ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltexprlemopl Unicode version

Theorem ltexprlemopl 6791
Description: The lower cut of our constructed difference is open. Lemma for ltexpri 6803. (Contributed by Jim Kingdon, 21-Dec-2019.)
Hypothesis
Ref Expression
ltexprlem.1  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
Assertion
Ref Expression
ltexprlemopl  |-  ( ( A  <P  B  /\  q  e.  Q.  /\  q  e.  ( 1st `  C
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )
Distinct variable groups:    x, y, q, r, A    x, B, y, q, r    x, C, y, q, r

Proof of Theorem ltexprlemopl
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 ltexprlem.1 . . . . 5  |-  C  = 
<. { x  e.  Q.  |  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  {
x  e.  Q.  |  E. y ( y  e.  ( 1st `  A
)  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.
21ltexprlemell 6788 . . . 4  |-  ( q  e.  ( 1st `  C
)  <->  ( q  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
32simprbi 269 . . 3  |-  ( q  e.  ( 1st `  C
)  ->  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )
4 19.42v 1827 . . . . . . . 8  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  E. y
( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
5 19.42v 1827 . . . . . . . . 9  |-  ( E. y ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  <->  ( q  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )
65anbi2i 444 . . . . . . . 8  |-  ( ( A  <P  B  /\  E. y ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
74, 6bitri 182 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  <->  ( A  <P  B  /\  ( q  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) ) )
8 ltrelpr 6695 . . . . . . . . . . . . . 14  |-  <P  C_  ( P.  X.  P. )
98brel 4410 . . . . . . . . . . . . 13  |-  ( A 
<P  B  ->  ( A  e.  P.  /\  B  e.  P. ) )
109simprd 112 . . . . . . . . . . . 12  |-  ( A 
<P  B  ->  B  e. 
P. )
11 prop 6665 . . . . . . . . . . . . 13  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
12 prnmaxl 6678 . . . . . . . . . . . . 13  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1311, 12sylan 277 . . . . . . . . . . . 12  |-  ( ( B  e.  P.  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1410, 13sylan 277 . . . . . . . . . . 11  |-  ( ( A  <P  B  /\  ( y  +Q  q
)  e.  ( 1st `  B ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
1514adantrl 461 . . . . . . . . . 10  |-  ( ( A  <P  B  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) )  ->  E. s  e.  ( 1st `  B
) ( y  +Q  q )  <Q  s
)
1615adantrl 461 . . . . . . . . 9  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. s  e.  ( 1st `  B ) ( y  +Q  q ) 
<Q  s )
179simpld 110 . . . . . . . . . . . . . . 15  |-  ( A 
<P  B  ->  A  e. 
P. )
1817ad2antrr 471 . . . . . . . . . . . . . 14  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  A  e.  P. )
19 simplrr 502 . . . . . . . . . . . . . . 15  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  q )  e.  ( 1st `  B
) ) )
2019simpld 110 . . . . . . . . . . . . . 14  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  e.  ( 2nd `  A
) )
21 prop 6665 . . . . . . . . . . . . . . 15  |-  ( A  e.  P.  ->  <. ( 1st `  A ) ,  ( 2nd `  A
) >.  e.  P. )
22 elprnqu 6672 . . . . . . . . . . . . . . 15  |-  ( (
<. ( 1st `  A
) ,  ( 2nd `  A ) >.  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2321, 22sylan 277 . . . . . . . . . . . . . 14  |-  ( ( A  e.  P.  /\  y  e.  ( 2nd `  A ) )  -> 
y  e.  Q. )
2418, 20, 23syl2anc 403 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  e.  Q. )
25 simplrl 501 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  q  e.  Q. )
26 ltaddnq 6597 . . . . . . . . . . . . 13  |-  ( ( y  e.  Q.  /\  q  e.  Q. )  ->  y  <Q  ( y  +Q  q ) )
2724, 25, 26syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  <Q  ( y  +Q  q
) )
28 simprr 498 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  +Q  q ) 
<Q  s )
29 ltsonq 6588 . . . . . . . . . . . . 13  |-  <Q  Or  Q.
30 ltrelnq 6555 . . . . . . . . . . . . 13  |-  <Q  C_  ( Q.  X.  Q. )
3129, 30sotri 4740 . . . . . . . . . . . 12  |-  ( ( y  <Q  ( y  +Q  q )  /\  (
y  +Q  q ) 
<Q  s )  ->  y  <Q  s )
3227, 28, 31syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  y  <Q  s )
3310ad2antrr 471 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  B  e.  P. )
34 simprl 497 . . . . . . . . . . . . 13  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  s  e.  ( 1st `  B
) )
35 elprnql 6671 . . . . . . . . . . . . . 14  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  s  e.  ( 1st `  B ) )  -> 
s  e.  Q. )
3611, 35sylan 277 . . . . . . . . . . . . 13  |-  ( ( B  e.  P.  /\  s  e.  ( 1st `  B ) )  -> 
s  e.  Q. )
3733, 34, 36syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  s  e.  Q. )
38 ltexnqq 6598 . . . . . . . . . . . 12  |-  ( ( y  e.  Q.  /\  s  e.  Q. )  ->  ( y  <Q  s  <->  E. r  e.  Q.  (
y  +Q  r )  =  s ) )
3924, 37, 38syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  (
y  <Q  s  <->  E. r  e.  Q.  ( y  +Q  r )  =  s ) )
4032, 39mpbid 145 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  E. r  e.  Q.  ( y  +Q  r )  =  s )
41 simplrr 502 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  q )  <Q  s
)
42 simprr 498 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  r )  =  s )
4341, 42breqtrrd 3811 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  q )  <Q  (
y  +Q  r ) )
4425adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  q  e.  Q. )
45 simprl 497 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  r  e.  Q. )
4624adantr 270 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  y  e.  Q. )
47 ltanqg 6590 . . . . . . . . . . . . . . 15  |-  ( ( q  e.  Q.  /\  r  e.  Q.  /\  y  e.  Q. )  ->  (
q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
4844, 45, 46, 47syl3anc 1169 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( q  <Q  r  <->  ( y  +Q  q )  <Q  (
y  +Q  r ) ) )
4943, 48mpbird 165 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  q  <Q  r )
5020adantr 270 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  y  e.  ( 2nd `  A ) )
51 simplrl 501 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  s  e.  ( 1st `  B ) )
5242, 51eqeltrd 2155 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  +Q  r )  e.  ( 1st `  B ) )
5350, 52jca 300 . . . . . . . . . . . . 13  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )
5449, 45, 53jca32 303 . . . . . . . . . . . 12  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  (
r  e.  Q.  /\  ( y  +Q  r
)  =  s ) )  ->  ( q  <Q  r  /\  ( r  e.  Q.  /\  (
y  e.  ( 2nd `  A )  /\  (
y  +Q  r )  e.  ( 1st `  B
) ) ) ) )
5554expr 367 . . . . . . . . . . 11  |-  ( ( ( ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  /\  r  e.  Q. )  ->  (
( y  +Q  r
)  =  s  -> 
( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
5655reximdva 2463 . . . . . . . . . 10  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  ( E. r  e.  Q.  ( y  +Q  r
)  =  s  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) ) )
5740, 56mpd 13 . . . . . . . . 9  |-  ( ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  /\  ( s  e.  ( 1st `  B )  /\  ( y  +Q  q )  <Q  s
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
5816, 57rexlimddv 2481 . . . . . . . 8  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
5958eximi 1531 . . . . . . 7  |-  ( E. y ( A  <P  B  /\  ( q  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. y E. r  e. 
Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
607, 59sylbir 133 . . . . . 6  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. y E. r  e. 
Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
61 rexcom4 2622 . . . . . 6  |-  ( E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  E. y E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6260, 61sylibr 132 . . . . 5  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
63 19.42v 1827 . . . . . . 7  |-  ( E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  E. y
( r  e.  Q.  /\  ( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
64 19.42v 1827 . . . . . . . 8  |-  ( E. y ( r  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) )  <->  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
6564anbi2i 444 . . . . . . 7  |-  ( ( q  <Q  r  /\  E. y ( r  e. 
Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6663, 65bitri 182 . . . . . 6  |-  ( E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6766rexbii 2373 . . . . 5  |-  ( E. r  e.  Q.  E. y ( q  <Q 
r  /\  ( r  e.  Q.  /\  ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
6862, 67sylib 120 . . . 4  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  ( r  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
691ltexprlemell 6788 . . . . . 6  |-  ( r  e.  ( 1st `  C
)  <->  ( r  e. 
Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) )
7069anbi2i 444 . . . . 5  |-  ( ( q  <Q  r  /\  r  e.  ( 1st `  C ) )  <->  ( q  <Q  r  /\  ( r  e.  Q.  /\  E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
7170rexbii 2373 . . . 4  |-  ( E. r  e.  Q.  (
q  <Q  r  /\  r  e.  ( 1st `  C
) )  <->  E. r  e.  Q.  ( q  <Q 
r  /\  ( r  e.  Q.  /\  E. y
( y  e.  ( 2nd `  A )  /\  ( y  +Q  r )  e.  ( 1st `  B ) ) ) ) )
7268, 71sylibr 132 . . 3  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\ 
E. y ( y  e.  ( 2nd `  A
)  /\  ( y  +Q  q )  e.  ( 1st `  B ) ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
733, 72sylanr2 397 . 2  |-  ( ( A  <P  B  /\  ( q  e.  Q.  /\  q  e.  ( 1st `  C ) ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
74733impb 1134 1  |-  ( ( A  <P  B  /\  q  e.  Q.  /\  q  e.  ( 1st `  C
) )  ->  E. r  e.  Q.  ( q  <Q 
r  /\  r  e.  ( 1st `  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 919    = wceq 1284   E.wex 1421    e. wcel 1433   E.wrex 2349   {crab 2352   <.cop 3401   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   1stc1st 5785   2ndc2nd 5786   Q.cnq 6470    +Q cplq 6472    <Q cltq 6475   P.cnp 6481    <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-ltnqqs 6543  df-inp 6656  df-iltp 6660
This theorem is referenced by:  ltexprlemrnd  6795
  Copyright terms: Public domain W3C validator