ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resqrexlemsqa GIF version

Theorem resqrexlemsqa 9910
Description: Lemma for resqrex 9912. The square of a limit is 𝐴. (Contributed by Jim Kingdon, 7-Aug-2021.)
Hypotheses
Ref Expression
resqrexlemex.seq 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
resqrexlemex.a (𝜑𝐴 ∈ ℝ)
resqrexlemex.agt0 (𝜑 → 0 ≤ 𝐴)
resqrexlemgt0.rr (𝜑𝐿 ∈ ℝ)
resqrexlemgt0.lim (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
Assertion
Ref Expression
resqrexlemsqa (𝜑 → (𝐿↑2) = 𝐴)
Distinct variable groups:   𝐴,𝑒,𝑗   𝑦,𝐴,𝑧   𝑒,𝐹,𝑗   𝑦,𝐹,𝑧   𝑖,𝐹   𝑒,𝐿,𝑗,𝑖   𝑦,𝐿,𝑧   𝑒,𝑖,𝑗   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑒,𝑖,𝑗)   𝐴(𝑖)

Proof of Theorem resqrexlemsqa
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 resqrexlemex.seq . . . . . . 7 𝐹 = seq1((𝑦 ∈ ℝ+, 𝑧 ∈ ℝ+ ↦ ((𝑦 + (𝐴 / 𝑦)) / 2)), (ℕ × {(1 + 𝐴)}), ℝ+)
2 resqrexlemex.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
3 resqrexlemex.agt0 . . . . . . 7 (𝜑 → 0 ≤ 𝐴)
41, 2, 3resqrexlemf 9893 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ+)
54ffvelrnda 5323 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ℝ+)
6 2z 8379 . . . . . 6 2 ∈ ℤ
76a1i 9 . . . . 5 ((𝜑𝑥 ∈ ℕ) → 2 ∈ ℤ)
85, 7rpexpcld 9629 . . . 4 ((𝜑𝑥 ∈ ℕ) → ((𝐹𝑥)↑2) ∈ ℝ+)
9 eqid 2081 . . . 4 (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)) = (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))
108, 9fmptd 5343 . . 3 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ+)
11 rpssre 8744 . . . 4 + ⊆ ℝ
1211a1i 9 . . 3 (𝜑 → ℝ+ ⊆ ℝ)
1310, 12fssd 5075 . 2 (𝜑 → (𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2)):ℕ⟶ℝ)
14 resqrexlemgt0.rr . . 3 (𝜑𝐿 ∈ ℝ)
1514resqcld 9631 . 2 (𝜑 → (𝐿↑2) ∈ ℝ)
16 resqrexlemgt0.lim . . . 4 (𝜑 → ∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)))
17 oveq2 5540 . . . . . . . . 9 (𝑒 = 𝑎 → (𝐿 + 𝑒) = (𝐿 + 𝑎))
1817breq2d 3797 . . . . . . . 8 (𝑒 = 𝑎 → ((𝐹𝑖) < (𝐿 + 𝑒) ↔ (𝐹𝑖) < (𝐿 + 𝑎)))
19 oveq2 5540 . . . . . . . . 9 (𝑒 = 𝑎 → ((𝐹𝑖) + 𝑒) = ((𝐹𝑖) + 𝑎))
2019breq2d 3797 . . . . . . . 8 (𝑒 = 𝑎 → (𝐿 < ((𝐹𝑖) + 𝑒) ↔ 𝐿 < ((𝐹𝑖) + 𝑎)))
2118, 20anbi12d 456 . . . . . . 7 (𝑒 = 𝑎 → (((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2221rexralbidv 2392 . . . . . 6 (𝑒 = 𝑎 → (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2322cbvralv 2577 . . . . 5 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
24 fveq2 5198 . . . . . . . 8 (𝑗 = 𝑏 → (ℤ𝑗) = (ℤ𝑏))
2524raleqdv 2555 . . . . . . 7 (𝑗 = 𝑏 → (∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎))))
2625cbvrexv 2578 . . . . . 6 (∃𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
2726ralbii 2372 . . . . 5 (∀𝑎 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)))
28 fveq2 5198 . . . . . . . . . 10 (𝑖 = 𝑐 → (𝐹𝑖) = (𝐹𝑐))
2928breq1d 3795 . . . . . . . . 9 (𝑖 = 𝑐 → ((𝐹𝑖) < (𝐿 + 𝑎) ↔ (𝐹𝑐) < (𝐿 + 𝑎)))
3028oveq1d 5547 . . . . . . . . . 10 (𝑖 = 𝑐 → ((𝐹𝑖) + 𝑎) = ((𝐹𝑐) + 𝑎))
3130breq2d 3797 . . . . . . . . 9 (𝑖 = 𝑐 → (𝐿 < ((𝐹𝑖) + 𝑎) ↔ 𝐿 < ((𝐹𝑐) + 𝑎)))
3229, 31anbi12d 456 . . . . . . . 8 (𝑖 = 𝑐 → (((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎))))
3332cbvralv 2577 . . . . . . 7 (∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3433rexbii 2373 . . . . . 6 (∃𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∃𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3534ralbii 2372 . . . . 5 (∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑖 ∈ (ℤ𝑏)((𝐹𝑖) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑖) + 𝑎)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3623, 27, 353bitri 204 . . . 4 (∀𝑒 ∈ ℝ+𝑗 ∈ ℕ ∀𝑖 ∈ (ℤ𝑗)((𝐹𝑖) < (𝐿 + 𝑒) ∧ 𝐿 < ((𝐹𝑖) + 𝑒)) ↔ ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
3716, 36sylib 120 . . 3 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑐 ∈ (ℤ𝑏)((𝐹𝑐) < (𝐿 + 𝑎) ∧ 𝐿 < ((𝐹𝑐) + 𝑎)))
381, 2, 3, 14, 37, 9resqrexlemglsq 9908 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < ((𝐿↑2) + 𝑎) ∧ (𝐿↑2) < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
391, 2, 3, 14, 37, 9resqrexlemga 9909 . 2 (𝜑 → ∀𝑎 ∈ ℝ+𝑏 ∈ ℕ ∀𝑑 ∈ (ℤ𝑏)(((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) < (𝐴 + 𝑎) ∧ 𝐴 < (((𝑥 ∈ ℕ ↦ ((𝐹𝑥)↑2))‘𝑑) + 𝑎)))
4013, 15, 38, 2, 39recvguniq 9881 1 (𝜑 → (𝐿↑2) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  wrex 2349  wss 2973  {csn 3398   class class class wbr 3785  cmpt 3839   × cxp 4361  cfv 4922  (class class class)co 5532  cmpt2 5534  cr 6980  0cc0 6981  1c1 6982   + caddc 6984   < clt 7153  cle 7154   / cdiv 7760  cn 8039  2c2 8089  cz 8351  cuz 8619  +crp 8734  seqcseq 9431  cexp 9475
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476
This theorem is referenced by:  resqrexlemex  9911
  Copyright terms: Public domain W3C validator