![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mulpiord | GIF version |
Description: Positive integer multiplication in terms of ordinal multiplication. (Contributed by NM, 27-Aug-1995.) |
Ref | Expression |
---|---|
mulpiord | ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxpi 4394 | . 2 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → 〈𝐴, 𝐵〉 ∈ (N × N)) | |
2 | fvres 5219 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) = ( ·𝑜 ‘〈𝐴, 𝐵〉)) | |
3 | df-ov 5535 | . . . 4 ⊢ (𝐴 ·N 𝐵) = ( ·N ‘〈𝐴, 𝐵〉) | |
4 | df-mi 6496 | . . . . 5 ⊢ ·N = ( ·𝑜 ↾ (N × N)) | |
5 | 4 | fveq1i 5199 | . . . 4 ⊢ ( ·N ‘〈𝐴, 𝐵〉) = (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
6 | 3, 5 | eqtri 2101 | . . 3 ⊢ (𝐴 ·N 𝐵) = (( ·𝑜 ↾ (N × N))‘〈𝐴, 𝐵〉) |
7 | df-ov 5535 | . . 3 ⊢ (𝐴 ·𝑜 𝐵) = ( ·𝑜 ‘〈𝐴, 𝐵〉) | |
8 | 2, 6, 7 | 3eqtr4g 2138 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (N × N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
9 | 1, 8 | syl 14 | 1 ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N) → (𝐴 ·N 𝐵) = (𝐴 ·𝑜 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 = wceq 1284 ∈ wcel 1433 〈cop 3401 × cxp 4361 ↾ cres 4365 ‘cfv 4922 (class class class)co 5532 ·𝑜 comu 6022 Ncnpi 6462 ·N cmi 6464 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-pow 3948 ax-pr 3964 |
This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ral 2353 df-rex 2354 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-xp 4369 df-res 4375 df-iota 4887 df-fv 4930 df-ov 5535 df-mi 6496 |
This theorem is referenced by: mulidpi 6508 mulclpi 6518 mulcompig 6521 mulasspig 6522 distrpig 6523 mulcanpig 6525 ltmpig 6529 archnqq 6607 enq0enq 6621 addcmpblnq0 6633 mulcmpblnq0 6634 mulcanenq0ec 6635 addclnq0 6641 mulclnq0 6642 nqpnq0nq 6643 nqnq0a 6644 nqnq0m 6645 nq0m0r 6646 distrnq0 6649 addassnq0lemcl 6651 |
Copyright terms: Public domain | W3C validator |