virt_dev->real_port - 1].tts);
845  tt_info->slot_id = virt_dev->udev->slot_id;
846  if (tt->multi)
847  tt_info->ttport = i+1;
848  bw_table = &tt_info->bw_table;
849  for (j = 0; j < XHCI_MAX_INTERVAL; j++)
850  INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
851  }
852  return 0;
853 
854 free_tts:
855  xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
856  return -ENOMEM;
857 }
858 
859 
860 /* All the xhci_tds in the ring's TD list should be freed at this point.
861  * Should be called with xhci->lock held if there is any chance the TT lists
862  * will be manipulated by the configure endpoint, allocate device, or update
863  * hub functions while this function is removing the TT entries from the list.
864  */
865 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
866 {
867  struct xhci_virt_device *dev;
868  int i;
869  int old_active_eps = 0;
870 
871  /* Slot ID 0 is reserved */
872  if (slot_id == 0 || !xhci->devs[slot_id])
873  return;
874 
875  dev = xhci->devs[slot_id];
876  xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
877  if (!dev)
878  return;
879 
880  if (dev->tt_info)
881  old_active_eps = dev->tt_info->active_eps;
882 
883  for (i = 0; i < 31; ++i) {
884  if (dev->eps[i].ring)
885  xhci_ring_free(xhci, dev->eps[i].ring);
886  if (dev->eps[i].stream_info)
888  dev->eps[i].stream_info);
889  /* Endpoints on the TT/root port lists should have been removed
890  * when usb_disable_device() was called for the device.
891  * We can't drop them anyway, because the udev might have gone
892  * away by this point, and we can't tell what speed it was.
893  */
894  if (!list_empty(&dev->eps[i].bw_endpoint_list))
895  xhci_warn(xhci, "Slot %u endpoint %u "
896  "not removed from BW list!\n",
897  slot_id, i);
898  }
899  /* If this is a hub, free the TT(s) from the TT list */
900  xhci_free_tt_info(xhci, dev, slot_id);
901  /* If necessary, update the number of active TTs on this root port */
902  xhci_update_tt_active_eps(xhci, dev, old_active_eps);
903 
904  if (dev->ring_cache) {
905  for (i = 0; i < dev->num_rings_cached; i++)
906  xhci_ring_free(xhci, dev->ring_cache[i]);
907  kfree(dev->ring_cache);
908  }
909 
910  if (dev->in_ctx)
911  xhci_free_container_ctx(xhci, dev->in_ctx);
912  if (dev->out_ctx)
913  xhci_free_container_ctx(xhci, dev->out_ctx);
914 
915  kfree(xhci->devs[slot_id]);
916  xhci->devs[slot_id] = NULL;
917 }
918 
919 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
920  struct usb_device *udev, gfp_t flags)
921 {
922  struct xhci_virt_device *dev;
923  int i;
924 
925  /* Slot ID 0 is reserved */
926  if (slot_id == 0 || xhci->devs[slot_id]) {
927  xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
928  return 0;
929  }
930 
931  xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
932  if (!xhci->devs[slot_id])
933  return 0;
934  dev = xhci->devs[slot_id];
935 
936  /* Allocate the (output) device context that will be used in the HC. */
937  dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
938  if (!dev->out_ctx)
939  goto fail;
940 
941  xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
942  (unsigned long long)dev->out_ctx->dma);
943 
944  /* Allocate the (input) device context for address device command */
945  dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
946  if (!dev->in_ctx)
947  goto fail;
948 
949  xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
950  (unsigned long long)dev->in_ctx->dma);
951 
952  /* Initialize the cancellation list and watchdog timers for each ep */
953  for (i = 0; i < 31; i++) {
954  xhci_init_endpoint_timer(xhci, &dev->eps[i]);
955  INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
956  INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
957  }
958 
959  /* Allocate endpoint 0 ring */
960  dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
961  if (!dev->eps[0].ring)
962  goto fail;
963 
964  /* Allocate pointers to the ring cache */
965  dev->ring_cache = kzalloc(
966  sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
967  flags);
968  if (!dev->ring_cache)
969  goto fail;
970  dev->num_rings_cached = 0;
971 
972  init_completion(&dev->cmd_completion);
973  INIT_LIST_HEAD(&dev->cmd_list);
974  dev->udev = udev;
975 
976  /* Point to output device context in dcbaa. */
977  xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
978  xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
979  slot_id,
980  &xhci->dcbaa->dev_context_ptrs[slot_id],
981  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
982 
983  return 1;
984 fail:
985  xhci_free_virt_device(xhci, slot_id);
986  return 0;
987 }
988 
990  struct usb_device *udev)
991 {
992  struct xhci_virt_device *virt_dev;
993  struct xhci_ep_ctx *ep0_ctx;
994  struct xhci_ring *ep_ring;
995 
996  virt_dev = xhci->devs[udev->slot_id];
997  ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
998  ep_ring = virt_dev->eps[0].ring;
999  /*
1000  * FIXME we don't keep track of the dequeue pointer very well after a
1001  * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1002  * host to our enqueue pointer. This should only be called after a
1003  * configured device has reset, so all control transfers should have
1004  * been completed or cancelled before the reset.
1005  */
1006  ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1007  ep_ring->enqueue)
1008  | ep_ring->cycle_state);
1009 }
1010 
1011 /*
1012  * The xHCI roothub may have ports of differing speeds in any order in the port
1013  * status registers. xhci->port_array provides an array of the port speed for
1014  * each offset into the port status registers.
1015  *
1016  * The xHCI hardware wants to know the roothub port number that the USB device
1017  * is attached to (or the roothub port its ancestor hub is attached to). All we
1018  * know is the index of that port under either the USB 2.0 or the USB 3.0
1019  * roothub, but that doesn't give us the real index into the HW port status
1020  * registers. Scan through the xHCI roothub port array, looking for the Nth
1021  * entry of the correct port speed. Return the port number of that entry.
1022  */
1023 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1024  struct usb_device *udev)
1025 {
1026  struct usb_device *top_dev;
1027  unsigned int num_similar_speed_ports;
1028  unsigned int faked_port_num;
1029  int i;
1030 
1031  for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1032  top_dev = top_dev->parent)
1033  /* Found device below root hub */;
1034  faked_port_num = top_dev->portnum;
1035  for (i = 0, num_similar_speed_ports = 0;
1036  i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
1037  u8 port_speed = xhci->port_array[i];
1038 
1039  /*
1040  * Skip ports that don't have known speeds, or have duplicate
1041  * Extended Capabilities port speed entries.
1042  */
1043  if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1044  continue;
1045 
1046  /*
1047  * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1048  * 1.1 ports are under the USB 2.0 hub. If the port speed
1049  * matches the device speed, it's a similar speed port.
1050  */
1051  if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
1052  num_similar_speed_ports++;
1053  if (num_similar_speed_ports == faked_port_num)
1054  /* Roothub ports are numbered from 1 to N */
1055  return i+1;
1056  }
1057  return 0;
1058 }
1059 
1060 /* Setup an xHCI virtual device for a Set Address command */
1061 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1062 {
1063  struct xhci_virt_device *dev;
1064  struct xhci_ep_ctx *ep0_ctx;
1065  struct xhci_slot_ctx *slot_ctx;
1066  u32 port_num;
1067  struct usb_device *top_dev;
1068 
1069  dev = xhci->devs[udev->slot_id];
1070  /* Slot ID 0 is reserved */
1071  if (udev->slot_id == 0 || !dev) {
1072  xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073  udev->slot_id);
1074  return -EINVAL;
1075  }
1076  ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077  slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078 
1079  /* 3) Only the control endpoint is valid - one endpoint context */
1080  slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081  switch (udev->speed) {
1082  case USB_SPEED_SUPER:
1083  slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1084  break;
1085  case USB_SPEED_HIGH:
1086  slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1087  break;
1088  case USB_SPEED_FULL:
1089  slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1090  break;
1091  case USB_SPEED_LOW:
1092  slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1093  break;
1094  case USB_SPEED_WIRELESS:
1095  xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1096  return -EINVAL;
1097  break;
1098  default:
1099  /* Speed was set earlier, this shouldn't happen. */
1100  BUG();
1101  }
1102  /* Find the root hub port this device is under */
1103  port_num = xhci_find_real_port_number(xhci, udev);
1104  if (!port_num)
1105  return -EINVAL;
1106  slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1107  /* Set the port number in the virtual_device to the faked port number */
1108  for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1109  top_dev = top_dev->parent)
1110  /* Found device below root hub */;
1111  dev->fake_port = top_dev->portnum;
1112  dev->real_port = port_num;
1113  xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1114  xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1115 
1116  /* Find the right bandwidth table that this device will be a part of.
1117  * If this is a full speed device attached directly to a root port (or a
1118  * decendent of one), it counts as a primary bandwidth domain, not a
1119  * secondary bandwidth domain under a TT. An xhci_tt_info structure
1120  * will never be created for the HS root hub.
1121  */
1122  if (!udev->tt || !udev->tt->hub->parent) {
1123  dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1124  } else {
1125  struct xhci_root_port_bw_info *rh_bw;
1126  struct xhci_tt_bw_info *tt_bw;
1127 
1128  rh_bw = &xhci->rh_bw[port_num - 1];
1129  /* Find the right TT. */
1130  list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1131  if (tt_bw->slot_id != udev->tt->hub->slot_id)
1132  continue;
1133 
1134  if (!dev->udev->tt->multi ||
1135  (udev->tt->multi &&
1136  tt_bw->ttport == dev->udev->ttport)) {
1137  dev->bw_table = &tt_bw->bw_table;
1138  dev->tt_info = tt_bw;
1139  break;
1140  }
1141  }
1142  if (!dev->tt_info)
1143  xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1144  }
1145 
1146  /* Is this a LS/FS device under an external HS hub? */
1147  if (udev->tt && udev->tt->hub->parent) {
1148  slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1149  (udev->ttport << 8));
1150  if (udev->tt->multi)
1151  slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1152  }
1153  xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1154  xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1155 
1156  /* Step 4 - ring already allocated */
1157  /* Step 5 */
1158  ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1159  /*
1160  * XXX: Not sure about wireless USB devices.
1161  */
1162  switch (udev->speed) {
1163  case USB_SPEED_SUPER:
1164  ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1165  break;
1166  case USB_SPEED_HIGH:
1167  /* USB core guesses at a 64-byte max packet first for FS devices */
1168  case USB_SPEED_FULL:
1169  ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1170  break;
1171  case USB_SPEED_LOW:
1172  ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1173  break;
1174  case USB_SPEED_WIRELESS:
1175  xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1176  return -EINVAL;
1177  break;
1178  default:
1179  /* New speed? */
1180  BUG();
1181  }
1182  /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1183  ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1184 
1185  ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1186  dev->eps[0].ring->cycle_state);
1187 
1188  /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1189 
1190  return 0;
1191 }
1192 
1193 /*
1194  * Convert interval expressed as 2^(bInterval - 1) == interval into
1195  * straight exponent value 2^n == interval.
1196  *
1197  */
1198 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1199  struct usb_host_endpoint *ep)
1200 {
1201  unsigned int interval;
1202 
1203  interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1204  if (interval != ep->desc.bInterval - 1)
1205  dev_warn(&udev->dev,
1206  "ep %#x - rounding interval to %d %sframes\n",
1207  ep->desc.bEndpointAddress,
1208  1 << interval,
1209  udev->speed == USB_SPEED_FULL ? "" : "micro");
1210 
1211  if (udev->speed == USB_SPEED_FULL) {
1212  /*
1213  * Full speed isoc endpoints specify interval in frames,
1214  * not microframes. We are using microframes everywhere,
1215  * so adjust accordingly.
1216  */
1217  interval += 3; /* 1 frame = 2^3 uframes */
1218  }
1219 
1220  return interval;
1221 }
1222 
1223 /*
1224  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1225  * microframes, rounded down to nearest power of 2.
1226  */
1227 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1228  struct usb_host_endpoint *ep, unsigned int desc_interval,
1229  unsigned int min_exponent, unsigned int max_exponent)
1230 {
1231  unsigned int interval;
1232 
1233  interval = fls(desc_interval) - 1;
1234  interval = clamp_val(interval, min_exponent, max_exponent);
1235  if ((1 << interval) != desc_interval)
1236  dev_warn(&udev->dev,
1237  "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1238  ep->desc.bEndpointAddress,
1239  1 << interval,
1240  desc_interval);
1241 
1242  return interval;
1243 }
1244 
1245 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1246  struct usb_host_endpoint *ep)
1247 {
1248  return xhci_microframes_to_exponent(udev, ep,
1249  ep->desc.bInterval, 0, 15);
1250 }
1251 
1252 
1253 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1254  struct usb_host_endpoint *ep)
1255 {
1256  return xhci_microframes_to_exponent(udev, ep,
1257  ep->desc.bInterval * 8, 3, 10);
1258 }
1259 
1260 /* Return the polling or NAK interval.
1261  *
1262  * The polling interval is expressed in "microframes". If xHCI's Interval field
1263  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1264  *
1265  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1266  * is set to 0.
1267  */
1268 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1269  struct usb_host_endpoint *ep)
1270 {
1271  unsigned int interval = 0;
1272 
1273  switch (udev->speed) {
1274  case USB_SPEED_HIGH:
1275  /* Max NAK rate */
1276  if (usb_endpoint_xfer_control(&ep->desc) ||
1277  usb_endpoint_xfer_bulk(&ep->desc)) {
1278  interval = xhci_parse_microframe_interval(udev, ep);
1279  break;
1280  }
1281  /* Fall through - SS and HS isoc/int have same decoding */
1282 
1283  case USB_SPEED_SUPER:
1284  if (usb_endpoint_xfer_int(&ep->desc) ||
1285  usb_endpoint_xfer_isoc(&ep->desc)) {
1286  interval = xhci_parse_exponent_interval(udev, ep);
1287  }
1288  break;
1289 
1290  case USB_SPEED_FULL:
1291  if (usb_endpoint_xfer_isoc(&ep->desc)) {
1292  interval = xhci_parse_exponent_interval(udev, ep);
1293  break;
1294  }
1295  /*
1296  * Fall through for interrupt endpoint interval decoding
1297  * since it uses the same rules as low speed interrupt
1298  * endpoints.
1299  */
1300 
1301  case USB_SPEED_LOW:
1302  if (usb_endpoint_xfer_int(&ep->desc) ||
1303  usb_endpoint_xfer_isoc(&ep->desc)) {
1304 
1305  interval = xhci_parse_frame_interval(udev, ep);
1306  }
1307  break;
1308 
1309  default:
1310  BUG();
1311  }
1312  return EP_INTERVAL(interval);
1313 }
1314 
1315 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1316  * High speed endpoint descriptors can define "the number of additional
1317  * transaction opportunities per microframe", but that goes in the Max Burst
1318  * endpoint context field.
1319  */
1320 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1321  struct usb_host_endpoint *ep)
1322 {
1323  if (udev->speed != USB_SPEED_SUPER ||
1324  !usb_endpoint_xfer_isoc(&ep->desc))
1325  return 0;
1326  return ep->ss_ep_comp.bmAttributes;
1327 }
1328 
1329 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1330  struct usb_host_endpoint *ep)
1331 {
1332  int in;
1333  u32 type;
1334 
1335  in = usb_endpoint_dir_in(&ep->desc);
1336  if (usb_endpoint_xfer_control(&ep->desc)) {
1337  type = EP_TYPE(CTRL_EP);
1338  } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1339  if (in)
1340  type = EP_TYPE(BULK_IN_EP);
1341  else
1342  type = EP_TYPE(BULK_OUT_EP);
1343  } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1344  if (in)
1345  type = EP_TYPE(ISOC_IN_EP);
1346  else
1347  type = EP_TYPE(ISOC_OUT_EP);
1348  } else if (usb_endpoint_xfer_int(&ep->desc)) {
1349  if (in)
1350  type = EP_TYPE(INT_IN_EP);
1351  else
1352  type = EP_TYPE(INT_OUT_EP);
1353  } else {
1354  BUG();
1355  }
1356  return type;
1357 }
1358 
1359 /* Return the maximum endpoint service interval time (ESIT) payload.
1360  * Basically, this is the maxpacket size, multiplied by the burst size
1361  * and mult size.
1362  */
1363 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1364  struct usb_device *udev,
1365  struct usb_host_endpoint *ep)
1366 {
1367  int max_burst;
1368  int max_packet;
1369 
1370  /* Only applies for interrupt or isochronous endpoints */
1371  if (usb_endpoint_xfer_control(&ep->desc) ||
1372  usb_endpoint_xfer_bulk(&ep->desc))
1373  return 0;
1374 
1375  if (udev->speed == USB_SPEED_SUPER)
1376  return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1377 
1378  max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1379  max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1380  /* A 0 in max burst means 1 transfer per ESIT */
1381  return max_packet * (max_burst + 1);
1382 }
1383 
1384 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1385  * Drivers will have to call usb_alloc_streams() to do that.
1386  */
1387 int xhci_endpoint_init(struct xhci_hcd *xhci,
1388  struct xhci_virt_device *virt_dev,
1389  struct usb_device *udev,
1390  struct usb_host_endpoint *ep,
1391  gfp_t mem_flags)
1392 {
1393  unsigned int ep_index;
1394  struct xhci_ep_ctx *ep_ctx;
1395  struct xhci_ring *ep_ring;
1396  unsigned int max_packet;
1397  unsigned int max_burst;
1398  enum xhci_ring_type type;
1399  u32 max_esit_payload;
1400 
1401  ep_index = xhci_get_endpoint_index(&ep->desc);
1402  ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1403 
1404  type = usb_endpoint_type(&ep->desc);
1405  /* Set up the endpoint ring */
1406  virt_dev->eps[ep_index].new_ring =
1407  xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1408  if (!virt_dev->eps[ep_index].new_ring) {
1409  /* Attempt to use the ring cache */
1410  if (virt_dev->num_rings_cached == 0)
1411  return -ENOMEM;
1412  virt_dev->eps[ep_index].new_ring =
1413  virt_dev->ring_cache[virt_dev->num_rings_cached];
1414  virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1415  virt_dev->num_rings_cached--;
1416  xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1417  1, type);
1418  }
1419  virt_dev->eps[ep_index].skip = false;
1420  ep_ring = virt_dev->eps[ep_index].new_ring;
1421  ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1422 
1423  ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1424  | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1425 
1426  /* FIXME dig Mult and streams info out of ep companion desc */
1427 
1428  /* Allow 3 retries for everything but isoc;
1429  * CErr shall be set to 0 for Isoch endpoints.
1430  */
1431  if (!usb_endpoint_xfer_isoc(&ep->desc))
1432  ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1433  else
1434  ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1435 
1436  ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1437 
1438  /* Set the max packet size and max burst */
1439  switch (udev->speed) {
1440  case USB_SPEED_SUPER:
1441  max_packet = usb_endpoint_maxp(&ep->desc);
1442  ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1443  /* dig out max burst from ep companion desc */
1444  max_packet = ep->ss_ep_comp.bMaxBurst;
1445  ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1446  break;
1447  case USB_SPEED_HIGH:
1448  /* bits 11:12 specify the number of additional transaction
1449  * opportunities per microframe (USB 2.0, section 9.6.6)
1450  */
1451  if (usb_endpoint_xfer_isoc(&ep->desc) ||
1452  usb_endpoint_xfer_int(&ep->desc)) {
1453  max_burst = (usb_endpoint_maxp(&ep->desc)
1454  & 0x1800) >> 11;
1455  ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1456  }
1457  /* Fall through */
1458  case USB_SPEED_FULL:
1459  case USB_SPEED_LOW:
1460  max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1461  ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1462  break;
1463  default:
1464  BUG();
1465  }
1466  max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1467  ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1468 
1469  /*
1470  * XXX no idea how to calculate the average TRB buffer length for bulk
1471  * endpoints, as the driver gives us no clue how big each scatter gather
1472  * list entry (or buffer) is going to be.
1473  *
1474  * For isochronous and interrupt endpoints, we set it to the max
1475  * available, until we have new API in the USB core to allow drivers to
1476  * declare how much bandwidth they actually need.
1477  *
1478  * Normally, it would be calculated by taking the total of the buffer
1479  * lengths in the TD and then dividing by the number of TRBs in a TD,
1480  * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1481  * use Event Data TRBs, and we don't chain in a link TRB on short
1482  * transfers, we're basically dividing by 1.
1483  *
1484  * xHCI 1.0 specification indicates that the Average TRB Length should
1485  * be set to 8 for control endpoints.
1486  */
1487  if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1488  ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1489  else
1490  ep_ctx->tx_info |=
1491  cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1492 
1493  /* FIXME Debug endpoint context */
1494  return 0;
1495 }
1496 
1497 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1498  struct xhci_virt_device *virt_dev,
1499  struct usb_host_endpoint *ep)
1500 {
1501  unsigned int ep_index;
1502  struct xhci_ep_ctx *ep_ctx;
1503 
1504  ep_index = xhci_get_endpoint_index(&ep->desc);
1505  ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1506 
1507  ep_ctx->ep_info = 0;
1508  ep_ctx->ep_info2 = 0;
1509  ep_ctx->deq = 0;
1510  ep_ctx->tx_info = 0;
1511  /* Don't free the endpoint ring until the set interface or configuration
1512  * request succeeds.
1513  */
1514 }
1515 
1517 {
1518  bw_info->ep_interval = 0;
1519  bw_info->mult = 0;
1520  bw_info->num_packets = 0;
1521  bw_info->max_packet_size = 0;
1522  bw_info->type = 0;
1523  bw_info->max_esit_payload = 0;
1524 }
1525 
1526 void xhci_update_bw_info(struct xhci_hcd *xhci,
1527  struct xhci_container_ctx *in_ctx,
1529  struct xhci_virt_device *virt_dev)
1530 {
1531  struct xhci_bw_info *bw_info;
1532  struct xhci_ep_ctx *ep_ctx;
1533  unsigned int ep_type;
1534  int i;
1535 
1536  for (i = 1; i < 31; ++i) {
1537  bw_info = &virt_dev->eps[i].bw_info;
1538 
1539  /* We can't tell what endpoint type is being dropped, but
1540  * unconditionally clearing the bandwidth info for non-periodic
1541  * endpoints should be harmless because the info will never be
1542  * set in the first place.
1543  */
1544  if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1545  /* Dropped endpoint */
1546  xhci_clear_endpoint_bw_info(bw_info);
1547  continue;
1548  }
1549 
1550  if (EP_IS_ADDED(ctrl_ctx, i)) {
1551  ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1552  ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1553 
1554  /* Ignore non-periodic endpoints */
1555  if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1556  ep_type != ISOC_IN_EP &&
1557  ep_type != INT_IN_EP)
1558  continue;
1559 
1560  /* Added or changed endpoint */
1561  bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1562  le32_to_cpu(ep_ctx->ep_info));
1563  /* Number of packets and mult are zero-based in the
1564  * input context, but we want one-based for the
1565  * interval table.
1566  */
1567  bw_info->mult = CTX_TO_EP_MULT(
1568  le32_to_cpu(ep_ctx->ep_info)) + 1;
1569  bw_info->num_packets = CTX_TO_MAX_BURST(
1570  le32_to_cpu(ep_ctx->ep_info2)) + 1;
1572  le32_to_cpu(ep_ctx->ep_info2));
1573  bw_info->type = ep_type;
1575  le32_to_cpu(ep_ctx->tx_info));
1576  }
1577  }
1578 }
1579 
1580 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1581  * Useful when you want to change one particular aspect of the endpoint and then
1582  * issue a configure endpoint command.
1583  */
1584 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1585  struct xhci_container_ctx *in_ctx,
1586  struct xhci_container_ctx *out_ctx,
1587  unsigned int ep_index)
1588 {
1589  struct xhci_ep_ctx *out_ep_ctx;
1590  struct xhci_ep_ctx *in_ep_ctx;
1591 
1592  out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1593  in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1594 
1595  in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1596  in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1597  in_ep_ctx->deq = out_ep_ctx->deq;
1598  in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1599 }
1600 
1601 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command. Only the context entries field matters,
1604  * but we'll copy the whole thing anyway.
1605  */
1606 void xhci_slot_copy(struct xhci_hcd *xhci,
1607  struct xhci_container_ctx *in_ctx,
1608  struct xhci_container_ctx *out_ctx)
1609 {
1610  struct xhci_slot_ctx *in_slot_ctx;
1611  struct xhci_slot_ctx *out_slot_ctx;
1612 
1613  in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1614  out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1615 
1616  in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1617  in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1618  in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1619  in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1620 }
1621 
1622 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1623 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1624 {
1625  int i;
1626  struct device *dev = xhci_to_hcd(xhci)->self.controller;
1627  int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1628 
1629  xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1630 
1631  if (!num_sp)
1632  return 0;
1633 
1634  xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1635  if (!xhci->scratchpad)
1636  goto fail_sp;
1637 
1638  xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1639  num_sp * sizeof(u64),
1640  &xhci->scratchpad->sp_dma, flags);
1641  if (!xhci->scratchpad->sp_array)
1642  goto fail_sp2;
1643 
1644  xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1645  if (!xhci->scratchpad->sp_buffers)
1646  goto fail_sp3;
1647 
1648  xhci->scratchpad->sp_dma_buffers =
1649  kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1650 
1651  if (!xhci->scratchpad->sp_dma_buffers)
1652  goto fail_sp4;
1653 
1654  xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1655  for (i = 0; i < num_sp; i++) {
1656  dma_addr_t dma;
1657  void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1658  flags);
1659  if (!buf)
1660  goto fail_sp5;
1661 
1662  xhci->scratchpad->sp_array[i] = dma;
1663  xhci->scratchpad->sp_buffers[i] = buf;
1664  xhci->scratchpad->sp_dma_buffers[i] = dma;
1665  }
1666 
1667  return 0;
1668 
1669  fail_sp5:
1670  for (i = i - 1; i >= 0; i--) {
1671  dma_free_coherent(dev, xhci->page_size,
1672  xhci->scratchpad->sp_buffers[i],
1673  xhci->scratchpad->sp_dma_buffers[i]);
1674  }
1675  kfree(xhci->scratchpad->sp_dma_buffers);
1676 
1677  fail_sp4:
1678  kfree(xhci->scratchpad->sp_buffers);
1679 
1680  fail_sp3:
1681  dma_free_coherent(dev, num_sp * sizeof(u64),
1682  xhci->scratchpad->sp_array,
1683  xhci->scratchpad->sp_dma);
1684 
1685  fail_sp2:
1686  kfree(xhci->scratchpad);
1687  xhci->scratchpad = NULL;
1688 
1689  fail_sp:
1690  return -ENOMEM;
1691 }
1692 
1693 static void scratchpad_free(struct xhci_hcd *xhci)
1694 {
1695  int num_sp;
1696  int i;
1697  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1698 
1699  if (!xhci->scratchpad)
1700  return;
1701 
1702  num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1703 
1704  for (i = 0; i < num_sp; i++) {
1705  dma_free_coherent(&pdev->dev, xhci->page_size,
1706  xhci->scratchpad->sp_buffers[i],
1707  xhci->scratchpad->sp_dma_buffers[i]);
1708  }
1709  kfree(xhci->scratchpad->sp_dma_buffers);
1710  kfree(xhci->scratchpad->sp_buffers);
1711  dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1712  xhci->scratchpad->sp_array,
1713  xhci->scratchpad->sp_dma);
1714  kfree(xhci->scratchpad);
1715  xhci->scratchpad = NULL;
1716 }
1717 
1719  bool allocate_in_ctx, bool allocate_completion,
1720  gfp_t mem_flags)
1721 {
1722  struct xhci_command *command;
1723 
1724  command = kzalloc(sizeof(*command), mem_flags);
1725  if (!command)
1726  return NULL;
1727 
1728  if (allocate_in_ctx) {
1729  command->in_ctx =
1730  xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1731  mem_flags);
1732  if (!command->in_ctx) {
1733  kfree(command);
1734  return NULL;
1735  }
1736  }
1737 
1738  if (allocate_completion) {
1739  command->completion =
1740  kzalloc(sizeof(struct completion), mem_flags);
1741  if (!command->completion) {
1742  xhci_free_container_ctx(xhci, command->in_ctx);
1743  kfree(command);
1744  return NULL;
1745  }
1746  init_completion(command->completion);
1747  }
1748 
1749  command->status = 0;
1750  INIT_LIST_HEAD(&command->cmd_list);
1751  return command;
1752 }
1753 
1754 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1755 {
1756  if (urb_priv) {
1757  kfree(urb_priv->td[0]);
1758  kfree(urb_priv);
1759  }
1760 }
1761 
1762 void xhci_free_command(struct xhci_hcd *xhci,
1763  struct xhci_command *command)
1764 {
1765  xhci_free_container_ctx(xhci,
1766  command->in_ctx);
1767  kfree(command->completion);
1768  kfree(command);
1769 }
1770 
1771 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1772 {
1773  struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1774  struct dev_info *dev_info, *next;
1775  struct xhci_cd *cur_cd, *next_cd;
1776  unsigned long flags;
1777  int size;
1778  int i, j, num_ports;
1779 
1780  /* Free the Event Ring Segment Table and the actual Event Ring */
1781  size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1782  if (xhci->erst.entries)
1783  dma_free_coherent(&pdev->dev, size,
1784  xhci->erst.entries, xhci->erst.erst_dma_addr);
1785  xhci->erst.entries = NULL;
1786  xhci_dbg(xhci, "Freed ERST\n");
1787  if (xhci->event_ring)
1788  xhci_ring_free(xhci, xhci->event_ring);
1789  xhci->event_ring = NULL;
1790  xhci_dbg(xhci, "Freed event ring\n");
1791 
1792  if (xhci->lpm_command)
1793  xhci_free_command(xhci, xhci->lpm_command);
1794  xhci->cmd_ring_reserved_trbs = 0;
1795  if (xhci->cmd_ring)
1796  xhci_ring_free(xhci, xhci->cmd_ring);
1797  xhci->cmd_ring = NULL;
1798  xhci_dbg(xhci, "Freed command ring\n");
1799  list_for_each_entry_safe(cur_cd, next_cd,
1800  &xhci->cancel_cmd_list, cancel_cmd_list) {
1801  list_del(&cur_cd->cancel_cmd_list);
1802  kfree(cur_cd);
1803  }
1804 
1805  for (i = 1; i < MAX_HC_SLOTS; ++i)
1806  xhci_free_virt_device(xhci, i);
1807 
1808  if (xhci->segment_pool)
1810  xhci->segment_pool = NULL;
1811  xhci_dbg(xhci, "Freed segment pool\n");
1812 
1813  if (xhci->device_pool)
1815  xhci->device_pool = NULL;
1816  xhci_dbg(xhci, "Freed device context pool\n");
1817 
1818  if (xhci->small_streams_pool)
1820  xhci->small_streams_pool = NULL;
1821  xhci_dbg(xhci, "Freed small stream array pool\n");
1822 
1823  if (xhci->medium_streams_pool)
1825  xhci->medium_streams_pool = NULL;
1826  xhci_dbg(xhci, "Freed medium stream array pool\n");
1827 
1828  if (xhci->dcbaa)
1829  dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1830  xhci->dcbaa, xhci->dcbaa->dma);
1831  xhci->dcbaa = NULL;
1832 
1833  scratchpad_free(xhci);
1834 
1835  spin_lock_irqsave(&xhci->lock, flags);
1836  list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1837  list_del(&dev_info->list);
1838  kfree(dev_info);
1839  }
1840  spin_unlock_irqrestore(&xhci->lock, flags);
1841 
1842  num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843  for (i = 0; i < num_ports; i++) {
1844  struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845  for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846  struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847  while (!list_empty(ep))
1848  list_del_init(ep->next);
1849  }
1850  }
1851 
1852  for (i = 0; i < num_ports; i++) {
1853  struct xhci_tt_bw_info *tt, *n;
1854  list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1855  list_del(&tt->tt_list);
1856  kfree(tt);
1857  }
1858  }
1859 
1860  xhci->num_usb2_ports = 0;
1861  xhci->num_usb3_ports = 0;
1862  xhci->num_active_eps = 0;
1863  kfree(xhci->usb2_ports);
1864  kfree(xhci->usb3_ports);
1865  kfree(xhci->port_array);
1866  kfree(xhci->rh_bw);
1867 
1868  xhci->page_size = 0;
1869  xhci->page_shift = 0;
1870  xhci->bus_state[0].bus_suspended = 0;
1871  xhci->bus_state[1].bus_suspended = 0;
1872 }
1873 
1874 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1875  struct xhci_segment *input_seg,
1876  union xhci_trb *start_trb,
1877  union xhci_trb *end_trb,
1878  dma_addr_t input_dma,
1879  struct xhci_segment *result_seg,
1880  char *test_name, int test_number)
1881 {
1882  unsigned long long start_dma;
1883  unsigned long long end_dma;
1884  struct xhci_segment *seg;
1885 
1886  start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1887  end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1888 
1889  seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1890  if (seg != result_seg) {
1891  xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1892  test_name, test_number);
1893  xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1894  "input DMA 0x%llx\n",
1895  input_seg,
1896  (unsigned long long) input_dma);
1897  xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1898  "ending TRB %p (0x%llx DMA)\n",
1899  start_trb, start_dma,
1900  end_trb, end_dma);
1901  xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1902  result_seg, seg);
1903  return -1;
1904  }
1905  return 0;
1906 }
1907 
1908 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1909 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1910 {
1911  struct {
1912  dma_addr_t input_dma;
1913  struct xhci_segment *result_seg;
1914  } simple_test_vector [] = {
1915  /* A zeroed DMA field should fail */
1916  { 0, NULL },
1917  /* One TRB before the ring start should fail */
1918  { xhci->event_ring->first_seg->dma - 16, NULL },
1919  /* One byte before the ring start should fail */
1920  { xhci->event_ring->first_seg->dma - 1, NULL },
1921  /* Starting TRB should succeed */
1922  { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1923  /* Ending TRB should succeed */
1924  { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1925  xhci->event_ring->first_seg },
1926  /* One byte after the ring end should fail */
1927  { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1928  /* One TRB after the ring end should fail */
1929  { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1930  /* An address of all ones should fail */
1931  { (dma_addr_t) (~0), NULL },
1932  };
1933  struct {
1934  struct xhci_segment *input_seg;
1935  union xhci_trb *start_trb;
1936  union xhci_trb *end_trb;
1937  dma_addr_t input_dma;
1938  struct xhci_segment *result_seg;
1939  } complex_test_vector [] = {
1940  /* Test feeding a valid DMA address from a different ring */
1941  { .input_seg = xhci->event_ring->first_seg,
1942  .start_trb = xhci->event_ring->first_seg->trbs,
1943  .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1944  .input_dma = xhci->cmd_ring->first_seg->dma,
1945  .result_seg = NULL,
1946  },
1947  /* Test feeding a valid end TRB from a different ring */
1948  { .input_seg = xhci->event_ring->first_seg,
1949  .start_trb = xhci->event_ring->first_seg->trbs,
1950  .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1951  .input_dma = xhci->cmd_ring->first_seg->dma,
1952  .result_seg = NULL,
1953  },
1954  /* Test feeding a valid start and end TRB from a different ring */
1955  { .input_seg = xhci->event_ring->first_seg,
1956  .start_trb = xhci->cmd_ring->first_seg->trbs,
1957  .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1958  .input_dma = xhci->cmd_ring->first_seg->dma,
1959  .result_seg = NULL,
1960  },
1961  /* TRB in this ring, but after this TD */
1962  { .input_seg = xhci->event_ring->first_seg,
1963  .start_trb = &xhci->event_ring->first_seg->trbs[0],
1964  .end_trb = &xhci->event_ring->first_seg->trbs[3],
1965  .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1966  .result_seg = NULL,
1967  },
1968  /* TRB in this ring, but before this TD */
1969  { .input_seg = xhci->event_ring->first_seg,
1970  .start_trb = &xhci->event_ring->first_seg->trbs[3],
1971  .end_trb = &xhci->event_ring->first_seg->trbs[6],
1972  .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1973  .result_seg = NULL,
1974  },
1975  /* TRB in this ring, but after this wrapped TD */
1976  { .input_seg = xhci->event_ring->first_seg,
1977  .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1978  .end_trb = &xhci->event_ring->first_seg->trbs[1],
1979  .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1980  .result_seg = NULL,
1981  },
1982  /* TRB in this ring, but before this wrapped TD */
1983  { .input_seg = xhci->event_ring->first_seg,
1984  .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1985  .end_trb = &xhci->event_ring->first_seg->trbs[1],
1986  .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1987  .result_seg = NULL,
1988  },
1989  /* TRB not in this ring, and we have a wrapped TD */
1990  { .input_seg = xhci->event_ring->first_seg,
1991  .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1992  .end_trb = &xhci->event_ring->first_seg->trbs[1],
1993  .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1994  .result_seg = NULL,
1995  },
1996  };
1997 
1998  unsigned int num_tests;
1999  int i, ret;
2000 
2001  num_tests = ARRAY_SIZE(simple_test_vector);
2002  for (i = 0; i < num_tests; i++) {
2003  ret = xhci_test_trb_in_td(xhci,
2004  xhci->event_ring->first_seg,
2005  xhci->event_ring->first_seg->trbs,
2006  &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2007  simple_test_vector[i].input_dma,
2008  simple_test_vector[i].result_seg,
2009  "Simple", i);
2010  if (ret < 0)
2011  return ret;
2012  }
2013 
2014  num_tests = ARRAY_SIZE(complex_test_vector);
2015  for (i = 0; i < num_tests; i++) {
2016  ret = xhci_test_trb_in_td(xhci,
2017  complex_test_vector[i].input_seg,
2018  complex_test_vector[i].start_trb,
2019  complex_test_vector[i].end_trb,
2020  complex_test_vector[i].input_dma,
2021  complex_test_vector[i].result_seg,
2022  "Complex", i);
2023  if (ret < 0)
2024  return ret;
2025  }
2026  xhci_dbg(xhci, "TRB math tests passed.\n");
2027  return 0;
2028 }
2029 
2030 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2031 {
2032  u64 temp;
2033  dma_addr_t deq;
2034 
2035  deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2036  xhci->event_ring->dequeue);
2037  if (deq == 0 && !in_interrupt())
2038  xhci_warn(xhci, "WARN something wrong with SW event ring "
2039  "dequeue ptr.\n");
2040  /* Update HC event ring dequeue pointer */
2041  temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2042  temp &= ERST_PTR_MASK;
2043  /* Don't clear the EHB bit (which is RW1C) because
2044  * there might be more events to service.
2045  */
2046  temp &= ~ERST_EHB;
2047  xhci_dbg(xhci, "// Write event ring dequeue pointer, "
2048  "preserving EHB bit\n");
2049  xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2050  &xhci->ir_set->erst_dequeue);
2051 }
2052 
2053 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2054  __le32 __iomem *addr, u8 major_revision)
2055 {
2056  u32 temp, port_offset, port_count;
2057  int i;
2058 
2059  if (major_revision > 0x03) {
2060  xhci_warn(xhci, "Ignoring unknown port speed, "
2061  "Ext Cap %p, revision = 0x%x\n",
2062  addr, major_revision);
2063  /* Ignoring port protocol we can't understand. FIXME */
2064  return;
2065  }
2066 
2067  /* Port offset and count in the third dword, see section 7.2 */
2068  temp = xhci_readl(xhci, addr + 2);
2069  port_offset = XHCI_EXT_PORT_OFF(temp);
2070  port_count = XHCI_EXT_PORT_COUNT(temp);
2071  xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
2072  "count = %u, revision = 0x%x\n",
2073  addr, port_offset, port_count, major_revision);
2074  /* Port count includes the current port offset */
2075  if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2076  /* WTF? "Valid values are ‘1’ to MaxPorts" */
2077  return;
2078 
2079  /* Check the host's USB2 LPM capability */
2080  if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2081  (temp & XHCI_L1C)) {
2082  xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
2083  xhci->sw_lpm_support = 1;
2084  }
2085 
2086  if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2087  xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
2088  xhci->sw_lpm_support = 1;
2089  if (temp & XHCI_HLC) {
2090  xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
2091  xhci->hw_lpm_support = 1;
2092  }
2093  }
2094 
2095  port_offset--;
2096  for (i = port_offset; i < (port_offset + port_count); i++) {
2097  /* Duplicate entry. Ignore the port if the revisions differ. */
2098  if (xhci->port_array[i] != 0) {
2099  xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2100  " port %u\n", addr, i);
2101  xhci_warn(xhci, "Port was marked as USB %u, "
2102  "duplicated as USB %u\n",
2103  xhci->port_array[i], major_revision);
2104  /* Only adjust the roothub port counts if we haven't
2105  * found a similar duplicate.
2106  */
2107  if (xhci->port_array[i] != major_revision &&
2108  xhci->port_array[i] != DUPLICATE_ENTRY) {
2109  if (xhci->port_array[i] == 0x03)
2110  xhci->num_usb3_ports--;
2111  else
2112  xhci->num_usb2_ports--;
2113  xhci->port_array[i] = DUPLICATE_ENTRY;
2114  }
2115  /* FIXME: Should we disable the port? */
2116  continue;
2117  }
2118  xhci->port_array[i] = major_revision;
2119  if (major_revision == 0x03)
2120  xhci->num_usb3_ports++;
2121  else
2122  xhci->num_usb2_ports++;
2123  }
2124  /* FIXME: Should we disable ports not in the Extended Capabilities? */
2125 }
2126 
2127 /*
2128  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2129  * specify what speeds each port is supposed to be. We can't count on the port
2130  * speed bits in the PORTSC register being correct until a device is connected,
2131  * but we need to set up the two fake roothubs with the correct number of USB
2132  * 3.0 and USB 2.0 ports at host controller initialization time.
2133  */
2134 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2135 {
2136  __le32 __iomem *addr;
2137  u32 offset;
2138  unsigned int num_ports;
2139  int i, j, port_index;
2140 
2141  addr = &xhci->cap_regs->hcc_params;
2142  offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2143  if (offset == 0) {
2144  xhci_err(xhci, "No Extended Capability registers, "
2145  "unable to set up roothub.\n");
2146  return -ENODEV;
2147  }
2148 
2149  num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2150  xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2151  if (!xhci->port_array)
2152  return -ENOMEM;
2153 
2154  xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2155  if (!xhci->rh_bw)
2156  return -ENOMEM;
2157  for (i = 0; i < num_ports; i++) {
2158  struct xhci_interval_bw_table *bw_table;
2159 
2160  INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2161  bw_table = &xhci->rh_bw[i].bw_table;
2162  for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2163  INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2164  }
2165 
2166  /*
2167  * For whatever reason, the first capability offset is from the
2168  * capability register base, not from the HCCPARAMS register.
2169  * See section 5.3.6 for offset calculation.
2170  */
2171  addr = &xhci->cap_regs->hc_capbase + offset;
2172  while (1) {
2173  u32 cap_id;
2174 
2175  cap_id = xhci_readl(xhci, addr);
2177  xhci_add_in_port(xhci, num_ports, addr,
2178  (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2179  offset = XHCI_EXT_CAPS_NEXT(cap_id);
2180  if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2181  == num_ports)
2182  break;
2183  /*
2184  * Once you're into the Extended Capabilities, the offset is
2185  * always relative to the register holding the offset.
2186  */
2187  addr += offset;
2188  }
2189 
2190  if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2191  xhci_warn(xhci, "No ports on the roothubs?\n");
2192  return -ENODEV;
2193  }
2194  xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2195  xhci->num_usb2_ports, xhci->num_usb3_ports);
2196 
2197  /* Place limits on the number of roothub ports so that the hub
2198  * descriptors aren't longer than the USB core will allocate.
2199  */
2200  if (xhci->num_usb3_ports > 15) {
2201  xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2202  xhci->num_usb3_ports = 15;
2203  }
2204  if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2205  xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2206  USB_MAXCHILDREN);
2207  xhci->num_usb2_ports = USB_MAXCHILDREN;
2208  }
2209 
2210  /*
2211  * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2212  * Not sure how the USB core will handle a hub with no ports...
2213  */
2214  if (xhci->num_usb2_ports) {
2215  xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2216  xhci->num_usb2_ports, flags);
2217  if (!xhci->usb2_ports)
2218  return -ENOMEM;
2219 
2220  port_index = 0;
2221  for (i = 0; i < num_ports; i++) {
2222  if (xhci->port_array[i] == 0x03 ||
2223  xhci->port_array[i] == 0 ||
2224  xhci->port_array[i] == DUPLICATE_ENTRY)
2225  continue;
2226 
2227  xhci->usb2_ports[port_index] =
2228  &xhci->op_regs->port_status_base +
2229  NUM_PORT_REGS*i;
2230  xhci_dbg(xhci, "USB 2.0 port at index %u, "
2231  "addr = %p\n", i,
2232  xhci->usb2_ports[port_index]);
2233  port_index++;
2234  if (port_index == xhci->num_usb2_ports)
2235  break;
2236  }
2237  }
2238  if (xhci->num_usb3_ports) {
2239  xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2240  xhci->num_usb3_ports, flags);
2241  if (!xhci->usb3_ports)
2242  return -ENOMEM;
2243 
2244  port_index = 0;
2245  for (i = 0; i < num_ports; i++)
2246  if (xhci->port_array[i] == 0x03) {
2247  xhci->usb3_ports[port_index] =
2248  &xhci->op_regs->port_status_base +
2249  NUM_PORT_REGS*i;
2250  xhci_dbg(xhci, "USB 3.0 port at index %u, "
2251  "addr = %p\n", i,
2252  xhci->usb3_ports[port_index]);
2253  port_index++;
2254  if (port_index == xhci->num_usb3_ports)
2255  break;
2256  }
2257  }
2258  return 0;
2259 }
2260 
2261 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2262 {
2263  dma_addr_t dma;
2264  struct device *dev = xhci_to_hcd(xhci)->self.controller;
2265  unsigned int val, val2;
2266  u64 val_64;
2267  struct xhci_segment *seg;
2268  u32 page_size, temp;
2269  int i;
2270 
2271  page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2272  xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2273  for (i = 0; i < 16; i++) {
2274  if ((0x1 & page_size) != 0)
2275  break;
2276  page_size = page_size >> 1;
2277  }
2278  if (i < 16)
2279  xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2280  else
2281  xhci_warn(xhci, "WARN: no supported page size\n");
2282  /* Use 4K pages, since that's common and the minimum the HC supports */
2283  xhci->page_shift = 12;
2284  xhci->page_size = 1 << xhci->page_shift;
2285  xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2286 
2287  /*
2288  * Program the Number of Device Slots Enabled field in the CONFIG
2289  * register with the max value of slots the HC can handle.
2290  */
2291  val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2292  xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2293  (unsigned int) val);
2294  val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2295  val |= (val2 & ~HCS_SLOTS_MASK);
2296  xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2297  (unsigned int) val);
2298  xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2299 
2300  /*
2301  * Section 5.4.8 - doorbell array must be
2302  * "physically contiguous and 64-byte (cache line) aligned".
2303  */
2304  xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2305  GFP_KERNEL);
2306  if (!xhci->dcbaa)
2307  goto fail;
2308  memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2309  xhci->dcbaa->dma = dma;
2310  xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2311  (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2312  xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2313 
2314  /*
2315  * Initialize the ring segment pool. The ring must be a contiguous
2316  * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2317  * however, the command ring segment needs 64-byte aligned segments,
2318  * so we pick the greater alignment need.
2319  */
2320  xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2321  SEGMENT_SIZE, 64, xhci->page_size);
2322 
2323  /* See Table 46 and Note on Figure 55 */
2324  xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2325  2112, 64, xhci->page_size);
2326  if (!xhci->segment_pool || !xhci->device_pool)
2327  goto fail;
2328 
2329  /* Linear stream context arrays don't have any boundary restrictions,
2330  * and only need to be 16-byte aligned.
2331  */
2332  xhci->small_streams_pool =
2333  dma_pool_create("xHCI 256 byte stream ctx arrays",
2334  dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2335  xhci->medium_streams_pool =
2336  dma_pool_create("xHCI 1KB stream ctx arrays",
2337  dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2338  /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2339  * will be allocated with dma_alloc_coherent()
2340  */
2341 
2342  if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2343  goto fail;
2344 
2345  /* Set up the command ring to have one segments for now. */
2346  xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2347  if (!xhci->cmd_ring)
2348  goto fail;
2349  INIT_LIST_HEAD(&xhci->cancel_cmd_list);
2350  xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2351  xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2352  (unsigned long long)xhci->cmd_ring->first_seg->dma);
2353 
2354  /* Set the address in the Command Ring Control register */
2355  val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2356  val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2357  (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2358  xhci->cmd_ring->cycle_state;
2359  xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2360  xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2361  xhci_dbg_cmd_ptrs(xhci);
2362 
2363  xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2364  if (!xhci->lpm_command)
2365  goto fail;
2366 
2367  /* Reserve one command ring TRB for disabling LPM.
2368  * Since the USB core grabs the shared usb_bus bandwidth mutex before
2369  * disabling LPM, we only need to reserve one TRB for all devices.
2370  */
2371  xhci->cmd_ring_reserved_trbs++;
2372 
2373  val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2374  val &= DBOFF_MASK;
2375  xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2376  " from cap regs base addr\n", val);
2377  xhci->dba = (void __iomem *) xhci->cap_regs + val;
2378  xhci_dbg_regs(xhci);
2379  xhci_print_run_regs(xhci);
2380  /* Set ir_set to interrupt register set 0 */
2381  xhci->ir_set = &xhci->run_regs->ir_set[0];
2382 
2383  /*
2384  * Event ring setup: Allocate a normal ring, but also setup
2385  * the event ring segment table (ERST). Section 4.9.3.
2386  */
2387  xhci_dbg(xhci, "// Allocating event ring\n");
2388  xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2389  flags);
2390  if (!xhci->event_ring)
2391  goto fail;
2392  if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2393  goto fail;
2394 
2395  xhci->erst.entries = dma_alloc_coherent(dev,
2396  sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2397  GFP_KERNEL);
2398  if (!xhci->erst.entries)
2399  goto fail;
2400  xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2401  (unsigned long long)dma);
2402 
2403  memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2404  xhci->erst.num_entries = ERST_NUM_SEGS;
2405  xhci->erst.erst_dma_addr = dma;
2406  xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2407  xhci->erst.num_entries,
2408  xhci->erst.entries,
2409  (unsigned long long)xhci->erst.erst_dma_addr);
2410 
2411  /* set ring base address and size for each segment table entry */
2412  for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2413  struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2414  entry->seg_addr = cpu_to_le64(seg->dma);
2416  entry->rsvd = 0;
2417  seg = seg->next;
2418  }
2419 
2420  /* set ERST count with the number of entries in the segment table */
2421  val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2422  val &= ERST_SIZE_MASK;
2423  val |= ERST_NUM_SEGS;
2424  xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2425  val);
2426  xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2427 
2428  xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2429  /* set the segment table base address */
2430  xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2431  (unsigned long long)xhci->erst.erst_dma_addr);
2432  val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2433  val_64 &= ERST_PTR_MASK;
2434  val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2435  xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2436 
2437  /* Set the event ring dequeue address */
2438  xhci_set_hc_event_deq(xhci);
2439  xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2440  xhci_print_ir_set(xhci, 0);
2441 
2442  /*
2443  * XXX: Might need to set the Interrupter Moderation Register to
2444  * something other than the default (~1ms minimum between interrupts).
2445  * See section 5.5.1.2.
2446  */
2447  init_completion(&xhci->addr_dev);
2448  for (i = 0; i < MAX_HC_SLOTS; ++i)
2449  xhci->devs[i] = NULL;
2450  for (i = 0; i < USB_MAXCHILDREN; ++i) {
2451  xhci->bus_state[0].resume_done[i] = 0;
2452  xhci->bus_state[1].resume_done[i] = 0;
2453  }
2454 
2455  if (scratchpad_alloc(xhci, flags))
2456  goto fail;
2457  if (xhci_setup_port_arrays(xhci, flags))
2458  goto fail;
2459 
2460  INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2461 
2462  /* Enable USB 3.0 device notifications for function remote wake, which
2463  * is necessary for allowing USB 3.0 devices to do remote wakeup from
2464  * U3 (device suspend).
2465  */
2466  temp = xhci_readl(xhci, &xhci->op_regs->dev_notification);
2467  temp &= ~DEV_NOTE_MASK;
2468  temp |= DEV_NOTE_FWAKE;
2469  xhci_writel(xhci, temp, &xhci->op_regs->dev_notification);
2470 
2471  return 0;
2472 
2473 fail:
2474  xhci_warn(xhci, "Couldn't initialize memory\n");
2475  xhci_halt(xhci);
2476  xhci_reset(xhci);
2477  xhci_mem_cleanup(xhci);
2478  return -ENOMEM;
2479 }