LLVM API Documentation

ScheduleDAGFast.cpp
Go to the documentation of this file.
00001 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This implements a fast scheduler.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "llvm/CodeGen/SchedulerRegistry.h"
00015 #include "InstrEmitter.h"
00016 #include "ScheduleDAGSDNodes.h"
00017 #include "llvm/ADT/STLExtras.h"
00018 #include "llvm/ADT/SmallSet.h"
00019 #include "llvm/ADT/Statistic.h"
00020 #include "llvm/CodeGen/SelectionDAGISel.h"
00021 #include "llvm/IR/DataLayout.h"
00022 #include "llvm/IR/InlineAsm.h"
00023 #include "llvm/Support/Debug.h"
00024 #include "llvm/Support/ErrorHandling.h"
00025 #include "llvm/Support/raw_ostream.h"
00026 #include "llvm/Target/TargetInstrInfo.h"
00027 #include "llvm/Target/TargetRegisterInfo.h"
00028 using namespace llvm;
00029 
00030 #define DEBUG_TYPE "pre-RA-sched"
00031 
00032 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
00033 STATISTIC(NumDups,       "Number of duplicated nodes");
00034 STATISTIC(NumPRCopies,   "Number of physical copies");
00035 
00036 static RegisterScheduler
00037   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
00038                    createFastDAGScheduler);
00039 static RegisterScheduler
00040   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
00041                         createDAGLinearizer);
00042 
00043 
00044 namespace {
00045   /// FastPriorityQueue - A degenerate priority queue that considers
00046   /// all nodes to have the same priority.
00047   ///
00048   struct FastPriorityQueue {
00049     SmallVector<SUnit *, 16> Queue;
00050 
00051     bool empty() const { return Queue.empty(); }
00052 
00053     void push(SUnit *U) {
00054       Queue.push_back(U);
00055     }
00056 
00057     SUnit *pop() {
00058       if (empty()) return nullptr;
00059       SUnit *V = Queue.back();
00060       Queue.pop_back();
00061       return V;
00062     }
00063   };
00064 
00065 //===----------------------------------------------------------------------===//
00066 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
00067 ///
00068 class ScheduleDAGFast : public ScheduleDAGSDNodes {
00069 private:
00070   /// AvailableQueue - The priority queue to use for the available SUnits.
00071   FastPriorityQueue AvailableQueue;
00072 
00073   /// LiveRegDefs - A set of physical registers and their definition
00074   /// that are "live". These nodes must be scheduled before any other nodes that
00075   /// modifies the registers can be scheduled.
00076   unsigned NumLiveRegs;
00077   std::vector<SUnit*> LiveRegDefs;
00078   std::vector<unsigned> LiveRegCycles;
00079 
00080 public:
00081   ScheduleDAGFast(MachineFunction &mf)
00082     : ScheduleDAGSDNodes(mf) {}
00083 
00084   void Schedule() override;
00085 
00086   /// AddPred - adds a predecessor edge to SUnit SU.
00087   /// This returns true if this is a new predecessor.
00088   void AddPred(SUnit *SU, const SDep &D) {
00089     SU->addPred(D);
00090   }
00091 
00092   /// RemovePred - removes a predecessor edge from SUnit SU.
00093   /// This returns true if an edge was removed.
00094   void RemovePred(SUnit *SU, const SDep &D) {
00095     SU->removePred(D);
00096   }
00097 
00098 private:
00099   void ReleasePred(SUnit *SU, SDep *PredEdge);
00100   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
00101   void ScheduleNodeBottomUp(SUnit*, unsigned);
00102   SUnit *CopyAndMoveSuccessors(SUnit*);
00103   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
00104                                 const TargetRegisterClass*,
00105                                 const TargetRegisterClass*,
00106                                 SmallVectorImpl<SUnit*>&);
00107   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
00108   void ListScheduleBottomUp();
00109 
00110   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
00111   bool forceUnitLatencies() const override { return true; }
00112 };
00113 }  // end anonymous namespace
00114 
00115 
00116 /// Schedule - Schedule the DAG using list scheduling.
00117 void ScheduleDAGFast::Schedule() {
00118   DEBUG(dbgs() << "********** List Scheduling **********\n");
00119 
00120   NumLiveRegs = 0;
00121   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
00122   LiveRegCycles.resize(TRI->getNumRegs(), 0);
00123 
00124   // Build the scheduling graph.
00125   BuildSchedGraph(nullptr);
00126 
00127   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
00128           SUnits[su].dumpAll(this));
00129 
00130   // Execute the actual scheduling loop.
00131   ListScheduleBottomUp();
00132 }
00133 
00134 //===----------------------------------------------------------------------===//
00135 //  Bottom-Up Scheduling
00136 //===----------------------------------------------------------------------===//
00137 
00138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
00139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
00140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
00141   SUnit *PredSU = PredEdge->getSUnit();
00142 
00143 #ifndef NDEBUG
00144   if (PredSU->NumSuccsLeft == 0) {
00145     dbgs() << "*** Scheduling failed! ***\n";
00146     PredSU->dump(this);
00147     dbgs() << " has been released too many times!\n";
00148     llvm_unreachable(nullptr);
00149   }
00150 #endif
00151   --PredSU->NumSuccsLeft;
00152 
00153   // If all the node's successors are scheduled, this node is ready
00154   // to be scheduled. Ignore the special EntrySU node.
00155   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
00156     PredSU->isAvailable = true;
00157     AvailableQueue.push(PredSU);
00158   }
00159 }
00160 
00161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
00162   // Bottom up: release predecessors
00163   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00164        I != E; ++I) {
00165     ReleasePred(SU, &*I);
00166     if (I->isAssignedRegDep()) {
00167       // This is a physical register dependency and it's impossible or
00168       // expensive to copy the register. Make sure nothing that can
00169       // clobber the register is scheduled between the predecessor and
00170       // this node.
00171       if (!LiveRegDefs[I->getReg()]) {
00172         ++NumLiveRegs;
00173         LiveRegDefs[I->getReg()] = I->getSUnit();
00174         LiveRegCycles[I->getReg()] = CurCycle;
00175       }
00176     }
00177   }
00178 }
00179 
00180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
00181 /// count of its predecessors. If a predecessor pending count is zero, add it to
00182 /// the Available queue.
00183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
00184   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
00185   DEBUG(SU->dump(this));
00186 
00187   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
00188   SU->setHeightToAtLeast(CurCycle);
00189   Sequence.push_back(SU);
00190 
00191   ReleasePredecessors(SU, CurCycle);
00192 
00193   // Release all the implicit physical register defs that are live.
00194   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00195        I != E; ++I) {
00196     if (I->isAssignedRegDep()) {
00197       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
00198         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
00199         assert(LiveRegDefs[I->getReg()] == SU &&
00200                "Physical register dependency violated?");
00201         --NumLiveRegs;
00202         LiveRegDefs[I->getReg()] = nullptr;
00203         LiveRegCycles[I->getReg()] = 0;
00204       }
00205     }
00206   }
00207 
00208   SU->isScheduled = true;
00209 }
00210 
00211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
00212 /// successors to the newly created node.
00213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
00214   if (SU->getNode()->getGluedNode())
00215     return nullptr;
00216 
00217   SDNode *N = SU->getNode();
00218   if (!N)
00219     return nullptr;
00220 
00221   SUnit *NewSU;
00222   bool TryUnfold = false;
00223   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
00224     EVT VT = N->getValueType(i);
00225     if (VT == MVT::Glue)
00226       return nullptr;
00227     else if (VT == MVT::Other)
00228       TryUnfold = true;
00229   }
00230   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
00231     const SDValue &Op = N->getOperand(i);
00232     EVT VT = Op.getNode()->getValueType(Op.getResNo());
00233     if (VT == MVT::Glue)
00234       return nullptr;
00235   }
00236 
00237   if (TryUnfold) {
00238     SmallVector<SDNode*, 2> NewNodes;
00239     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
00240       return nullptr;
00241 
00242     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
00243     assert(NewNodes.size() == 2 && "Expected a load folding node!");
00244 
00245     N = NewNodes[1];
00246     SDNode *LoadNode = NewNodes[0];
00247     unsigned NumVals = N->getNumValues();
00248     unsigned OldNumVals = SU->getNode()->getNumValues();
00249     for (unsigned i = 0; i != NumVals; ++i)
00250       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
00251     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
00252                                    SDValue(LoadNode, 1));
00253 
00254     SUnit *NewSU = newSUnit(N);
00255     assert(N->getNodeId() == -1 && "Node already inserted!");
00256     N->setNodeId(NewSU->NodeNum);
00257 
00258     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
00259     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
00260       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
00261         NewSU->isTwoAddress = true;
00262         break;
00263       }
00264     }
00265     if (MCID.isCommutable())
00266       NewSU->isCommutable = true;
00267 
00268     // LoadNode may already exist. This can happen when there is another
00269     // load from the same location and producing the same type of value
00270     // but it has different alignment or volatileness.
00271     bool isNewLoad = true;
00272     SUnit *LoadSU;
00273     if (LoadNode->getNodeId() != -1) {
00274       LoadSU = &SUnits[LoadNode->getNodeId()];
00275       isNewLoad = false;
00276     } else {
00277       LoadSU = newSUnit(LoadNode);
00278       LoadNode->setNodeId(LoadSU->NodeNum);
00279     }
00280 
00281     SDep ChainPred;
00282     SmallVector<SDep, 4> ChainSuccs;
00283     SmallVector<SDep, 4> LoadPreds;
00284     SmallVector<SDep, 4> NodePreds;
00285     SmallVector<SDep, 4> NodeSuccs;
00286     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00287          I != E; ++I) {
00288       if (I->isCtrl())
00289         ChainPred = *I;
00290       else if (I->getSUnit()->getNode() &&
00291                I->getSUnit()->getNode()->isOperandOf(LoadNode))
00292         LoadPreds.push_back(*I);
00293       else
00294         NodePreds.push_back(*I);
00295     }
00296     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00297          I != E; ++I) {
00298       if (I->isCtrl())
00299         ChainSuccs.push_back(*I);
00300       else
00301         NodeSuccs.push_back(*I);
00302     }
00303 
00304     if (ChainPred.getSUnit()) {
00305       RemovePred(SU, ChainPred);
00306       if (isNewLoad)
00307         AddPred(LoadSU, ChainPred);
00308     }
00309     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
00310       const SDep &Pred = LoadPreds[i];
00311       RemovePred(SU, Pred);
00312       if (isNewLoad) {
00313         AddPred(LoadSU, Pred);
00314       }
00315     }
00316     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
00317       const SDep &Pred = NodePreds[i];
00318       RemovePred(SU, Pred);
00319       AddPred(NewSU, Pred);
00320     }
00321     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
00322       SDep D = NodeSuccs[i];
00323       SUnit *SuccDep = D.getSUnit();
00324       D.setSUnit(SU);
00325       RemovePred(SuccDep, D);
00326       D.setSUnit(NewSU);
00327       AddPred(SuccDep, D);
00328     }
00329     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
00330       SDep D = ChainSuccs[i];
00331       SUnit *SuccDep = D.getSUnit();
00332       D.setSUnit(SU);
00333       RemovePred(SuccDep, D);
00334       if (isNewLoad) {
00335         D.setSUnit(LoadSU);
00336         AddPred(SuccDep, D);
00337       }
00338     }
00339     if (isNewLoad) {
00340       SDep D(LoadSU, SDep::Barrier);
00341       D.setLatency(LoadSU->Latency);
00342       AddPred(NewSU, D);
00343     }
00344 
00345     ++NumUnfolds;
00346 
00347     if (NewSU->NumSuccsLeft == 0) {
00348       NewSU->isAvailable = true;
00349       return NewSU;
00350     }
00351     SU = NewSU;
00352   }
00353 
00354   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
00355   NewSU = Clone(SU);
00356 
00357   // New SUnit has the exact same predecessors.
00358   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00359        I != E; ++I)
00360     if (!I->isArtificial())
00361       AddPred(NewSU, *I);
00362 
00363   // Only copy scheduled successors. Cut them from old node's successor
00364   // list and move them over.
00365   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
00366   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00367        I != E; ++I) {
00368     if (I->isArtificial())
00369       continue;
00370     SUnit *SuccSU = I->getSUnit();
00371     if (SuccSU->isScheduled) {
00372       SDep D = *I;
00373       D.setSUnit(NewSU);
00374       AddPred(SuccSU, D);
00375       D.setSUnit(SU);
00376       DelDeps.push_back(std::make_pair(SuccSU, D));
00377     }
00378   }
00379   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
00380     RemovePred(DelDeps[i].first, DelDeps[i].second);
00381 
00382   ++NumDups;
00383   return NewSU;
00384 }
00385 
00386 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
00387 /// scheduled successors of the given SUnit to the last copy.
00388 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
00389                                               const TargetRegisterClass *DestRC,
00390                                               const TargetRegisterClass *SrcRC,
00391                                               SmallVectorImpl<SUnit*> &Copies) {
00392   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
00393   CopyFromSU->CopySrcRC = SrcRC;
00394   CopyFromSU->CopyDstRC = DestRC;
00395 
00396   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
00397   CopyToSU->CopySrcRC = DestRC;
00398   CopyToSU->CopyDstRC = SrcRC;
00399 
00400   // Only copy scheduled successors. Cut them from old node's successor
00401   // list and move them over.
00402   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
00403   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
00404        I != E; ++I) {
00405     if (I->isArtificial())
00406       continue;
00407     SUnit *SuccSU = I->getSUnit();
00408     if (SuccSU->isScheduled) {
00409       SDep D = *I;
00410       D.setSUnit(CopyToSU);
00411       AddPred(SuccSU, D);
00412       DelDeps.push_back(std::make_pair(SuccSU, *I));
00413     }
00414   }
00415   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
00416     RemovePred(DelDeps[i].first, DelDeps[i].second);
00417   }
00418   SDep FromDep(SU, SDep::Data, Reg);
00419   FromDep.setLatency(SU->Latency);
00420   AddPred(CopyFromSU, FromDep);
00421   SDep ToDep(CopyFromSU, SDep::Data, 0);
00422   ToDep.setLatency(CopyFromSU->Latency);
00423   AddPred(CopyToSU, ToDep);
00424 
00425   Copies.push_back(CopyFromSU);
00426   Copies.push_back(CopyToSU);
00427 
00428   ++NumPRCopies;
00429 }
00430 
00431 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
00432 /// definition of the specified node.
00433 /// FIXME: Move to SelectionDAG?
00434 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
00435                                  const TargetInstrInfo *TII) {
00436   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
00437   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
00438   unsigned NumRes = MCID.getNumDefs();
00439   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
00440     if (Reg == *ImpDef)
00441       break;
00442     ++NumRes;
00443   }
00444   return N->getValueType(NumRes);
00445 }
00446 
00447 /// CheckForLiveRegDef - Return true and update live register vector if the
00448 /// specified register def of the specified SUnit clobbers any "live" registers.
00449 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
00450                                std::vector<SUnit*> &LiveRegDefs,
00451                                SmallSet<unsigned, 4> &RegAdded,
00452                                SmallVectorImpl<unsigned> &LRegs,
00453                                const TargetRegisterInfo *TRI) {
00454   bool Added = false;
00455   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
00456     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
00457       if (RegAdded.insert(*AI)) {
00458         LRegs.push_back(*AI);
00459         Added = true;
00460       }
00461     }
00462   }
00463   return Added;
00464 }
00465 
00466 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
00467 /// scheduling of the given node to satisfy live physical register dependencies.
00468 /// If the specific node is the last one that's available to schedule, do
00469 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
00470 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
00471                                               SmallVectorImpl<unsigned> &LRegs){
00472   if (NumLiveRegs == 0)
00473     return false;
00474 
00475   SmallSet<unsigned, 4> RegAdded;
00476   // If this node would clobber any "live" register, then it's not ready.
00477   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
00478        I != E; ++I) {
00479     if (I->isAssignedRegDep()) {
00480       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
00481                          RegAdded, LRegs, TRI);
00482     }
00483   }
00484 
00485   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
00486     if (Node->getOpcode() == ISD::INLINEASM) {
00487       // Inline asm can clobber physical defs.
00488       unsigned NumOps = Node->getNumOperands();
00489       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
00490         --NumOps;  // Ignore the glue operand.
00491 
00492       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
00493         unsigned Flags =
00494           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
00495         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
00496 
00497         ++i; // Skip the ID value.
00498         if (InlineAsm::isRegDefKind(Flags) ||
00499             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
00500             InlineAsm::isClobberKind(Flags)) {
00501           // Check for def of register or earlyclobber register.
00502           for (; NumVals; --NumVals, ++i) {
00503             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
00504             if (TargetRegisterInfo::isPhysicalRegister(Reg))
00505               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
00506           }
00507         } else
00508           i += NumVals;
00509       }
00510       continue;
00511     }
00512     if (!Node->isMachineOpcode())
00513       continue;
00514     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
00515     if (!MCID.ImplicitDefs)
00516       continue;
00517     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
00518       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
00519     }
00520   }
00521   return !LRegs.empty();
00522 }
00523 
00524 
00525 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
00526 /// schedulers.
00527 void ScheduleDAGFast::ListScheduleBottomUp() {
00528   unsigned CurCycle = 0;
00529 
00530   // Release any predecessors of the special Exit node.
00531   ReleasePredecessors(&ExitSU, CurCycle);
00532 
00533   // Add root to Available queue.
00534   if (!SUnits.empty()) {
00535     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
00536     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
00537     RootSU->isAvailable = true;
00538     AvailableQueue.push(RootSU);
00539   }
00540 
00541   // While Available queue is not empty, grab the node with the highest
00542   // priority. If it is not ready put it back.  Schedule the node.
00543   SmallVector<SUnit*, 4> NotReady;
00544   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
00545   Sequence.reserve(SUnits.size());
00546   while (!AvailableQueue.empty()) {
00547     bool Delayed = false;
00548     LRegsMap.clear();
00549     SUnit *CurSU = AvailableQueue.pop();
00550     while (CurSU) {
00551       SmallVector<unsigned, 4> LRegs;
00552       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
00553         break;
00554       Delayed = true;
00555       LRegsMap.insert(std::make_pair(CurSU, LRegs));
00556 
00557       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
00558       NotReady.push_back(CurSU);
00559       CurSU = AvailableQueue.pop();
00560     }
00561 
00562     // All candidates are delayed due to live physical reg dependencies.
00563     // Try code duplication or inserting cross class copies
00564     // to resolve it.
00565     if (Delayed && !CurSU) {
00566       if (!CurSU) {
00567         // Try duplicating the nodes that produces these
00568         // "expensive to copy" values to break the dependency. In case even
00569         // that doesn't work, insert cross class copies.
00570         SUnit *TrySU = NotReady[0];
00571         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
00572         assert(LRegs.size() == 1 && "Can't handle this yet!");
00573         unsigned Reg = LRegs[0];
00574         SUnit *LRDef = LiveRegDefs[Reg];
00575         EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
00576         const TargetRegisterClass *RC =
00577           TRI->getMinimalPhysRegClass(Reg, VT);
00578         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
00579 
00580         // If cross copy register class is the same as RC, then it must be
00581         // possible copy the value directly. Do not try duplicate the def.
00582         // If cross copy register class is not the same as RC, then it's
00583         // possible to copy the value but it require cross register class copies
00584         // and it is expensive.
00585         // If cross copy register class is null, then it's not possible to copy
00586         // the value at all.
00587         SUnit *NewDef = nullptr;
00588         if (DestRC != RC) {
00589           NewDef = CopyAndMoveSuccessors(LRDef);
00590           if (!DestRC && !NewDef)
00591             report_fatal_error("Can't handle live physical "
00592                                "register dependency!");
00593         }
00594         if (!NewDef) {
00595           // Issue copies, these can be expensive cross register class copies.
00596           SmallVector<SUnit*, 2> Copies;
00597           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
00598           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
00599                        << " to SU #" << Copies.front()->NodeNum << "\n");
00600           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
00601           NewDef = Copies.back();
00602         }
00603 
00604         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
00605                      << " to SU #" << TrySU->NodeNum << "\n");
00606         LiveRegDefs[Reg] = NewDef;
00607         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
00608         TrySU->isAvailable = false;
00609         CurSU = NewDef;
00610       }
00611 
00612       if (!CurSU) {
00613         llvm_unreachable("Unable to resolve live physical register dependencies!");
00614       }
00615     }
00616 
00617     // Add the nodes that aren't ready back onto the available list.
00618     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
00619       NotReady[i]->isPending = false;
00620       // May no longer be available due to backtracking.
00621       if (NotReady[i]->isAvailable)
00622         AvailableQueue.push(NotReady[i]);
00623     }
00624     NotReady.clear();
00625 
00626     if (CurSU)
00627       ScheduleNodeBottomUp(CurSU, CurCycle);
00628     ++CurCycle;
00629   }
00630 
00631   // Reverse the order since it is bottom up.
00632   std::reverse(Sequence.begin(), Sequence.end());
00633 
00634 #ifndef NDEBUG
00635   VerifyScheduledSequence(/*isBottomUp=*/true);
00636 #endif
00637 }
00638 
00639 
00640 namespace {
00641 //===----------------------------------------------------------------------===//
00642 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
00643 // DAG in topological order.
00644 // IMPORTANT: this may not work for targets with phyreg dependency.
00645 //
00646 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
00647 public:
00648   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
00649 
00650   void Schedule() override;
00651 
00652   MachineBasicBlock *
00653     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
00654 
00655 private:
00656   std::vector<SDNode*> Sequence;
00657   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
00658 
00659   void ScheduleNode(SDNode *N);
00660 };
00661 } // end anonymous namespace
00662 
00663 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
00664   if (N->getNodeId() != 0)
00665     llvm_unreachable(nullptr);
00666 
00667   if (!N->isMachineOpcode() &&
00668       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
00669     // These nodes do not need to be translated into MIs.
00670     return;
00671 
00672   DEBUG(dbgs() << "\n*** Scheduling: ");
00673   DEBUG(N->dump(DAG));
00674   Sequence.push_back(N);
00675 
00676   unsigned NumOps = N->getNumOperands();
00677   if (unsigned NumLeft = NumOps) {
00678     SDNode *GluedOpN = nullptr;
00679     do {
00680       const SDValue &Op = N->getOperand(NumLeft-1);
00681       SDNode *OpN = Op.getNode();
00682 
00683       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
00684         // Schedule glue operand right above N.
00685         GluedOpN = OpN;
00686         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
00687         OpN->setNodeId(0);
00688         ScheduleNode(OpN);
00689         continue;
00690       }
00691 
00692       if (OpN == GluedOpN)
00693         // Glue operand is already scheduled.
00694         continue;
00695 
00696       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
00697       if (DI != GluedMap.end() && DI->second != N)
00698         // Users of glues are counted against the glued users.
00699         OpN = DI->second;
00700 
00701       unsigned Degree = OpN->getNodeId();
00702       assert(Degree > 0 && "Predecessor over-released!");
00703       OpN->setNodeId(--Degree);
00704       if (Degree == 0)
00705         ScheduleNode(OpN);
00706     } while (--NumLeft);
00707   }
00708 }
00709 
00710 /// findGluedUser - Find the representative use of a glue value by walking
00711 /// the use chain.
00712 static SDNode *findGluedUser(SDNode *N) {
00713   while (SDNode *Glued = N->getGluedUser())
00714     N = Glued;
00715   return N;
00716 }
00717 
00718 void ScheduleDAGLinearize::Schedule() {
00719   DEBUG(dbgs() << "********** DAG Linearization **********\n");
00720 
00721   SmallVector<SDNode*, 8> Glues;
00722   unsigned DAGSize = 0;
00723   for (SelectionDAG::allnodes_iterator I = DAG->allnodes_begin(),
00724          E = DAG->allnodes_end(); I != E; ++I) {
00725     SDNode *N = I;
00726 
00727     // Use node id to record degree.
00728     unsigned Degree = N->use_size();
00729     N->setNodeId(Degree);
00730     unsigned NumVals = N->getNumValues();
00731     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
00732         N->hasAnyUseOfValue(NumVals-1)) {
00733       SDNode *User = findGluedUser(N);
00734       if (User) {
00735         Glues.push_back(N);
00736         GluedMap.insert(std::make_pair(N, User));
00737       }
00738     }
00739 
00740     if (N->isMachineOpcode() ||
00741         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
00742       ++DAGSize;
00743   }
00744 
00745   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
00746     SDNode *Glue = Glues[i];
00747     SDNode *GUser = GluedMap[Glue];
00748     unsigned Degree = Glue->getNodeId();
00749     unsigned UDegree = GUser->getNodeId();
00750 
00751     // Glue user must be scheduled together with the glue operand. So other
00752     // users of the glue operand must be treated as its users.
00753     SDNode *ImmGUser = Glue->getGluedUser();
00754     for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
00755          ui != ue; ++ui)
00756       if (*ui == ImmGUser)
00757         --Degree;
00758     GUser->setNodeId(UDegree + Degree);
00759     Glue->setNodeId(1);
00760   }
00761 
00762   Sequence.reserve(DAGSize);
00763   ScheduleNode(DAG->getRoot().getNode());
00764 }
00765 
00766 MachineBasicBlock*
00767 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
00768   InstrEmitter Emitter(BB, InsertPos);
00769   DenseMap<SDValue, unsigned> VRBaseMap;
00770 
00771   DEBUG({
00772       dbgs() << "\n*** Final schedule ***\n";
00773     });
00774 
00775   // FIXME: Handle dbg_values.
00776   unsigned NumNodes = Sequence.size();
00777   for (unsigned i = 0; i != NumNodes; ++i) {
00778     SDNode *N = Sequence[NumNodes-i-1];
00779     DEBUG(N->dump(DAG));
00780     Emitter.EmitNode(N, false, false, VRBaseMap);
00781   }
00782 
00783   DEBUG(dbgs() << '\n');
00784 
00785   InsertPos = Emitter.getInsertPos();
00786   return Emitter.getBlock();
00787 }
00788 
00789 //===----------------------------------------------------------------------===//
00790 //                         Public Constructor Functions
00791 //===----------------------------------------------------------------------===//
00792 
00793 llvm::ScheduleDAGSDNodes *
00794 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
00795   return new ScheduleDAGFast(*IS->MF);
00796 }
00797 
00798 llvm::ScheduleDAGSDNodes *
00799 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
00800   return new ScheduleDAGLinearize(*IS->MF);
00801 }