LLVM API Documentation
00001 //===-- XCoreISelLowering.cpp - XCore DAG Lowering Implementation ---------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements the XCoreTargetLowering class. 00011 // 00012 //===----------------------------------------------------------------------===// 00013 00014 #include "XCoreISelLowering.h" 00015 #include "XCore.h" 00016 #include "XCoreMachineFunctionInfo.h" 00017 #include "XCoreSubtarget.h" 00018 #include "XCoreTargetMachine.h" 00019 #include "XCoreTargetObjectFile.h" 00020 #include "llvm/CodeGen/CallingConvLower.h" 00021 #include "llvm/CodeGen/MachineFrameInfo.h" 00022 #include "llvm/CodeGen/MachineFunction.h" 00023 #include "llvm/CodeGen/MachineInstrBuilder.h" 00024 #include "llvm/CodeGen/MachineJumpTableInfo.h" 00025 #include "llvm/CodeGen/MachineRegisterInfo.h" 00026 #include "llvm/CodeGen/SelectionDAGISel.h" 00027 #include "llvm/CodeGen/ValueTypes.h" 00028 #include "llvm/IR/CallingConv.h" 00029 #include "llvm/IR/Constants.h" 00030 #include "llvm/IR/DerivedTypes.h" 00031 #include "llvm/IR/Function.h" 00032 #include "llvm/IR/GlobalAlias.h" 00033 #include "llvm/IR/GlobalVariable.h" 00034 #include "llvm/IR/Intrinsics.h" 00035 #include "llvm/Support/Debug.h" 00036 #include "llvm/Support/ErrorHandling.h" 00037 #include "llvm/Support/raw_ostream.h" 00038 #include <algorithm> 00039 00040 using namespace llvm; 00041 00042 #define DEBUG_TYPE "xcore-lower" 00043 00044 const char *XCoreTargetLowering:: 00045 getTargetNodeName(unsigned Opcode) const 00046 { 00047 switch (Opcode) 00048 { 00049 case XCoreISD::BL : return "XCoreISD::BL"; 00050 case XCoreISD::PCRelativeWrapper : return "XCoreISD::PCRelativeWrapper"; 00051 case XCoreISD::DPRelativeWrapper : return "XCoreISD::DPRelativeWrapper"; 00052 case XCoreISD::CPRelativeWrapper : return "XCoreISD::CPRelativeWrapper"; 00053 case XCoreISD::LDWSP : return "XCoreISD::LDWSP"; 00054 case XCoreISD::STWSP : return "XCoreISD::STWSP"; 00055 case XCoreISD::RETSP : return "XCoreISD::RETSP"; 00056 case XCoreISD::LADD : return "XCoreISD::LADD"; 00057 case XCoreISD::LSUB : return "XCoreISD::LSUB"; 00058 case XCoreISD::LMUL : return "XCoreISD::LMUL"; 00059 case XCoreISD::MACCU : return "XCoreISD::MACCU"; 00060 case XCoreISD::MACCS : return "XCoreISD::MACCS"; 00061 case XCoreISD::CRC8 : return "XCoreISD::CRC8"; 00062 case XCoreISD::BR_JT : return "XCoreISD::BR_JT"; 00063 case XCoreISD::BR_JT32 : return "XCoreISD::BR_JT32"; 00064 case XCoreISD::FRAME_TO_ARGS_OFFSET : return "XCoreISD::FRAME_TO_ARGS_OFFSET"; 00065 case XCoreISD::EH_RETURN : return "XCoreISD::EH_RETURN"; 00066 case XCoreISD::MEMBARRIER : return "XCoreISD::MEMBARRIER"; 00067 default : return nullptr; 00068 } 00069 } 00070 00071 XCoreTargetLowering::XCoreTargetLowering(const TargetMachine &TM) 00072 : TargetLowering(TM, new XCoreTargetObjectFile()), TM(TM), 00073 Subtarget(TM.getSubtarget<XCoreSubtarget>()) { 00074 00075 // Set up the register classes. 00076 addRegisterClass(MVT::i32, &XCore::GRRegsRegClass); 00077 00078 // Compute derived properties from the register classes 00079 computeRegisterProperties(); 00080 00081 // Division is expensive 00082 setIntDivIsCheap(false); 00083 00084 setStackPointerRegisterToSaveRestore(XCore::SP); 00085 00086 setSchedulingPreference(Sched::Source); 00087 00088 // Use i32 for setcc operations results (slt, sgt, ...). 00089 setBooleanContents(ZeroOrOneBooleanContent); 00090 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct? 00091 00092 // XCore does not have the NodeTypes below. 00093 setOperationAction(ISD::BR_CC, MVT::i32, Expand); 00094 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); 00095 setOperationAction(ISD::ADDC, MVT::i32, Expand); 00096 setOperationAction(ISD::ADDE, MVT::i32, Expand); 00097 setOperationAction(ISD::SUBC, MVT::i32, Expand); 00098 setOperationAction(ISD::SUBE, MVT::i32, Expand); 00099 00100 // 64bit 00101 setOperationAction(ISD::ADD, MVT::i64, Custom); 00102 setOperationAction(ISD::SUB, MVT::i64, Custom); 00103 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Custom); 00104 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Custom); 00105 setOperationAction(ISD::MULHS, MVT::i32, Expand); 00106 setOperationAction(ISD::MULHU, MVT::i32, Expand); 00107 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); 00108 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); 00109 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); 00110 00111 // Bit Manipulation 00112 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 00113 setOperationAction(ISD::ROTL , MVT::i32, Expand); 00114 setOperationAction(ISD::ROTR , MVT::i32, Expand); 00115 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 00116 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 00117 00118 setOperationAction(ISD::TRAP, MVT::Other, Legal); 00119 00120 // Jump tables. 00121 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 00122 00123 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 00124 setOperationAction(ISD::BlockAddress, MVT::i32 , Custom); 00125 00126 // Conversion of i64 -> double produces constantpool nodes 00127 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 00128 00129 // Loads 00130 setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote); 00131 setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote); 00132 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); 00133 00134 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand); 00135 setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Expand); 00136 00137 // Custom expand misaligned loads / stores. 00138 setOperationAction(ISD::LOAD, MVT::i32, Custom); 00139 setOperationAction(ISD::STORE, MVT::i32, Custom); 00140 00141 // Varargs 00142 setOperationAction(ISD::VAEND, MVT::Other, Expand); 00143 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 00144 setOperationAction(ISD::VAARG, MVT::Other, Custom); 00145 setOperationAction(ISD::VASTART, MVT::Other, Custom); 00146 00147 // Dynamic stack 00148 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 00149 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 00150 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 00151 00152 // Exception handling 00153 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom); 00154 setExceptionPointerRegister(XCore::R0); 00155 setExceptionSelectorRegister(XCore::R1); 00156 setOperationAction(ISD::FRAME_TO_ARGS_OFFSET, MVT::i32, Custom); 00157 00158 // Atomic operations 00159 // We request a fence for ATOMIC_* instructions, to reduce them to Monotonic. 00160 // As we are always Sequential Consistent, an ATOMIC_FENCE becomes a no OP. 00161 setInsertFencesForAtomic(true); 00162 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 00163 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 00164 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 00165 00166 // TRAMPOLINE is custom lowered. 00167 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); 00168 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); 00169 00170 // We want to custom lower some of our intrinsics. 00171 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 00172 00173 MaxStoresPerMemset = MaxStoresPerMemsetOptSize = 4; 00174 MaxStoresPerMemmove = MaxStoresPerMemmoveOptSize 00175 = MaxStoresPerMemcpy = MaxStoresPerMemcpyOptSize = 2; 00176 00177 // We have target-specific dag combine patterns for the following nodes: 00178 setTargetDAGCombine(ISD::STORE); 00179 setTargetDAGCombine(ISD::ADD); 00180 setTargetDAGCombine(ISD::INTRINSIC_VOID); 00181 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 00182 00183 setMinFunctionAlignment(1); 00184 setPrefFunctionAlignment(2); 00185 } 00186 00187 bool XCoreTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 00188 if (Val.getOpcode() != ISD::LOAD) 00189 return false; 00190 00191 EVT VT1 = Val.getValueType(); 00192 if (!VT1.isSimple() || !VT1.isInteger() || 00193 !VT2.isSimple() || !VT2.isInteger()) 00194 return false; 00195 00196 switch (VT1.getSimpleVT().SimpleTy) { 00197 default: break; 00198 case MVT::i8: 00199 return true; 00200 } 00201 00202 return false; 00203 } 00204 00205 SDValue XCoreTargetLowering:: 00206 LowerOperation(SDValue Op, SelectionDAG &DAG) const { 00207 switch (Op.getOpcode()) 00208 { 00209 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG); 00210 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); 00211 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 00212 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 00213 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 00214 case ISD::LOAD: return LowerLOAD(Op, DAG); 00215 case ISD::STORE: return LowerSTORE(Op, DAG); 00216 case ISD::VAARG: return LowerVAARG(Op, DAG); 00217 case ISD::VASTART: return LowerVASTART(Op, DAG); 00218 case ISD::SMUL_LOHI: return LowerSMUL_LOHI(Op, DAG); 00219 case ISD::UMUL_LOHI: return LowerUMUL_LOHI(Op, DAG); 00220 // FIXME: Remove these when LegalizeDAGTypes lands. 00221 case ISD::ADD: 00222 case ISD::SUB: return ExpandADDSUB(Op.getNode(), DAG); 00223 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 00224 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 00225 case ISD::FRAME_TO_ARGS_OFFSET: return LowerFRAME_TO_ARGS_OFFSET(Op, DAG); 00226 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); 00227 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); 00228 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 00229 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); 00230 case ISD::ATOMIC_LOAD: return LowerATOMIC_LOAD(Op, DAG); 00231 case ISD::ATOMIC_STORE: return LowerATOMIC_STORE(Op, DAG); 00232 default: 00233 llvm_unreachable("unimplemented operand"); 00234 } 00235 } 00236 00237 /// ReplaceNodeResults - Replace the results of node with an illegal result 00238 /// type with new values built out of custom code. 00239 void XCoreTargetLowering::ReplaceNodeResults(SDNode *N, 00240 SmallVectorImpl<SDValue>&Results, 00241 SelectionDAG &DAG) const { 00242 switch (N->getOpcode()) { 00243 default: 00244 llvm_unreachable("Don't know how to custom expand this!"); 00245 case ISD::ADD: 00246 case ISD::SUB: 00247 Results.push_back(ExpandADDSUB(N, DAG)); 00248 return; 00249 } 00250 } 00251 00252 //===----------------------------------------------------------------------===// 00253 // Misc Lower Operation implementation 00254 //===----------------------------------------------------------------------===// 00255 00256 SDValue XCoreTargetLowering::getGlobalAddressWrapper(SDValue GA, 00257 const GlobalValue *GV, 00258 SelectionDAG &DAG) const { 00259 // FIXME there is no actual debug info here 00260 SDLoc dl(GA); 00261 00262 if (GV->getType()->getElementType()->isFunctionTy()) 00263 return DAG.getNode(XCoreISD::PCRelativeWrapper, dl, MVT::i32, GA); 00264 00265 const auto *GVar = dyn_cast<GlobalVariable>(GV); 00266 if ((GV->hasSection() && StringRef(GV->getSection()).startswith(".cp.")) || 00267 (GVar && GVar->isConstant() && GV->hasLocalLinkage())) 00268 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, GA); 00269 00270 return DAG.getNode(XCoreISD::DPRelativeWrapper, dl, MVT::i32, GA); 00271 } 00272 00273 static bool IsSmallObject(const GlobalValue *GV, const XCoreTargetLowering &XTL) { 00274 if (XTL.getTargetMachine().getCodeModel() == CodeModel::Small) 00275 return true; 00276 00277 Type *ObjType = GV->getType()->getPointerElementType(); 00278 if (!ObjType->isSized()) 00279 return false; 00280 00281 unsigned ObjSize = XTL.getDataLayout()->getTypeAllocSize(ObjType); 00282 return ObjSize < CodeModelLargeSize && ObjSize != 0; 00283 } 00284 00285 SDValue XCoreTargetLowering:: 00286 LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const 00287 { 00288 const GlobalAddressSDNode *GN = cast<GlobalAddressSDNode>(Op); 00289 const GlobalValue *GV = GN->getGlobal(); 00290 SDLoc DL(GN); 00291 int64_t Offset = GN->getOffset(); 00292 if (IsSmallObject(GV, *this)) { 00293 // We can only fold positive offsets that are a multiple of the word size. 00294 int64_t FoldedOffset = std::max(Offset & ~3, (int64_t)0); 00295 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, FoldedOffset); 00296 GA = getGlobalAddressWrapper(GA, GV, DAG); 00297 // Handle the rest of the offset. 00298 if (Offset != FoldedOffset) { 00299 SDValue Remaining = DAG.getConstant(Offset - FoldedOffset, MVT::i32); 00300 GA = DAG.getNode(ISD::ADD, DL, MVT::i32, GA, Remaining); 00301 } 00302 return GA; 00303 } else { 00304 // Ideally we would not fold in offset with an index <= 11. 00305 Type *Ty = Type::getInt8PtrTy(*DAG.getContext()); 00306 Constant *GA = ConstantExpr::getBitCast(const_cast<GlobalValue*>(GV), Ty); 00307 Ty = Type::getInt32Ty(*DAG.getContext()); 00308 Constant *Idx = ConstantInt::get(Ty, Offset); 00309 Constant *GAI = ConstantExpr::getGetElementPtr(GA, Idx); 00310 SDValue CP = DAG.getConstantPool(GAI, MVT::i32); 00311 return DAG.getLoad(getPointerTy(), DL, DAG.getEntryNode(), CP, 00312 MachinePointerInfo(), false, false, false, 0); 00313 } 00314 } 00315 00316 SDValue XCoreTargetLowering:: 00317 LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const 00318 { 00319 SDLoc DL(Op); 00320 00321 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 00322 SDValue Result = DAG.getTargetBlockAddress(BA, getPointerTy()); 00323 00324 return DAG.getNode(XCoreISD::PCRelativeWrapper, DL, getPointerTy(), Result); 00325 } 00326 00327 SDValue XCoreTargetLowering:: 00328 LowerConstantPool(SDValue Op, SelectionDAG &DAG) const 00329 { 00330 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 00331 // FIXME there isn't really debug info here 00332 SDLoc dl(CP); 00333 EVT PtrVT = Op.getValueType(); 00334 SDValue Res; 00335 if (CP->isMachineConstantPoolEntry()) { 00336 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 00337 CP->getAlignment(), CP->getOffset()); 00338 } else { 00339 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 00340 CP->getAlignment(), CP->getOffset()); 00341 } 00342 return DAG.getNode(XCoreISD::CPRelativeWrapper, dl, MVT::i32, Res); 00343 } 00344 00345 unsigned XCoreTargetLowering::getJumpTableEncoding() const { 00346 return MachineJumpTableInfo::EK_Inline; 00347 } 00348 00349 SDValue XCoreTargetLowering:: 00350 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const 00351 { 00352 SDValue Chain = Op.getOperand(0); 00353 SDValue Table = Op.getOperand(1); 00354 SDValue Index = Op.getOperand(2); 00355 SDLoc dl(Op); 00356 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 00357 unsigned JTI = JT->getIndex(); 00358 MachineFunction &MF = DAG.getMachineFunction(); 00359 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); 00360 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); 00361 00362 unsigned NumEntries = MJTI->getJumpTables()[JTI].MBBs.size(); 00363 if (NumEntries <= 32) { 00364 return DAG.getNode(XCoreISD::BR_JT, dl, MVT::Other, Chain, TargetJT, Index); 00365 } 00366 assert((NumEntries >> 31) == 0); 00367 SDValue ScaledIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, 00368 DAG.getConstant(1, MVT::i32)); 00369 return DAG.getNode(XCoreISD::BR_JT32, dl, MVT::Other, Chain, TargetJT, 00370 ScaledIndex); 00371 } 00372 00373 SDValue XCoreTargetLowering:: 00374 lowerLoadWordFromAlignedBasePlusOffset(SDLoc DL, SDValue Chain, SDValue Base, 00375 int64_t Offset, SelectionDAG &DAG) const 00376 { 00377 if ((Offset & 0x3) == 0) { 00378 return DAG.getLoad(getPointerTy(), DL, Chain, Base, MachinePointerInfo(), 00379 false, false, false, 0); 00380 } 00381 // Lower to pair of consecutive word aligned loads plus some bit shifting. 00382 int32_t HighOffset = RoundUpToAlignment(Offset, 4); 00383 int32_t LowOffset = HighOffset - 4; 00384 SDValue LowAddr, HighAddr; 00385 if (GlobalAddressSDNode *GASD = 00386 dyn_cast<GlobalAddressSDNode>(Base.getNode())) { 00387 LowAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 00388 LowOffset); 00389 HighAddr = DAG.getGlobalAddress(GASD->getGlobal(), DL, Base.getValueType(), 00390 HighOffset); 00391 } else { 00392 LowAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 00393 DAG.getConstant(LowOffset, MVT::i32)); 00394 HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, Base, 00395 DAG.getConstant(HighOffset, MVT::i32)); 00396 } 00397 SDValue LowShift = DAG.getConstant((Offset - LowOffset) * 8, MVT::i32); 00398 SDValue HighShift = DAG.getConstant((HighOffset - Offset) * 8, MVT::i32); 00399 00400 SDValue Low = DAG.getLoad(getPointerTy(), DL, Chain, 00401 LowAddr, MachinePointerInfo(), 00402 false, false, false, 0); 00403 SDValue High = DAG.getLoad(getPointerTy(), DL, Chain, 00404 HighAddr, MachinePointerInfo(), 00405 false, false, false, 0); 00406 SDValue LowShifted = DAG.getNode(ISD::SRL, DL, MVT::i32, Low, LowShift); 00407 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, HighShift); 00408 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, LowShifted, HighShifted); 00409 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 00410 High.getValue(1)); 00411 SDValue Ops[] = { Result, Chain }; 00412 return DAG.getMergeValues(Ops, DL); 00413 } 00414 00415 static bool isWordAligned(SDValue Value, SelectionDAG &DAG) 00416 { 00417 APInt KnownZero, KnownOne; 00418 DAG.computeKnownBits(Value, KnownZero, KnownOne); 00419 return KnownZero.countTrailingOnes() >= 2; 00420 } 00421 00422 SDValue XCoreTargetLowering:: 00423 LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 00424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 00425 LoadSDNode *LD = cast<LoadSDNode>(Op); 00426 assert(LD->getExtensionType() == ISD::NON_EXTLOAD && 00427 "Unexpected extension type"); 00428 assert(LD->getMemoryVT() == MVT::i32 && "Unexpected load EVT"); 00429 if (allowsMisalignedMemoryAccesses(LD->getMemoryVT(), 00430 LD->getAddressSpace(), 00431 LD->getAlignment())) 00432 return SDValue(); 00433 00434 unsigned ABIAlignment = getDataLayout()-> 00435 getABITypeAlignment(LD->getMemoryVT().getTypeForEVT(*DAG.getContext())); 00436 // Leave aligned load alone. 00437 if (LD->getAlignment() >= ABIAlignment) 00438 return SDValue(); 00439 00440 SDValue Chain = LD->getChain(); 00441 SDValue BasePtr = LD->getBasePtr(); 00442 SDLoc DL(Op); 00443 00444 if (!LD->isVolatile()) { 00445 const GlobalValue *GV; 00446 int64_t Offset = 0; 00447 if (DAG.isBaseWithConstantOffset(BasePtr) && 00448 isWordAligned(BasePtr->getOperand(0), DAG)) { 00449 SDValue NewBasePtr = BasePtr->getOperand(0); 00450 Offset = cast<ConstantSDNode>(BasePtr->getOperand(1))->getSExtValue(); 00451 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 00452 Offset, DAG); 00453 } 00454 if (TLI.isGAPlusOffset(BasePtr.getNode(), GV, Offset) && 00455 MinAlign(GV->getAlignment(), 4) == 4) { 00456 SDValue NewBasePtr = DAG.getGlobalAddress(GV, DL, 00457 BasePtr->getValueType(0)); 00458 return lowerLoadWordFromAlignedBasePlusOffset(DL, Chain, NewBasePtr, 00459 Offset, DAG); 00460 } 00461 } 00462 00463 if (LD->getAlignment() == 2) { 00464 SDValue Low = DAG.getExtLoad(ISD::ZEXTLOAD, DL, MVT::i32, Chain, 00465 BasePtr, LD->getPointerInfo(), MVT::i16, 00466 LD->isVolatile(), LD->isNonTemporal(), 00467 LD->isInvariant(), 2); 00468 SDValue HighAddr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 00469 DAG.getConstant(2, MVT::i32)); 00470 SDValue High = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 00471 HighAddr, 00472 LD->getPointerInfo().getWithOffset(2), 00473 MVT::i16, LD->isVolatile(), 00474 LD->isNonTemporal(), LD->isInvariant(), 2); 00475 SDValue HighShifted = DAG.getNode(ISD::SHL, DL, MVT::i32, High, 00476 DAG.getConstant(16, MVT::i32)); 00477 SDValue Result = DAG.getNode(ISD::OR, DL, MVT::i32, Low, HighShifted); 00478 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Low.getValue(1), 00479 High.getValue(1)); 00480 SDValue Ops[] = { Result, Chain }; 00481 return DAG.getMergeValues(Ops, DL); 00482 } 00483 00484 // Lower to a call to __misaligned_load(BasePtr). 00485 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 00486 TargetLowering::ArgListTy Args; 00487 TargetLowering::ArgListEntry Entry; 00488 00489 Entry.Ty = IntPtrTy; 00490 Entry.Node = BasePtr; 00491 Args.push_back(Entry); 00492 00493 TargetLowering::CallLoweringInfo CLI(DAG); 00494 CLI.setDebugLoc(DL).setChain(Chain) 00495 .setCallee(CallingConv::C, IntPtrTy, 00496 DAG.getExternalSymbol("__misaligned_load", getPointerTy()), 00497 std::move(Args), 0); 00498 00499 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 00500 SDValue Ops[] = { CallResult.first, CallResult.second }; 00501 return DAG.getMergeValues(Ops, DL); 00502 } 00503 00504 SDValue XCoreTargetLowering:: 00505 LowerSTORE(SDValue Op, SelectionDAG &DAG) const 00506 { 00507 StoreSDNode *ST = cast<StoreSDNode>(Op); 00508 assert(!ST->isTruncatingStore() && "Unexpected store type"); 00509 assert(ST->getMemoryVT() == MVT::i32 && "Unexpected store EVT"); 00510 if (allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 00511 ST->getAddressSpace(), 00512 ST->getAlignment())) { 00513 return SDValue(); 00514 } 00515 unsigned ABIAlignment = getDataLayout()-> 00516 getABITypeAlignment(ST->getMemoryVT().getTypeForEVT(*DAG.getContext())); 00517 // Leave aligned store alone. 00518 if (ST->getAlignment() >= ABIAlignment) { 00519 return SDValue(); 00520 } 00521 SDValue Chain = ST->getChain(); 00522 SDValue BasePtr = ST->getBasePtr(); 00523 SDValue Value = ST->getValue(); 00524 SDLoc dl(Op); 00525 00526 if (ST->getAlignment() == 2) { 00527 SDValue Low = Value; 00528 SDValue High = DAG.getNode(ISD::SRL, dl, MVT::i32, Value, 00529 DAG.getConstant(16, MVT::i32)); 00530 SDValue StoreLow = DAG.getTruncStore(Chain, dl, Low, BasePtr, 00531 ST->getPointerInfo(), MVT::i16, 00532 ST->isVolatile(), ST->isNonTemporal(), 00533 2); 00534 SDValue HighAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, BasePtr, 00535 DAG.getConstant(2, MVT::i32)); 00536 SDValue StoreHigh = DAG.getTruncStore(Chain, dl, High, HighAddr, 00537 ST->getPointerInfo().getWithOffset(2), 00538 MVT::i16, ST->isVolatile(), 00539 ST->isNonTemporal(), 2); 00540 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, StoreLow, StoreHigh); 00541 } 00542 00543 // Lower to a call to __misaligned_store(BasePtr, Value). 00544 Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext()); 00545 TargetLowering::ArgListTy Args; 00546 TargetLowering::ArgListEntry Entry; 00547 00548 Entry.Ty = IntPtrTy; 00549 Entry.Node = BasePtr; 00550 Args.push_back(Entry); 00551 00552 Entry.Node = Value; 00553 Args.push_back(Entry); 00554 00555 TargetLowering::CallLoweringInfo CLI(DAG); 00556 CLI.setDebugLoc(dl).setChain(Chain) 00557 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 00558 DAG.getExternalSymbol("__misaligned_store", getPointerTy()), 00559 std::move(Args), 0); 00560 00561 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 00562 return CallResult.second; 00563 } 00564 00565 SDValue XCoreTargetLowering:: 00566 LowerSMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 00567 { 00568 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::SMUL_LOHI && 00569 "Unexpected operand to lower!"); 00570 SDLoc dl(Op); 00571 SDValue LHS = Op.getOperand(0); 00572 SDValue RHS = Op.getOperand(1); 00573 SDValue Zero = DAG.getConstant(0, MVT::i32); 00574 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 00575 DAG.getVTList(MVT::i32, MVT::i32), Zero, Zero, 00576 LHS, RHS); 00577 SDValue Lo(Hi.getNode(), 1); 00578 SDValue Ops[] = { Lo, Hi }; 00579 return DAG.getMergeValues(Ops, dl); 00580 } 00581 00582 SDValue XCoreTargetLowering:: 00583 LowerUMUL_LOHI(SDValue Op, SelectionDAG &DAG) const 00584 { 00585 assert(Op.getValueType() == MVT::i32 && Op.getOpcode() == ISD::UMUL_LOHI && 00586 "Unexpected operand to lower!"); 00587 SDLoc dl(Op); 00588 SDValue LHS = Op.getOperand(0); 00589 SDValue RHS = Op.getOperand(1); 00590 SDValue Zero = DAG.getConstant(0, MVT::i32); 00591 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 00592 DAG.getVTList(MVT::i32, MVT::i32), LHS, RHS, 00593 Zero, Zero); 00594 SDValue Lo(Hi.getNode(), 1); 00595 SDValue Ops[] = { Lo, Hi }; 00596 return DAG.getMergeValues(Ops, dl); 00597 } 00598 00599 /// isADDADDMUL - Return whether Op is in a form that is equivalent to 00600 /// add(add(mul(x,y),a),b). If requireIntermediatesHaveOneUse is true then 00601 /// each intermediate result in the calculation must also have a single use. 00602 /// If the Op is in the correct form the constituent parts are written to Mul0, 00603 /// Mul1, Addend0 and Addend1. 00604 static bool 00605 isADDADDMUL(SDValue Op, SDValue &Mul0, SDValue &Mul1, SDValue &Addend0, 00606 SDValue &Addend1, bool requireIntermediatesHaveOneUse) 00607 { 00608 if (Op.getOpcode() != ISD::ADD) 00609 return false; 00610 SDValue N0 = Op.getOperand(0); 00611 SDValue N1 = Op.getOperand(1); 00612 SDValue AddOp; 00613 SDValue OtherOp; 00614 if (N0.getOpcode() == ISD::ADD) { 00615 AddOp = N0; 00616 OtherOp = N1; 00617 } else if (N1.getOpcode() == ISD::ADD) { 00618 AddOp = N1; 00619 OtherOp = N0; 00620 } else { 00621 return false; 00622 } 00623 if (requireIntermediatesHaveOneUse && !AddOp.hasOneUse()) 00624 return false; 00625 if (OtherOp.getOpcode() == ISD::MUL) { 00626 // add(add(a,b),mul(x,y)) 00627 if (requireIntermediatesHaveOneUse && !OtherOp.hasOneUse()) 00628 return false; 00629 Mul0 = OtherOp.getOperand(0); 00630 Mul1 = OtherOp.getOperand(1); 00631 Addend0 = AddOp.getOperand(0); 00632 Addend1 = AddOp.getOperand(1); 00633 return true; 00634 } 00635 if (AddOp.getOperand(0).getOpcode() == ISD::MUL) { 00636 // add(add(mul(x,y),a),b) 00637 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(0).hasOneUse()) 00638 return false; 00639 Mul0 = AddOp.getOperand(0).getOperand(0); 00640 Mul1 = AddOp.getOperand(0).getOperand(1); 00641 Addend0 = AddOp.getOperand(1); 00642 Addend1 = OtherOp; 00643 return true; 00644 } 00645 if (AddOp.getOperand(1).getOpcode() == ISD::MUL) { 00646 // add(add(a,mul(x,y)),b) 00647 if (requireIntermediatesHaveOneUse && !AddOp.getOperand(1).hasOneUse()) 00648 return false; 00649 Mul0 = AddOp.getOperand(1).getOperand(0); 00650 Mul1 = AddOp.getOperand(1).getOperand(1); 00651 Addend0 = AddOp.getOperand(0); 00652 Addend1 = OtherOp; 00653 return true; 00654 } 00655 return false; 00656 } 00657 00658 SDValue XCoreTargetLowering:: 00659 TryExpandADDWithMul(SDNode *N, SelectionDAG &DAG) const 00660 { 00661 SDValue Mul; 00662 SDValue Other; 00663 if (N->getOperand(0).getOpcode() == ISD::MUL) { 00664 Mul = N->getOperand(0); 00665 Other = N->getOperand(1); 00666 } else if (N->getOperand(1).getOpcode() == ISD::MUL) { 00667 Mul = N->getOperand(1); 00668 Other = N->getOperand(0); 00669 } else { 00670 return SDValue(); 00671 } 00672 SDLoc dl(N); 00673 SDValue LL, RL, AddendL, AddendH; 00674 LL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00675 Mul.getOperand(0), DAG.getConstant(0, MVT::i32)); 00676 RL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00677 Mul.getOperand(1), DAG.getConstant(0, MVT::i32)); 00678 AddendL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00679 Other, DAG.getConstant(0, MVT::i32)); 00680 AddendH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00681 Other, DAG.getConstant(1, MVT::i32)); 00682 APInt HighMask = APInt::getHighBitsSet(64, 32); 00683 unsigned LHSSB = DAG.ComputeNumSignBits(Mul.getOperand(0)); 00684 unsigned RHSSB = DAG.ComputeNumSignBits(Mul.getOperand(1)); 00685 if (DAG.MaskedValueIsZero(Mul.getOperand(0), HighMask) && 00686 DAG.MaskedValueIsZero(Mul.getOperand(1), HighMask)) { 00687 // The inputs are both zero-extended. 00688 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 00689 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 00690 AddendL, LL, RL); 00691 SDValue Lo(Hi.getNode(), 1); 00692 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 00693 } 00694 if (LHSSB > 32 && RHSSB > 32) { 00695 // The inputs are both sign-extended. 00696 SDValue Hi = DAG.getNode(XCoreISD::MACCS, dl, 00697 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 00698 AddendL, LL, RL); 00699 SDValue Lo(Hi.getNode(), 1); 00700 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 00701 } 00702 SDValue LH, RH; 00703 LH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00704 Mul.getOperand(0), DAG.getConstant(1, MVT::i32)); 00705 RH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00706 Mul.getOperand(1), DAG.getConstant(1, MVT::i32)); 00707 SDValue Hi = DAG.getNode(XCoreISD::MACCU, dl, 00708 DAG.getVTList(MVT::i32, MVT::i32), AddendH, 00709 AddendL, LL, RL); 00710 SDValue Lo(Hi.getNode(), 1); 00711 RH = DAG.getNode(ISD::MUL, dl, MVT::i32, LL, RH); 00712 LH = DAG.getNode(ISD::MUL, dl, MVT::i32, LH, RL); 00713 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, RH); 00714 Hi = DAG.getNode(ISD::ADD, dl, MVT::i32, Hi, LH); 00715 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 00716 } 00717 00718 SDValue XCoreTargetLowering:: 00719 ExpandADDSUB(SDNode *N, SelectionDAG &DAG) const 00720 { 00721 assert(N->getValueType(0) == MVT::i64 && 00722 (N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && 00723 "Unknown operand to lower!"); 00724 00725 if (N->getOpcode() == ISD::ADD) { 00726 SDValue Result = TryExpandADDWithMul(N, DAG); 00727 if (Result.getNode()) 00728 return Result; 00729 } 00730 00731 SDLoc dl(N); 00732 00733 // Extract components 00734 SDValue LHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00735 N->getOperand(0), DAG.getConstant(0, MVT::i32)); 00736 SDValue LHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00737 N->getOperand(0), DAG.getConstant(1, MVT::i32)); 00738 SDValue RHSL = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00739 N->getOperand(1), DAG.getConstant(0, MVT::i32)); 00740 SDValue RHSH = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 00741 N->getOperand(1), DAG.getConstant(1, MVT::i32)); 00742 00743 // Expand 00744 unsigned Opcode = (N->getOpcode() == ISD::ADD) ? XCoreISD::LADD : 00745 XCoreISD::LSUB; 00746 SDValue Zero = DAG.getConstant(0, MVT::i32); 00747 SDValue Lo = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 00748 LHSL, RHSL, Zero); 00749 SDValue Carry(Lo.getNode(), 1); 00750 00751 SDValue Hi = DAG.getNode(Opcode, dl, DAG.getVTList(MVT::i32, MVT::i32), 00752 LHSH, RHSH, Carry); 00753 SDValue Ignored(Hi.getNode(), 1); 00754 // Merge the pieces 00755 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 00756 } 00757 00758 SDValue XCoreTargetLowering:: 00759 LowerVAARG(SDValue Op, SelectionDAG &DAG) const 00760 { 00761 // Whist llvm does not support aggregate varargs we can ignore 00762 // the possibility of the ValueType being an implicit byVal vararg. 00763 SDNode *Node = Op.getNode(); 00764 EVT VT = Node->getValueType(0); // not an aggregate 00765 SDValue InChain = Node->getOperand(0); 00766 SDValue VAListPtr = Node->getOperand(1); 00767 EVT PtrVT = VAListPtr.getValueType(); 00768 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue(); 00769 SDLoc dl(Node); 00770 SDValue VAList = DAG.getLoad(PtrVT, dl, InChain, 00771 VAListPtr, MachinePointerInfo(SV), 00772 false, false, false, 0); 00773 // Increment the pointer, VAList, to the next vararg 00774 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAList, 00775 DAG.getIntPtrConstant(VT.getSizeInBits() / 8)); 00776 // Store the incremented VAList to the legalized pointer 00777 InChain = DAG.getStore(VAList.getValue(1), dl, nextPtr, VAListPtr, 00778 MachinePointerInfo(SV), false, false, 0); 00779 // Load the actual argument out of the pointer VAList 00780 return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(), 00781 false, false, false, 0); 00782 } 00783 00784 SDValue XCoreTargetLowering:: 00785 LowerVASTART(SDValue Op, SelectionDAG &DAG) const 00786 { 00787 SDLoc dl(Op); 00788 // vastart stores the address of the VarArgsFrameIndex slot into the 00789 // memory location argument 00790 MachineFunction &MF = DAG.getMachineFunction(); 00791 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 00792 SDValue Addr = DAG.getFrameIndex(XFI->getVarArgsFrameIndex(), MVT::i32); 00793 return DAG.getStore(Op.getOperand(0), dl, Addr, Op.getOperand(1), 00794 MachinePointerInfo(), false, false, 0); 00795 } 00796 00797 SDValue XCoreTargetLowering::LowerFRAMEADDR(SDValue Op, 00798 SelectionDAG &DAG) const { 00799 // This nodes represent llvm.frameaddress on the DAG. 00800 // It takes one operand, the index of the frame address to return. 00801 // An index of zero corresponds to the current function's frame address. 00802 // An index of one to the parent's frame address, and so on. 00803 // Depths > 0 not supported yet! 00804 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 00805 return SDValue(); 00806 00807 MachineFunction &MF = DAG.getMachineFunction(); 00808 const TargetRegisterInfo *RegInfo = 00809 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 00810 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(Op), 00811 RegInfo->getFrameRegister(MF), MVT::i32); 00812 } 00813 00814 SDValue XCoreTargetLowering:: 00815 LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { 00816 // This nodes represent llvm.returnaddress on the DAG. 00817 // It takes one operand, the index of the return address to return. 00818 // An index of zero corresponds to the current function's return address. 00819 // An index of one to the parent's return address, and so on. 00820 // Depths > 0 not supported yet! 00821 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() > 0) 00822 return SDValue(); 00823 00824 MachineFunction &MF = DAG.getMachineFunction(); 00825 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 00826 int FI = XFI->createLRSpillSlot(MF); 00827 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 00828 return DAG.getLoad(getPointerTy(), SDLoc(Op), DAG.getEntryNode(), FIN, 00829 MachinePointerInfo::getFixedStack(FI), false, false, 00830 false, 0); 00831 } 00832 00833 SDValue XCoreTargetLowering:: 00834 LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const { 00835 // This node represents offset from frame pointer to first on-stack argument. 00836 // This is needed for correct stack adjustment during unwind. 00837 // However, we don't know the offset until after the frame has be finalised. 00838 // This is done during the XCoreFTAOElim pass. 00839 return DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, SDLoc(Op), MVT::i32); 00840 } 00841 00842 SDValue XCoreTargetLowering:: 00843 LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const { 00844 // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) 00845 // This node represents 'eh_return' gcc dwarf builtin, which is used to 00846 // return from exception. The general meaning is: adjust stack by OFFSET and 00847 // pass execution to HANDLER. 00848 MachineFunction &MF = DAG.getMachineFunction(); 00849 SDValue Chain = Op.getOperand(0); 00850 SDValue Offset = Op.getOperand(1); 00851 SDValue Handler = Op.getOperand(2); 00852 SDLoc dl(Op); 00853 00854 // Absolute SP = (FP + FrameToArgs) + Offset 00855 const TargetRegisterInfo *RegInfo = 00856 getTargetMachine().getSubtargetImpl()->getRegisterInfo(); 00857 SDValue Stack = DAG.getCopyFromReg(DAG.getEntryNode(), dl, 00858 RegInfo->getFrameRegister(MF), MVT::i32); 00859 SDValue FrameToArgs = DAG.getNode(XCoreISD::FRAME_TO_ARGS_OFFSET, dl, 00860 MVT::i32); 00861 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, FrameToArgs); 00862 Stack = DAG.getNode(ISD::ADD, dl, MVT::i32, Stack, Offset); 00863 00864 // R0=ExceptionPointerRegister R1=ExceptionSelectorRegister 00865 // which leaves 2 caller saved registers, R2 & R3 for us to use. 00866 unsigned StackReg = XCore::R2; 00867 unsigned HandlerReg = XCore::R3; 00868 00869 SDValue OutChains[] = { 00870 DAG.getCopyToReg(Chain, dl, StackReg, Stack), 00871 DAG.getCopyToReg(Chain, dl, HandlerReg, Handler) 00872 }; 00873 00874 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 00875 00876 return DAG.getNode(XCoreISD::EH_RETURN, dl, MVT::Other, Chain, 00877 DAG.getRegister(StackReg, MVT::i32), 00878 DAG.getRegister(HandlerReg, MVT::i32)); 00879 00880 } 00881 00882 SDValue XCoreTargetLowering:: 00883 LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 00884 return Op.getOperand(0); 00885 } 00886 00887 SDValue XCoreTargetLowering:: 00888 LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { 00889 SDValue Chain = Op.getOperand(0); 00890 SDValue Trmp = Op.getOperand(1); // trampoline 00891 SDValue FPtr = Op.getOperand(2); // nested function 00892 SDValue Nest = Op.getOperand(3); // 'nest' parameter value 00893 00894 const Value *TrmpAddr = cast<SrcValueSDNode>(Op.getOperand(4))->getValue(); 00895 00896 // .align 4 00897 // LDAPF_u10 r11, nest 00898 // LDW_2rus r11, r11[0] 00899 // STWSP_ru6 r11, sp[0] 00900 // LDAPF_u10 r11, fptr 00901 // LDW_2rus r11, r11[0] 00902 // BAU_1r r11 00903 // nest: 00904 // .word nest 00905 // fptr: 00906 // .word fptr 00907 SDValue OutChains[5]; 00908 00909 SDValue Addr = Trmp; 00910 00911 SDLoc dl(Op); 00912 OutChains[0] = DAG.getStore(Chain, dl, DAG.getConstant(0x0a3cd805, MVT::i32), 00913 Addr, MachinePointerInfo(TrmpAddr), false, false, 00914 0); 00915 00916 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 00917 DAG.getConstant(4, MVT::i32)); 00918 OutChains[1] = DAG.getStore(Chain, dl, DAG.getConstant(0xd80456c0, MVT::i32), 00919 Addr, MachinePointerInfo(TrmpAddr, 4), false, 00920 false, 0); 00921 00922 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 00923 DAG.getConstant(8, MVT::i32)); 00924 OutChains[2] = DAG.getStore(Chain, dl, DAG.getConstant(0x27fb0a3c, MVT::i32), 00925 Addr, MachinePointerInfo(TrmpAddr, 8), false, 00926 false, 0); 00927 00928 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 00929 DAG.getConstant(12, MVT::i32)); 00930 OutChains[3] = DAG.getStore(Chain, dl, Nest, Addr, 00931 MachinePointerInfo(TrmpAddr, 12), false, false, 00932 0); 00933 00934 Addr = DAG.getNode(ISD::ADD, dl, MVT::i32, Trmp, 00935 DAG.getConstant(16, MVT::i32)); 00936 OutChains[4] = DAG.getStore(Chain, dl, FPtr, Addr, 00937 MachinePointerInfo(TrmpAddr, 16), false, false, 00938 0); 00939 00940 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains); 00941 } 00942 00943 SDValue XCoreTargetLowering:: 00944 LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { 00945 SDLoc DL(Op); 00946 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 00947 switch (IntNo) { 00948 case Intrinsic::xcore_crc8: 00949 EVT VT = Op.getValueType(); 00950 SDValue Data = 00951 DAG.getNode(XCoreISD::CRC8, DL, DAG.getVTList(VT, VT), 00952 Op.getOperand(1), Op.getOperand(2) , Op.getOperand(3)); 00953 SDValue Crc(Data.getNode(), 1); 00954 SDValue Results[] = { Crc, Data }; 00955 return DAG.getMergeValues(Results, DL); 00956 } 00957 return SDValue(); 00958 } 00959 00960 SDValue XCoreTargetLowering:: 00961 LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG) const { 00962 SDLoc DL(Op); 00963 return DAG.getNode(XCoreISD::MEMBARRIER, DL, MVT::Other, Op.getOperand(0)); 00964 } 00965 00966 SDValue XCoreTargetLowering:: 00967 LowerATOMIC_LOAD(SDValue Op, SelectionDAG &DAG) const { 00968 AtomicSDNode *N = cast<AtomicSDNode>(Op); 00969 assert(N->getOpcode() == ISD::ATOMIC_LOAD && "Bad Atomic OP"); 00970 assert(N->getOrdering() <= Monotonic && 00971 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 00972 if (N->getMemoryVT() == MVT::i32) { 00973 if (N->getAlignment() < 4) 00974 report_fatal_error("atomic load must be aligned"); 00975 return DAG.getLoad(getPointerTy(), SDLoc(Op), N->getChain(), 00976 N->getBasePtr(), N->getPointerInfo(), 00977 N->isVolatile(), N->isNonTemporal(), 00978 N->isInvariant(), N->getAlignment(), 00979 N->getAAInfo(), N->getRanges()); 00980 } 00981 if (N->getMemoryVT() == MVT::i16) { 00982 if (N->getAlignment() < 2) 00983 report_fatal_error("atomic load must be aligned"); 00984 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 00985 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 00986 N->isVolatile(), N->isNonTemporal(), 00987 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 00988 } 00989 if (N->getMemoryVT() == MVT::i8) 00990 return DAG.getExtLoad(ISD::EXTLOAD, SDLoc(Op), MVT::i32, N->getChain(), 00991 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 00992 N->isVolatile(), N->isNonTemporal(), 00993 N->isInvariant(), N->getAlignment(), N->getAAInfo()); 00994 return SDValue(); 00995 } 00996 00997 SDValue XCoreTargetLowering:: 00998 LowerATOMIC_STORE(SDValue Op, SelectionDAG &DAG) const { 00999 AtomicSDNode *N = cast<AtomicSDNode>(Op); 01000 assert(N->getOpcode() == ISD::ATOMIC_STORE && "Bad Atomic OP"); 01001 assert(N->getOrdering() <= Monotonic && 01002 "setInsertFencesForAtomic(true) and yet greater than Monotonic"); 01003 if (N->getMemoryVT() == MVT::i32) { 01004 if (N->getAlignment() < 4) 01005 report_fatal_error("atomic store must be aligned"); 01006 return DAG.getStore(N->getChain(), SDLoc(Op), N->getVal(), 01007 N->getBasePtr(), N->getPointerInfo(), 01008 N->isVolatile(), N->isNonTemporal(), 01009 N->getAlignment(), N->getAAInfo()); 01010 } 01011 if (N->getMemoryVT() == MVT::i16) { 01012 if (N->getAlignment() < 2) 01013 report_fatal_error("atomic store must be aligned"); 01014 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 01015 N->getBasePtr(), N->getPointerInfo(), MVT::i16, 01016 N->isVolatile(), N->isNonTemporal(), 01017 N->getAlignment(), N->getAAInfo()); 01018 } 01019 if (N->getMemoryVT() == MVT::i8) 01020 return DAG.getTruncStore(N->getChain(), SDLoc(Op), N->getVal(), 01021 N->getBasePtr(), N->getPointerInfo(), MVT::i8, 01022 N->isVolatile(), N->isNonTemporal(), 01023 N->getAlignment(), N->getAAInfo()); 01024 return SDValue(); 01025 } 01026 01027 //===----------------------------------------------------------------------===// 01028 // Calling Convention Implementation 01029 //===----------------------------------------------------------------------===// 01030 01031 #include "XCoreGenCallingConv.inc" 01032 01033 //===----------------------------------------------------------------------===// 01034 // Call Calling Convention Implementation 01035 //===----------------------------------------------------------------------===// 01036 01037 /// XCore call implementation 01038 SDValue 01039 XCoreTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 01040 SmallVectorImpl<SDValue> &InVals) const { 01041 SelectionDAG &DAG = CLI.DAG; 01042 SDLoc &dl = CLI.DL; 01043 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 01044 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 01045 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 01046 SDValue Chain = CLI.Chain; 01047 SDValue Callee = CLI.Callee; 01048 bool &isTailCall = CLI.IsTailCall; 01049 CallingConv::ID CallConv = CLI.CallConv; 01050 bool isVarArg = CLI.IsVarArg; 01051 01052 // XCore target does not yet support tail call optimization. 01053 isTailCall = false; 01054 01055 // For now, only CallingConv::C implemented 01056 switch (CallConv) 01057 { 01058 default: 01059 llvm_unreachable("Unsupported calling convention"); 01060 case CallingConv::Fast: 01061 case CallingConv::C: 01062 return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall, 01063 Outs, OutVals, Ins, dl, DAG, InVals); 01064 } 01065 } 01066 01067 /// LowerCallResult - Lower the result values of a call into the 01068 /// appropriate copies out of appropriate physical registers / memory locations. 01069 static SDValue 01070 LowerCallResult(SDValue Chain, SDValue InFlag, 01071 const SmallVectorImpl<CCValAssign> &RVLocs, 01072 SDLoc dl, SelectionDAG &DAG, 01073 SmallVectorImpl<SDValue> &InVals) { 01074 SmallVector<std::pair<int, unsigned>, 4> ResultMemLocs; 01075 // Copy results out of physical registers. 01076 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 01077 const CCValAssign &VA = RVLocs[i]; 01078 if (VA.isRegLoc()) { 01079 Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getValVT(), 01080 InFlag).getValue(1); 01081 InFlag = Chain.getValue(2); 01082 InVals.push_back(Chain.getValue(0)); 01083 } else { 01084 assert(VA.isMemLoc()); 01085 ResultMemLocs.push_back(std::make_pair(VA.getLocMemOffset(), 01086 InVals.size())); 01087 // Reserve space for this result. 01088 InVals.push_back(SDValue()); 01089 } 01090 } 01091 01092 // Copy results out of memory. 01093 SmallVector<SDValue, 4> MemOpChains; 01094 for (unsigned i = 0, e = ResultMemLocs.size(); i != e; ++i) { 01095 int offset = ResultMemLocs[i].first; 01096 unsigned index = ResultMemLocs[i].second; 01097 SDVTList VTs = DAG.getVTList(MVT::i32, MVT::Other); 01098 SDValue Ops[] = { Chain, DAG.getConstant(offset / 4, MVT::i32) }; 01099 SDValue load = DAG.getNode(XCoreISD::LDWSP, dl, VTs, Ops); 01100 InVals[index] = load; 01101 MemOpChains.push_back(load.getValue(1)); 01102 } 01103 01104 // Transform all loads nodes into one single node because 01105 // all load nodes are independent of each other. 01106 if (!MemOpChains.empty()) 01107 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 01108 01109 return Chain; 01110 } 01111 01112 /// LowerCCCCallTo - functions arguments are copied from virtual 01113 /// regs to (physical regs)/(stack frame), CALLSEQ_START and 01114 /// CALLSEQ_END are emitted. 01115 /// TODO: isTailCall, sret. 01116 SDValue 01117 XCoreTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee, 01118 CallingConv::ID CallConv, bool isVarArg, 01119 bool isTailCall, 01120 const SmallVectorImpl<ISD::OutputArg> &Outs, 01121 const SmallVectorImpl<SDValue> &OutVals, 01122 const SmallVectorImpl<ISD::InputArg> &Ins, 01123 SDLoc dl, SelectionDAG &DAG, 01124 SmallVectorImpl<SDValue> &InVals) const { 01125 01126 // Analyze operands of the call, assigning locations to each operand. 01127 SmallVector<CCValAssign, 16> ArgLocs; 01128 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 01129 *DAG.getContext()); 01130 01131 // The ABI dictates there should be one stack slot available to the callee 01132 // on function entry (for saving lr). 01133 CCInfo.AllocateStack(4, 4); 01134 01135 CCInfo.AnalyzeCallOperands(Outs, CC_XCore); 01136 01137 SmallVector<CCValAssign, 16> RVLocs; 01138 // Analyze return values to determine the number of bytes of stack required. 01139 CCState RetCCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 01140 *DAG.getContext()); 01141 RetCCInfo.AllocateStack(CCInfo.getNextStackOffset(), 4); 01142 RetCCInfo.AnalyzeCallResult(Ins, RetCC_XCore); 01143 01144 // Get a count of how many bytes are to be pushed on the stack. 01145 unsigned NumBytes = RetCCInfo.getNextStackOffset(); 01146 01147 Chain = DAG.getCALLSEQ_START(Chain,DAG.getConstant(NumBytes, 01148 getPointerTy(), true), dl); 01149 01150 SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass; 01151 SmallVector<SDValue, 12> MemOpChains; 01152 01153 // Walk the register/memloc assignments, inserting copies/loads. 01154 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 01155 CCValAssign &VA = ArgLocs[i]; 01156 SDValue Arg = OutVals[i]; 01157 01158 // Promote the value if needed. 01159 switch (VA.getLocInfo()) { 01160 default: llvm_unreachable("Unknown loc info!"); 01161 case CCValAssign::Full: break; 01162 case CCValAssign::SExt: 01163 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 01164 break; 01165 case CCValAssign::ZExt: 01166 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 01167 break; 01168 case CCValAssign::AExt: 01169 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 01170 break; 01171 } 01172 01173 // Arguments that can be passed on register must be kept at 01174 // RegsToPass vector 01175 if (VA.isRegLoc()) { 01176 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 01177 } else { 01178 assert(VA.isMemLoc()); 01179 01180 int Offset = VA.getLocMemOffset(); 01181 01182 MemOpChains.push_back(DAG.getNode(XCoreISD::STWSP, dl, MVT::Other, 01183 Chain, Arg, 01184 DAG.getConstant(Offset/4, MVT::i32))); 01185 } 01186 } 01187 01188 // Transform all store nodes into one single node because 01189 // all store nodes are independent of each other. 01190 if (!MemOpChains.empty()) 01191 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 01192 01193 // Build a sequence of copy-to-reg nodes chained together with token 01194 // chain and flag operands which copy the outgoing args into registers. 01195 // The InFlag in necessary since all emitted instructions must be 01196 // stuck together. 01197 SDValue InFlag; 01198 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 01199 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 01200 RegsToPass[i].second, InFlag); 01201 InFlag = Chain.getValue(1); 01202 } 01203 01204 // If the callee is a GlobalAddress node (quite common, every direct call is) 01205 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. 01206 // Likewise ExternalSymbol -> TargetExternalSymbol. 01207 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 01208 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32); 01209 else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee)) 01210 Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32); 01211 01212 // XCoreBranchLink = #chain, #target_address, #opt_in_flags... 01213 // = Chain, Callee, Reg#1, Reg#2, ... 01214 // 01215 // Returns a chain & a flag for retval copy to use. 01216 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 01217 SmallVector<SDValue, 8> Ops; 01218 Ops.push_back(Chain); 01219 Ops.push_back(Callee); 01220 01221 // Add argument registers to the end of the list so that they are 01222 // known live into the call. 01223 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 01224 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 01225 RegsToPass[i].second.getValueType())); 01226 01227 if (InFlag.getNode()) 01228 Ops.push_back(InFlag); 01229 01230 Chain = DAG.getNode(XCoreISD::BL, dl, NodeTys, Ops); 01231 InFlag = Chain.getValue(1); 01232 01233 // Create the CALLSEQ_END node. 01234 Chain = DAG.getCALLSEQ_END(Chain, 01235 DAG.getConstant(NumBytes, getPointerTy(), true), 01236 DAG.getConstant(0, getPointerTy(), true), 01237 InFlag, dl); 01238 InFlag = Chain.getValue(1); 01239 01240 // Handle result values, copying them out of physregs into vregs that we 01241 // return. 01242 return LowerCallResult(Chain, InFlag, RVLocs, dl, DAG, InVals); 01243 } 01244 01245 //===----------------------------------------------------------------------===// 01246 // Formal Arguments Calling Convention Implementation 01247 //===----------------------------------------------------------------------===// 01248 01249 namespace { 01250 struct ArgDataPair { SDValue SDV; ISD::ArgFlagsTy Flags; }; 01251 } 01252 01253 /// XCore formal arguments implementation 01254 SDValue 01255 XCoreTargetLowering::LowerFormalArguments(SDValue Chain, 01256 CallingConv::ID CallConv, 01257 bool isVarArg, 01258 const SmallVectorImpl<ISD::InputArg> &Ins, 01259 SDLoc dl, 01260 SelectionDAG &DAG, 01261 SmallVectorImpl<SDValue> &InVals) 01262 const { 01263 switch (CallConv) 01264 { 01265 default: 01266 llvm_unreachable("Unsupported calling convention"); 01267 case CallingConv::C: 01268 case CallingConv::Fast: 01269 return LowerCCCArguments(Chain, CallConv, isVarArg, 01270 Ins, dl, DAG, InVals); 01271 } 01272 } 01273 01274 /// LowerCCCArguments - transform physical registers into 01275 /// virtual registers and generate load operations for 01276 /// arguments places on the stack. 01277 /// TODO: sret 01278 SDValue 01279 XCoreTargetLowering::LowerCCCArguments(SDValue Chain, 01280 CallingConv::ID CallConv, 01281 bool isVarArg, 01282 const SmallVectorImpl<ISD::InputArg> 01283 &Ins, 01284 SDLoc dl, 01285 SelectionDAG &DAG, 01286 SmallVectorImpl<SDValue> &InVals) const { 01287 MachineFunction &MF = DAG.getMachineFunction(); 01288 MachineFrameInfo *MFI = MF.getFrameInfo(); 01289 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 01290 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 01291 01292 // Assign locations to all of the incoming arguments. 01293 SmallVector<CCValAssign, 16> ArgLocs; 01294 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 01295 *DAG.getContext()); 01296 01297 CCInfo.AnalyzeFormalArguments(Ins, CC_XCore); 01298 01299 unsigned StackSlotSize = XCoreFrameLowering::stackSlotSize(); 01300 01301 unsigned LRSaveSize = StackSlotSize; 01302 01303 if (!isVarArg) 01304 XFI->setReturnStackOffset(CCInfo.getNextStackOffset() + LRSaveSize); 01305 01306 // All getCopyFromReg ops must precede any getMemcpys to prevent the 01307 // scheduler clobbering a register before it has been copied. 01308 // The stages are: 01309 // 1. CopyFromReg (and load) arg & vararg registers. 01310 // 2. Chain CopyFromReg nodes into a TokenFactor. 01311 // 3. Memcpy 'byVal' args & push final InVals. 01312 // 4. Chain mem ops nodes into a TokenFactor. 01313 SmallVector<SDValue, 4> CFRegNode; 01314 SmallVector<ArgDataPair, 4> ArgData; 01315 SmallVector<SDValue, 4> MemOps; 01316 01317 // 1a. CopyFromReg (and load) arg registers. 01318 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 01319 01320 CCValAssign &VA = ArgLocs[i]; 01321 SDValue ArgIn; 01322 01323 if (VA.isRegLoc()) { 01324 // Arguments passed in registers 01325 EVT RegVT = VA.getLocVT(); 01326 switch (RegVT.getSimpleVT().SimpleTy) { 01327 default: 01328 { 01329 #ifndef NDEBUG 01330 errs() << "LowerFormalArguments Unhandled argument type: " 01331 << RegVT.getSimpleVT().SimpleTy << "\n"; 01332 #endif 01333 llvm_unreachable(nullptr); 01334 } 01335 case MVT::i32: 01336 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 01337 RegInfo.addLiveIn(VA.getLocReg(), VReg); 01338 ArgIn = DAG.getCopyFromReg(Chain, dl, VReg, RegVT); 01339 CFRegNode.push_back(ArgIn.getValue(ArgIn->getNumValues() - 1)); 01340 } 01341 } else { 01342 // sanity check 01343 assert(VA.isMemLoc()); 01344 // Load the argument to a virtual register 01345 unsigned ObjSize = VA.getLocVT().getSizeInBits()/8; 01346 if (ObjSize > StackSlotSize) { 01347 errs() << "LowerFormalArguments Unhandled argument type: " 01348 << EVT(VA.getLocVT()).getEVTString() 01349 << "\n"; 01350 } 01351 // Create the frame index object for this incoming parameter... 01352 int FI = MFI->CreateFixedObject(ObjSize, 01353 LRSaveSize + VA.getLocMemOffset(), 01354 true); 01355 01356 // Create the SelectionDAG nodes corresponding to a load 01357 //from this parameter 01358 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 01359 ArgIn = DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, 01360 MachinePointerInfo::getFixedStack(FI), 01361 false, false, false, 0); 01362 } 01363 const ArgDataPair ADP = { ArgIn, Ins[i].Flags }; 01364 ArgData.push_back(ADP); 01365 } 01366 01367 // 1b. CopyFromReg vararg registers. 01368 if (isVarArg) { 01369 // Argument registers 01370 static const MCPhysReg ArgRegs[] = { 01371 XCore::R0, XCore::R1, XCore::R2, XCore::R3 01372 }; 01373 XCoreFunctionInfo *XFI = MF.getInfo<XCoreFunctionInfo>(); 01374 unsigned FirstVAReg = CCInfo.getFirstUnallocated(ArgRegs, 01375 array_lengthof(ArgRegs)); 01376 if (FirstVAReg < array_lengthof(ArgRegs)) { 01377 int offset = 0; 01378 // Save remaining registers, storing higher register numbers at a higher 01379 // address 01380 for (int i = array_lengthof(ArgRegs) - 1; i >= (int)FirstVAReg; --i) { 01381 // Create a stack slot 01382 int FI = MFI->CreateFixedObject(4, offset, true); 01383 if (i == (int)FirstVAReg) { 01384 XFI->setVarArgsFrameIndex(FI); 01385 } 01386 offset -= StackSlotSize; 01387 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 01388 // Move argument from phys reg -> virt reg 01389 unsigned VReg = RegInfo.createVirtualRegister(&XCore::GRRegsRegClass); 01390 RegInfo.addLiveIn(ArgRegs[i], VReg); 01391 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 01392 CFRegNode.push_back(Val.getValue(Val->getNumValues() - 1)); 01393 // Move argument from virt reg -> stack 01394 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, 01395 MachinePointerInfo(), false, false, 0); 01396 MemOps.push_back(Store); 01397 } 01398 } else { 01399 // This will point to the next argument passed via stack. 01400 XFI->setVarArgsFrameIndex( 01401 MFI->CreateFixedObject(4, LRSaveSize + CCInfo.getNextStackOffset(), 01402 true)); 01403 } 01404 } 01405 01406 // 2. chain CopyFromReg nodes into a TokenFactor. 01407 if (!CFRegNode.empty()) 01408 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, CFRegNode); 01409 01410 // 3. Memcpy 'byVal' args & push final InVals. 01411 // Aggregates passed "byVal" need to be copied by the callee. 01412 // The callee will use a pointer to this copy, rather than the original 01413 // pointer. 01414 for (SmallVectorImpl<ArgDataPair>::const_iterator ArgDI = ArgData.begin(), 01415 ArgDE = ArgData.end(); 01416 ArgDI != ArgDE; ++ArgDI) { 01417 if (ArgDI->Flags.isByVal() && ArgDI->Flags.getByValSize()) { 01418 unsigned Size = ArgDI->Flags.getByValSize(); 01419 unsigned Align = std::max(StackSlotSize, ArgDI->Flags.getByValAlign()); 01420 // Create a new object on the stack and copy the pointee into it. 01421 int FI = MFI->CreateStackObject(Size, Align, false); 01422 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 01423 InVals.push_back(FIN); 01424 MemOps.push_back(DAG.getMemcpy(Chain, dl, FIN, ArgDI->SDV, 01425 DAG.getConstant(Size, MVT::i32), 01426 Align, false, false, 01427 MachinePointerInfo(), 01428 MachinePointerInfo())); 01429 } else { 01430 InVals.push_back(ArgDI->SDV); 01431 } 01432 } 01433 01434 // 4, chain mem ops nodes into a TokenFactor. 01435 if (!MemOps.empty()) { 01436 MemOps.push_back(Chain); 01437 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 01438 } 01439 01440 return Chain; 01441 } 01442 01443 //===----------------------------------------------------------------------===// 01444 // Return Value Calling Convention Implementation 01445 //===----------------------------------------------------------------------===// 01446 01447 bool XCoreTargetLowering:: 01448 CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, 01449 bool isVarArg, 01450 const SmallVectorImpl<ISD::OutputArg> &Outs, 01451 LLVMContext &Context) const { 01452 SmallVector<CCValAssign, 16> RVLocs; 01453 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 01454 if (!CCInfo.CheckReturn(Outs, RetCC_XCore)) 01455 return false; 01456 if (CCInfo.getNextStackOffset() != 0 && isVarArg) 01457 return false; 01458 return true; 01459 } 01460 01461 SDValue 01462 XCoreTargetLowering::LowerReturn(SDValue Chain, 01463 CallingConv::ID CallConv, bool isVarArg, 01464 const SmallVectorImpl<ISD::OutputArg> &Outs, 01465 const SmallVectorImpl<SDValue> &OutVals, 01466 SDLoc dl, SelectionDAG &DAG) const { 01467 01468 XCoreFunctionInfo *XFI = 01469 DAG.getMachineFunction().getInfo<XCoreFunctionInfo>(); 01470 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 01471 01472 // CCValAssign - represent the assignment of 01473 // the return value to a location 01474 SmallVector<CCValAssign, 16> RVLocs; 01475 01476 // CCState - Info about the registers and stack slot. 01477 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 01478 *DAG.getContext()); 01479 01480 // Analyze return values. 01481 if (!isVarArg) 01482 CCInfo.AllocateStack(XFI->getReturnStackOffset(), 4); 01483 01484 CCInfo.AnalyzeReturn(Outs, RetCC_XCore); 01485 01486 SDValue Flag; 01487 SmallVector<SDValue, 4> RetOps(1, Chain); 01488 01489 // Return on XCore is always a "retsp 0" 01490 RetOps.push_back(DAG.getConstant(0, MVT::i32)); 01491 01492 SmallVector<SDValue, 4> MemOpChains; 01493 // Handle return values that must be copied to memory. 01494 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 01495 CCValAssign &VA = RVLocs[i]; 01496 if (VA.isRegLoc()) 01497 continue; 01498 assert(VA.isMemLoc()); 01499 if (isVarArg) { 01500 report_fatal_error("Can't return value from vararg function in memory"); 01501 } 01502 01503 int Offset = VA.getLocMemOffset(); 01504 unsigned ObjSize = VA.getLocVT().getSizeInBits() / 8; 01505 // Create the frame index object for the memory location. 01506 int FI = MFI->CreateFixedObject(ObjSize, Offset, false); 01507 01508 // Create a SelectionDAG node corresponding to a store 01509 // to this memory location. 01510 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); 01511 MemOpChains.push_back(DAG.getStore(Chain, dl, OutVals[i], FIN, 01512 MachinePointerInfo::getFixedStack(FI), false, false, 01513 0)); 01514 } 01515 01516 // Transform all store nodes into one single node because 01517 // all stores are independent of each other. 01518 if (!MemOpChains.empty()) 01519 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 01520 01521 // Now handle return values copied to registers. 01522 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { 01523 CCValAssign &VA = RVLocs[i]; 01524 if (!VA.isRegLoc()) 01525 continue; 01526 // Copy the result values into the output registers. 01527 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); 01528 01529 // guarantee that all emitted copies are 01530 // stuck together, avoiding something bad 01531 Flag = Chain.getValue(1); 01532 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 01533 } 01534 01535 RetOps[0] = Chain; // Update chain. 01536 01537 // Add the flag if we have it. 01538 if (Flag.getNode()) 01539 RetOps.push_back(Flag); 01540 01541 return DAG.getNode(XCoreISD::RETSP, dl, MVT::Other, RetOps); 01542 } 01543 01544 //===----------------------------------------------------------------------===// 01545 // Other Lowering Code 01546 //===----------------------------------------------------------------------===// 01547 01548 MachineBasicBlock * 01549 XCoreTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 01550 MachineBasicBlock *BB) const { 01551 const TargetInstrInfo &TII = 01552 *getTargetMachine().getSubtargetImpl()->getInstrInfo(); 01553 DebugLoc dl = MI->getDebugLoc(); 01554 assert((MI->getOpcode() == XCore::SELECT_CC) && 01555 "Unexpected instr type to insert"); 01556 01557 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond 01558 // control-flow pattern. The incoming instruction knows the destination vreg 01559 // to set, the condition code register to branch on, the true/false values to 01560 // select between, and a branch opcode to use. 01561 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 01562 MachineFunction::iterator It = BB; 01563 ++It; 01564 01565 // thisMBB: 01566 // ... 01567 // TrueVal = ... 01568 // cmpTY ccX, r1, r2 01569 // bCC copy1MBB 01570 // fallthrough --> copy0MBB 01571 MachineBasicBlock *thisMBB = BB; 01572 MachineFunction *F = BB->getParent(); 01573 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 01574 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 01575 F->insert(It, copy0MBB); 01576 F->insert(It, sinkMBB); 01577 01578 // Transfer the remainder of BB and its successor edges to sinkMBB. 01579 sinkMBB->splice(sinkMBB->begin(), BB, 01580 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 01581 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 01582 01583 // Next, add the true and fallthrough blocks as its successors. 01584 BB->addSuccessor(copy0MBB); 01585 BB->addSuccessor(sinkMBB); 01586 01587 BuildMI(BB, dl, TII.get(XCore::BRFT_lru6)) 01588 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB); 01589 01590 // copy0MBB: 01591 // %FalseValue = ... 01592 // # fallthrough to sinkMBB 01593 BB = copy0MBB; 01594 01595 // Update machine-CFG edges 01596 BB->addSuccessor(sinkMBB); 01597 01598 // sinkMBB: 01599 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 01600 // ... 01601 BB = sinkMBB; 01602 BuildMI(*BB, BB->begin(), dl, 01603 TII.get(XCore::PHI), MI->getOperand(0).getReg()) 01604 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB) 01605 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 01606 01607 MI->eraseFromParent(); // The pseudo instruction is gone now. 01608 return BB; 01609 } 01610 01611 //===----------------------------------------------------------------------===// 01612 // Target Optimization Hooks 01613 //===----------------------------------------------------------------------===// 01614 01615 SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N, 01616 DAGCombinerInfo &DCI) const { 01617 SelectionDAG &DAG = DCI.DAG; 01618 SDLoc dl(N); 01619 switch (N->getOpcode()) { 01620 default: break; 01621 case ISD::INTRINSIC_VOID: 01622 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 01623 case Intrinsic::xcore_outt: 01624 case Intrinsic::xcore_outct: 01625 case Intrinsic::xcore_chkct: { 01626 SDValue OutVal = N->getOperand(3); 01627 // These instructions ignore the high bits. 01628 if (OutVal.hasOneUse()) { 01629 unsigned BitWidth = OutVal.getValueSizeInBits(); 01630 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 8); 01631 APInt KnownZero, KnownOne; 01632 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 01633 !DCI.isBeforeLegalizeOps()); 01634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 01635 if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) || 01636 TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, 01637 TLO)) 01638 DCI.CommitTargetLoweringOpt(TLO); 01639 } 01640 break; 01641 } 01642 case Intrinsic::xcore_setpt: { 01643 SDValue Time = N->getOperand(3); 01644 // This instruction ignores the high bits. 01645 if (Time.hasOneUse()) { 01646 unsigned BitWidth = Time.getValueSizeInBits(); 01647 APInt DemandedMask = APInt::getLowBitsSet(BitWidth, 16); 01648 APInt KnownZero, KnownOne; 01649 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 01650 !DCI.isBeforeLegalizeOps()); 01651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 01652 if (TLO.ShrinkDemandedConstant(Time, DemandedMask) || 01653 TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, 01654 TLO)) 01655 DCI.CommitTargetLoweringOpt(TLO); 01656 } 01657 break; 01658 } 01659 } 01660 break; 01661 case XCoreISD::LADD: { 01662 SDValue N0 = N->getOperand(0); 01663 SDValue N1 = N->getOperand(1); 01664 SDValue N2 = N->getOperand(2); 01665 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01666 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01667 EVT VT = N0.getValueType(); 01668 01669 // canonicalize constant to RHS 01670 if (N0C && !N1C) 01671 return DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N1, N0, N2); 01672 01673 // fold (ladd 0, 0, x) -> 0, x & 1 01674 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 01675 SDValue Carry = DAG.getConstant(0, VT); 01676 SDValue Result = DAG.getNode(ISD::AND, dl, VT, N2, 01677 DAG.getConstant(1, VT)); 01678 SDValue Ops[] = { Result, Carry }; 01679 return DAG.getMergeValues(Ops, dl); 01680 } 01681 01682 // fold (ladd x, 0, y) -> 0, add x, y iff carry is unused and y has only the 01683 // low bit set 01684 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 01685 APInt KnownZero, KnownOne; 01686 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 01687 VT.getSizeInBits() - 1); 01688 DAG.computeKnownBits(N2, KnownZero, KnownOne); 01689 if ((KnownZero & Mask) == Mask) { 01690 SDValue Carry = DAG.getConstant(0, VT); 01691 SDValue Result = DAG.getNode(ISD::ADD, dl, VT, N0, N2); 01692 SDValue Ops[] = { Result, Carry }; 01693 return DAG.getMergeValues(Ops, dl); 01694 } 01695 } 01696 } 01697 break; 01698 case XCoreISD::LSUB: { 01699 SDValue N0 = N->getOperand(0); 01700 SDValue N1 = N->getOperand(1); 01701 SDValue N2 = N->getOperand(2); 01702 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01703 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01704 EVT VT = N0.getValueType(); 01705 01706 // fold (lsub 0, 0, x) -> x, -x iff x has only the low bit set 01707 if (N0C && N0C->isNullValue() && N1C && N1C->isNullValue()) { 01708 APInt KnownZero, KnownOne; 01709 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 01710 VT.getSizeInBits() - 1); 01711 DAG.computeKnownBits(N2, KnownZero, KnownOne); 01712 if ((KnownZero & Mask) == Mask) { 01713 SDValue Borrow = N2; 01714 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, 01715 DAG.getConstant(0, VT), N2); 01716 SDValue Ops[] = { Result, Borrow }; 01717 return DAG.getMergeValues(Ops, dl); 01718 } 01719 } 01720 01721 // fold (lsub x, 0, y) -> 0, sub x, y iff borrow is unused and y has only the 01722 // low bit set 01723 if (N1C && N1C->isNullValue() && N->hasNUsesOfValue(0, 1)) { 01724 APInt KnownZero, KnownOne; 01725 APInt Mask = APInt::getHighBitsSet(VT.getSizeInBits(), 01726 VT.getSizeInBits() - 1); 01727 DAG.computeKnownBits(N2, KnownZero, KnownOne); 01728 if ((KnownZero & Mask) == Mask) { 01729 SDValue Borrow = DAG.getConstant(0, VT); 01730 SDValue Result = DAG.getNode(ISD::SUB, dl, VT, N0, N2); 01731 SDValue Ops[] = { Result, Borrow }; 01732 return DAG.getMergeValues(Ops, dl); 01733 } 01734 } 01735 } 01736 break; 01737 case XCoreISD::LMUL: { 01738 SDValue N0 = N->getOperand(0); 01739 SDValue N1 = N->getOperand(1); 01740 SDValue N2 = N->getOperand(2); 01741 SDValue N3 = N->getOperand(3); 01742 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0); 01743 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 01744 EVT VT = N0.getValueType(); 01745 // Canonicalize multiplicative constant to RHS. If both multiplicative 01746 // operands are constant canonicalize smallest to RHS. 01747 if ((N0C && !N1C) || 01748 (N0C && N1C && N0C->getZExtValue() < N1C->getZExtValue())) 01749 return DAG.getNode(XCoreISD::LMUL, dl, DAG.getVTList(VT, VT), 01750 N1, N0, N2, N3); 01751 01752 // lmul(x, 0, a, b) 01753 if (N1C && N1C->isNullValue()) { 01754 // If the high result is unused fold to add(a, b) 01755 if (N->hasNUsesOfValue(0, 0)) { 01756 SDValue Lo = DAG.getNode(ISD::ADD, dl, VT, N2, N3); 01757 SDValue Ops[] = { Lo, Lo }; 01758 return DAG.getMergeValues(Ops, dl); 01759 } 01760 // Otherwise fold to ladd(a, b, 0) 01761 SDValue Result = 01762 DAG.getNode(XCoreISD::LADD, dl, DAG.getVTList(VT, VT), N2, N3, N1); 01763 SDValue Carry(Result.getNode(), 1); 01764 SDValue Ops[] = { Carry, Result }; 01765 return DAG.getMergeValues(Ops, dl); 01766 } 01767 } 01768 break; 01769 case ISD::ADD: { 01770 // Fold 32 bit expressions such as add(add(mul(x,y),a),b) -> 01771 // lmul(x, y, a, b). The high result of lmul will be ignored. 01772 // This is only profitable if the intermediate results are unused 01773 // elsewhere. 01774 SDValue Mul0, Mul1, Addend0, Addend1; 01775 if (N->getValueType(0) == MVT::i32 && 01776 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, true)) { 01777 SDValue Ignored = DAG.getNode(XCoreISD::LMUL, dl, 01778 DAG.getVTList(MVT::i32, MVT::i32), Mul0, 01779 Mul1, Addend0, Addend1); 01780 SDValue Result(Ignored.getNode(), 1); 01781 return Result; 01782 } 01783 APInt HighMask = APInt::getHighBitsSet(64, 32); 01784 // Fold 64 bit expression such as add(add(mul(x,y),a),b) -> 01785 // lmul(x, y, a, b) if all operands are zero-extended. We do this 01786 // before type legalization as it is messy to match the operands after 01787 // that. 01788 if (N->getValueType(0) == MVT::i64 && 01789 isADDADDMUL(SDValue(N, 0), Mul0, Mul1, Addend0, Addend1, false) && 01790 DAG.MaskedValueIsZero(Mul0, HighMask) && 01791 DAG.MaskedValueIsZero(Mul1, HighMask) && 01792 DAG.MaskedValueIsZero(Addend0, HighMask) && 01793 DAG.MaskedValueIsZero(Addend1, HighMask)) { 01794 SDValue Mul0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 01795 Mul0, DAG.getConstant(0, MVT::i32)); 01796 SDValue Mul1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 01797 Mul1, DAG.getConstant(0, MVT::i32)); 01798 SDValue Addend0L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 01799 Addend0, DAG.getConstant(0, MVT::i32)); 01800 SDValue Addend1L = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, 01801 Addend1, DAG.getConstant(0, MVT::i32)); 01802 SDValue Hi = DAG.getNode(XCoreISD::LMUL, dl, 01803 DAG.getVTList(MVT::i32, MVT::i32), Mul0L, Mul1L, 01804 Addend0L, Addend1L); 01805 SDValue Lo(Hi.getNode(), 1); 01806 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 01807 } 01808 } 01809 break; 01810 case ISD::STORE: { 01811 // Replace unaligned store of unaligned load with memmove. 01812 StoreSDNode *ST = cast<StoreSDNode>(N); 01813 if (!DCI.isBeforeLegalize() || 01814 allowsMisalignedMemoryAccesses(ST->getMemoryVT(), 01815 ST->getAddressSpace(), 01816 ST->getAlignment()) || 01817 ST->isVolatile() || ST->isIndexed()) { 01818 break; 01819 } 01820 SDValue Chain = ST->getChain(); 01821 01822 unsigned StoreBits = ST->getMemoryVT().getStoreSizeInBits(); 01823 if (StoreBits % 8) { 01824 break; 01825 } 01826 unsigned ABIAlignment = getDataLayout()->getABITypeAlignment( 01827 ST->getMemoryVT().getTypeForEVT(*DCI.DAG.getContext())); 01828 unsigned Alignment = ST->getAlignment(); 01829 if (Alignment >= ABIAlignment) { 01830 break; 01831 } 01832 01833 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(ST->getValue())) { 01834 if (LD->hasNUsesOfValue(1, 0) && ST->getMemoryVT() == LD->getMemoryVT() && 01835 LD->getAlignment() == Alignment && 01836 !LD->isVolatile() && !LD->isIndexed() && 01837 Chain.reachesChainWithoutSideEffects(SDValue(LD, 1))) { 01838 return DAG.getMemmove(Chain, dl, ST->getBasePtr(), 01839 LD->getBasePtr(), 01840 DAG.getConstant(StoreBits/8, MVT::i32), 01841 Alignment, false, ST->getPointerInfo(), 01842 LD->getPointerInfo()); 01843 } 01844 } 01845 break; 01846 } 01847 } 01848 return SDValue(); 01849 } 01850 01851 void XCoreTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 01852 APInt &KnownZero, 01853 APInt &KnownOne, 01854 const SelectionDAG &DAG, 01855 unsigned Depth) const { 01856 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0); 01857 switch (Op.getOpcode()) { 01858 default: break; 01859 case XCoreISD::LADD: 01860 case XCoreISD::LSUB: 01861 if (Op.getResNo() == 1) { 01862 // Top bits of carry / borrow are clear. 01863 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 01864 KnownZero.getBitWidth() - 1); 01865 } 01866 break; 01867 case ISD::INTRINSIC_W_CHAIN: 01868 { 01869 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 01870 switch (IntNo) { 01871 case Intrinsic::xcore_getts: 01872 // High bits are known to be zero. 01873 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 01874 KnownZero.getBitWidth() - 16); 01875 break; 01876 case Intrinsic::xcore_int: 01877 case Intrinsic::xcore_inct: 01878 // High bits are known to be zero. 01879 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 01880 KnownZero.getBitWidth() - 8); 01881 break; 01882 case Intrinsic::xcore_testct: 01883 // Result is either 0 or 1. 01884 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 01885 KnownZero.getBitWidth() - 1); 01886 break; 01887 case Intrinsic::xcore_testwct: 01888 // Result is in the range 0 - 4. 01889 KnownZero = APInt::getHighBitsSet(KnownZero.getBitWidth(), 01890 KnownZero.getBitWidth() - 3); 01891 break; 01892 } 01893 } 01894 break; 01895 } 01896 } 01897 01898 //===----------------------------------------------------------------------===// 01899 // Addressing mode description hooks 01900 //===----------------------------------------------------------------------===// 01901 01902 static inline bool isImmUs(int64_t val) 01903 { 01904 return (val >= 0 && val <= 11); 01905 } 01906 01907 static inline bool isImmUs2(int64_t val) 01908 { 01909 return (val%2 == 0 && isImmUs(val/2)); 01910 } 01911 01912 static inline bool isImmUs4(int64_t val) 01913 { 01914 return (val%4 == 0 && isImmUs(val/4)); 01915 } 01916 01917 /// isLegalAddressingMode - Return true if the addressing mode represented 01918 /// by AM is legal for this target, for a load/store of the specified type. 01919 bool 01920 XCoreTargetLowering::isLegalAddressingMode(const AddrMode &AM, 01921 Type *Ty) const { 01922 if (Ty->getTypeID() == Type::VoidTyID) 01923 return AM.Scale == 0 && isImmUs(AM.BaseOffs) && isImmUs4(AM.BaseOffs); 01924 01925 const DataLayout *TD = TM.getSubtargetImpl()->getDataLayout(); 01926 unsigned Size = TD->getTypeAllocSize(Ty); 01927 if (AM.BaseGV) { 01928 return Size >= 4 && !AM.HasBaseReg && AM.Scale == 0 && 01929 AM.BaseOffs%4 == 0; 01930 } 01931 01932 switch (Size) { 01933 case 1: 01934 // reg + imm 01935 if (AM.Scale == 0) { 01936 return isImmUs(AM.BaseOffs); 01937 } 01938 // reg + reg 01939 return AM.Scale == 1 && AM.BaseOffs == 0; 01940 case 2: 01941 case 3: 01942 // reg + imm 01943 if (AM.Scale == 0) { 01944 return isImmUs2(AM.BaseOffs); 01945 } 01946 // reg + reg<<1 01947 return AM.Scale == 2 && AM.BaseOffs == 0; 01948 default: 01949 // reg + imm 01950 if (AM.Scale == 0) { 01951 return isImmUs4(AM.BaseOffs); 01952 } 01953 // reg + reg<<2 01954 return AM.Scale == 4 && AM.BaseOffs == 0; 01955 } 01956 } 01957 01958 //===----------------------------------------------------------------------===// 01959 // XCore Inline Assembly Support 01960 //===----------------------------------------------------------------------===// 01961 01962 std::pair<unsigned, const TargetRegisterClass*> 01963 XCoreTargetLowering:: 01964 getRegForInlineAsmConstraint(const std::string &Constraint, 01965 MVT VT) const { 01966 if (Constraint.size() == 1) { 01967 switch (Constraint[0]) { 01968 default : break; 01969 case 'r': 01970 return std::make_pair(0U, &XCore::GRRegsRegClass); 01971 } 01972 } 01973 // Use the default implementation in TargetLowering to convert the register 01974 // constraint into a member of a register class. 01975 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); 01976 }