ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprlemloc Unicode version

Theorem caucvgprlemloc 6865
Description: Lemma for caucvgpr 6872. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
Hypotheses
Ref Expression
caucvgpr.f  |-  ( ph  ->  F : N. --> Q. )
caucvgpr.cau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( F `  n
)  <Q  ( ( F `
 k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `  k ) 
<Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  )
) ) ) )
caucvgpr.bnd  |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j ) )
caucvgpr.lim  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
Assertion
Ref Expression
caucvgprlemloc  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Distinct variable groups:    A, j    j, F, l    u, F    ph, j,
r, s    s, l    u, j, r
Allowed substitution hints:    ph( u, k, n, l)    A( u, k, n, s, r, l)    F( k, n, s, r)    L( u, j, k, n, s, r, l)

Proof of Theorem caucvgprlemloc
Dummy variables  f  g  h  m  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6599 . . . . 5  |-  ( s 
<Q  r  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
21adantl 271 . . . 4  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  E. y  e.  Q.  ( s  +Q  y )  =  r )
3 subhalfnqq 6604 . . . . . 6  |-  ( y  e.  Q.  ->  E. x  e.  Q.  ( x  +Q  x )  <Q  y
)
43ad2antrl 473 . . . . 5  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  E. x  e.  Q.  ( x  +Q  x
)  <Q  y )
5 archrecnq 6853 . . . . . . 7  |-  ( x  e.  Q.  ->  E. m  e.  N.  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x )
65ad2antrl 473 . . . . . 6  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  E. m  e.  N.  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x )
7 simprr 498 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x )
8 nnnq 6612 . . . . . . . . . . . . . . 15  |-  ( m  e.  N.  ->  [ <. m ,  1o >. ]  ~Q  e.  Q. )
9 recclnq 6582 . . . . . . . . . . . . . . 15  |-  ( [
<. m ,  1o >. ]  ~Q  e.  Q.  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
108, 9syl 14 . . . . . . . . . . . . . 14  |-  ( m  e.  N.  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
1110ad2antrl 473 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
12 simplrl 501 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  x  e.  Q. )
13 lt2addnq 6594 . . . . . . . . . . . . 13  |-  ( ( ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e. 
Q.  /\  x  e.  Q. )  /\  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q.  /\  x  e.  Q. )
)  ->  ( (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
)  ->  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
( x  +Q  x
) ) )
1411, 12, 11, 12, 13syl22anc 1170 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x )  ->  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( x  +Q  x ) ) )
157, 7, 14mp2and 423 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( x  +Q  x ) )
16 simplrr 502 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
x  +Q  x ) 
<Q  y )
17 ltsonq 6588 . . . . . . . . . . . 12  |-  <Q  Or  Q.
18 ltrelnq 6555 . . . . . . . . . . . 12  |-  <Q  C_  ( Q.  X.  Q. )
1917, 18sotri 4740 . . . . . . . . . . 11  |-  ( ( ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
( x  +Q  x
)  /\  ( x  +Q  x )  <Q  y
)  ->  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
y )
2015, 16, 19syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  y )
21 simplrl 501 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  s  e.  Q. )
2221ad3antrrr 475 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  s  e.  Q. )
23 ltanqi 6592 . . . . . . . . . 10  |-  ( ( ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
y  /\  s  e.  Q. )  ->  ( s  +Q  ( ( *Q
`  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( s  +Q  y
) )
2420, 22, 23syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  <Q  ( s  +Q  y ) )
25 simprr 498 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  ( s  +Q  y )  =  r )
2625ad2antrr 471 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  y )  =  r )
2724, 26breqtrd 3809 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  <Q  r )
28 addclnq 6565 . . . . . . . . . . 11  |-  ( ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( *Q
`  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  e. 
Q. )
2911, 11, 28syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
30 addclnq 6565 . . . . . . . . . 10  |-  ( ( s  e.  Q.  /\  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  e. 
Q. )  ->  (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  e.  Q. )
3122, 29, 30syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  e.  Q. )
32 simplrr 502 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  r  e.  Q. )
3332ad3antrrr 475 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  r  e.  Q. )
34 caucvgpr.f . . . . . . . . . . . 12  |-  ( ph  ->  F : N. --> Q. )
3534ad5antr 479 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  F : N. --> Q. )
36 simprl 497 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  m  e.  N. )
3735, 36ffvelrnd 5324 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  ( F `  m )  e.  Q. )
38 addclnq 6565 . . . . . . . . . 10  |-  ( ( ( F `  m
)  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
3937, 11, 38syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
40 sowlin 4075 . . . . . . . . . 10  |-  ( ( 
<Q  Or  Q.  /\  (
( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  e.  Q.  /\  r  e.  Q.  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
)  ->  ( (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  <Q  r  ->  ( ( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  \/  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) 
<Q  r ) ) )
4117, 40mpan 414 . . . . . . . . 9  |-  ( ( ( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  e.  Q.  /\  r  e.  Q.  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )  ->  ( ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  r  ->  ( ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  \/  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  r ) ) )
4231, 33, 39, 41syl3anc 1169 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  <Q  r  ->  ( ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  \/  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) 
<Q  r ) ) )
4327, 42mpd 13 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  \/  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) 
<Q  r ) )
4422adantr 270 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  s  e.  Q. )
45 simplrl 501 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  m  e.  N. )
46 simpr 108 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )  <Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )
4711adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )
48 addassnqg 6572 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )  ->  (
( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( ( *Q
`  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) )
4944, 47, 47, 48syl3anc 1169 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( ( *Q
`  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) )
5049breq1d 3795 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
( ( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <->  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) ) )
5146, 50mpbird 165 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )
52 ltanqg 6590 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. )  ->  (
f  <Q  g  <->  ( h  +Q  f )  <Q  (
h  +Q  g ) ) )
5352adantl 271 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  /\  (
f  e.  Q.  /\  g  e.  Q.  /\  h  e.  Q. ) )  -> 
( f  <Q  g  <->  ( h  +Q  f ) 
<Q  ( h  +Q  g
) ) )
54 addclnq 6565 . . . . . . . . . . . . . 14  |-  ( ( s  e.  Q.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  e.  Q. )  ->  ( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
5544, 47, 54syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
s  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  e.  Q. )
5637adantr 270 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  ( F `  m )  e.  Q. )
57 addcomnqg 6571 . . . . . . . . . . . . . 14  |-  ( ( f  e.  Q.  /\  g  e.  Q. )  ->  ( f  +Q  g
)  =  ( g  +Q  f ) )
5857adantl 271 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  /\  (
f  e.  Q.  /\  g  e.  Q. )
)  ->  ( f  +Q  g )  =  ( g  +Q  f ) )
5953, 55, 56, 47, 58caovord2d 5690 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( F `  m )  <->  ( (
s  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) )
6051, 59mpbird 165 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  (
s  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( F `  m ) )
61 opeq1 3570 . . . . . . . . . . . . . . . 16  |-  ( j  =  m  ->  <. j ,  1o >.  =  <. m ,  1o >. )
6261eceq1d 6165 . . . . . . . . . . . . . . 15  |-  ( j  =  m  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. m ,  1o >. ]  ~Q  )
6362fveq2d 5202 . . . . . . . . . . . . . 14  |-  ( j  =  m  ->  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  =  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )
6463oveq2d 5548 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (
s  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )
65 fveq2 5198 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  ( F `  j )  =  ( F `  m ) )
6664, 65breq12d 3798 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
( F `  m
) ) )
6766rspcev 2701 . . . . . . . . . . 11  |-  ( ( m  e.  N.  /\  ( s  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  ( F `  m ) )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) )
6845, 60, 67syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) )
69 oveq1 5539 . . . . . . . . . . . . 13  |-  ( l  =  s  ->  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) ) )
7069breq1d 3795 . . . . . . . . . . . 12  |-  ( l  =  s  ->  (
( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
7170rexbidv 2369 . . . . . . . . . . 11  |-  ( l  =  s  ->  ( E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j )  <->  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
72 caucvgpr.lim . . . . . . . . . . . . 13  |-  L  = 
<. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >.
7372fveq2i 5201 . . . . . . . . . . . 12  |-  ( 1st `  L )  =  ( 1st `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
74 nqex 6553 . . . . . . . . . . . . . 14  |-  Q.  e.  _V
7574rabex 3922 . . . . . . . . . . . . 13  |-  { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }  e.  _V
7674rabex 3922 . . . . . . . . . . . . 13  |-  { u  e.  Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }  e.  _V
7775, 76op1st 5793 . . . . . . . . . . . 12  |-  ( 1st `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) }
7873, 77eqtri 2101 . . . . . . . . . . 11  |-  ( 1st `  L )  =  {
l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) }
7971, 78elrab2 2751 . . . . . . . . . 10  |-  ( s  e.  ( 1st `  L
)  <->  ( s  e. 
Q.  /\  E. j  e.  N.  ( s  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) ) )
8044, 68, 79sylanbrc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  ->  s  e.  ( 1st `  L
) )
8180ex 113 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( s  +Q  (
( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
) )  <Q  (
( F `  m
)  +Q  ( *Q
`  [ <. m ,  1o >. ]  ~Q  )
)  ->  s  e.  ( 1st `  L ) ) )
8233adantr 270 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
r )  ->  r  e.  Q. )
8365, 63oveq12d 5550 . . . . . . . . . . . . 13  |-  ( j  =  m  ->  (
( F `  j
)  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  =  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) )
8483breq1d 3795 . . . . . . . . . . . 12  |-  ( j  =  m  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r  <->  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
r ) )
8584rspcev 2701 . . . . . . . . . . 11  |-  ( ( m  e.  N.  /\  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  r )  ->  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  r )
8636, 85sylan 277 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
r )  ->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r )
87 breq2 3789 . . . . . . . . . . . 12  |-  ( u  =  r  ->  (
( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
8887rexbidv 2369 . . . . . . . . . . 11  |-  ( u  =  r  ->  ( E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u  <->  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
8972fveq2i 5201 . . . . . . . . . . . 12  |-  ( 2nd `  L )  =  ( 2nd `  <. { l  e.  Q.  |  E. j  e.  N.  (
l  +Q  ( *Q
`  [ <. j ,  1o >. ]  ~Q  )
)  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )
9075, 76op2nd 5794 . . . . . . . . . . . 12  |-  ( 2nd `  <. { l  e. 
Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
( F `  j
) } ,  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u } >. )  =  { u  e. 
Q.  |  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  u }
9189, 90eqtri 2101 . . . . . . . . . . 11  |-  ( 2nd `  L )  =  {
u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
)  <Q  u }
9288, 91elrab2 2751 . . . . . . . . . 10  |-  ( r  e.  ( 2nd `  L
)  <->  ( r  e. 
Q.  /\  E. j  e.  N.  ( ( F `
 j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q 
r ) )
9382, 86, 92sylanbrc 408 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  /\  (
m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x ) )  /\  ( ( F `
 m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) )  <Q 
r )  ->  r  e.  ( 2nd `  L
) )
9493ex 113 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  <Q  r  ->  r  e.  ( 2nd `  L
) ) )
9581, 94orim12d 732 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
( ( s  +Q  ( ( *Q `  [ <. m ,  1o >. ]  ~Q  )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) ) 
<Q  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  )
)  \/  ( ( F `  m )  +Q  ( *Q `  [ <. m ,  1o >. ]  ~Q  ) ) 
<Q  r )  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
9643, 95mpd 13 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  ( s  +Q  y
)  =  r ) )  /\  ( x  e.  Q.  /\  (
x  +Q  x ) 
<Q  y ) )  /\  ( m  e.  N.  /\  ( *Q `  [ <. m ,  1o >. ]  ~Q  )  <Q  x
) )  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) )
976, 96rexlimddv 2481 . . . . 5  |-  ( ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  /\  ( x  e. 
Q.  /\  ( x  +Q  x )  <Q  y
) )  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) )
984, 97rexlimddv 2481 . . . 4  |-  ( ( ( ( ph  /\  ( s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  /\  ( y  e.  Q.  /\  (
s  +Q  y )  =  r ) )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
992, 98rexlimddv 2481 . . 3  |-  ( ( ( ph  /\  (
s  e.  Q.  /\  r  e.  Q. )
)  /\  s  <Q  r )  ->  ( s  e.  ( 1st `  L
)  \/  r  e.  ( 2nd `  L
) ) )
10099ex 113 . 2  |-  ( (
ph  /\  ( s  e.  Q.  /\  r  e. 
Q. ) )  -> 
( s  <Q  r  ->  ( s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
101100ralrimivva 2443 1  |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
s  <Q  r  ->  (
s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   A.wral 2348   E.wrex 2349   {crab 2352   <.cop 3401   class class class wbr 3785    Or wor 4050   -->wf 4918   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   1oc1o 6017   [cec 6127   N.cnpi 6462    <N clti 6465    ~Q ceq 6469   Q.cnq 6470    +Q cplq 6472   *Qcrq 6474    <Q cltq 6475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543
This theorem is referenced by:  caucvgprlemcl  6866
  Copyright terms: Public domain W3C validator