| Step | Hyp | Ref
| Expression |
| 1 | | btwnz 8466 |
. . 3
⊢ (𝐴 ∈ ℝ →
(∃𝑚 ∈ ℤ
𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛)) |
| 2 | | reeanv 2523 |
. . 3
⊢
(∃𝑚 ∈
ℤ ∃𝑛 ∈
ℤ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛) ↔ (∃𝑚 ∈ ℤ 𝑚 < 𝐴 ∧ ∃𝑛 ∈ ℤ 𝐴 < 𝑛)) |
| 3 | 1, 2 | sylibr 132 |
. 2
⊢ (𝐴 ∈ ℝ →
∃𝑚 ∈ ℤ
∃𝑛 ∈ ℤ
(𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) |
| 4 | | simpll 495 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝐴 ∈ ℝ) |
| 5 | | simplrl 501 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑚 ∈ ℤ) |
| 6 | 5 | zred 8469 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑚 ∈ ℝ) |
| 7 | | simplrr 502 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑛 ∈ ℤ) |
| 8 | 7 | zred 8469 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑛 ∈ ℝ) |
| 9 | | simprl 497 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑚 < 𝐴) |
| 10 | | simprr 498 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝐴 < 𝑛) |
| 11 | 6, 4, 8, 9, 10 | lttrd 7235 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑚 < 𝑛) |
| 12 | | znnsub 8402 |
. . . . . . . 8
⊢ ((𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑚 < 𝑛 ↔ (𝑛 − 𝑚) ∈ ℕ)) |
| 13 | 12 | ad2antlr 472 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑚 < 𝑛 ↔ (𝑛 − 𝑚) ∈ ℕ)) |
| 14 | 11, 13 | mpbid 145 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑛 − 𝑚) ∈ ℕ) |
| 15 | | elnnuz 8655 |
. . . . . . . 8
⊢ ((𝑛 − 𝑚) ∈ ℕ ↔ (𝑛 − 𝑚) ∈
(ℤ≥‘1)) |
| 16 | | eluzp1p1 8644 |
. . . . . . . 8
⊢ ((𝑛 − 𝑚) ∈ (ℤ≥‘1)
→ ((𝑛 − 𝑚) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 17 | 15, 16 | sylbi 119 |
. . . . . . 7
⊢ ((𝑛 − 𝑚) ∈ ℕ → ((𝑛 − 𝑚) + 1) ∈
(ℤ≥‘(1 + 1))) |
| 18 | | df-2 8098 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
| 19 | 18 | fveq2i 5201 |
. . . . . . 7
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 20 | 17, 19 | syl6eleqr 2172 |
. . . . . 6
⊢ ((𝑛 − 𝑚) ∈ ℕ → ((𝑛 − 𝑚) + 1) ∈
(ℤ≥‘2)) |
| 21 | 14, 20 | syl 14 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → ((𝑛 − 𝑚) + 1) ∈
(ℤ≥‘2)) |
| 22 | 5 | zcnd 8470 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑚 ∈ ℂ) |
| 23 | 7 | zcnd 8470 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝑛 ∈ ℂ) |
| 24 | 22, 23 | pncan3d 7422 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑚 + (𝑛 − 𝑚)) = 𝑛) |
| 25 | 24, 8 | eqeltrd 2155 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑚 + (𝑛 − 𝑚)) ∈ ℝ) |
| 26 | 8, 6 | resubcld 7485 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑛 − 𝑚) ∈ ℝ) |
| 27 | | 1red 7134 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 1 ∈ ℝ) |
| 28 | 26, 27 | readdcld 7148 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → ((𝑛 − 𝑚) + 1) ∈ ℝ) |
| 29 | 6, 28 | readdcld 7148 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑚 + ((𝑛 − 𝑚) + 1)) ∈ ℝ) |
| 30 | 10, 24 | breqtrrd 3811 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝐴 < (𝑚 + (𝑛 − 𝑚))) |
| 31 | 26 | ltp1d 8008 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑛 − 𝑚) < ((𝑛 − 𝑚) + 1)) |
| 32 | 26, 28, 6, 31 | ltadd2dd 7526 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → (𝑚 + (𝑛 − 𝑚)) < (𝑚 + ((𝑛 − 𝑚) + 1))) |
| 33 | 4, 25, 29, 30, 32 | lttrd 7235 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → 𝐴 < (𝑚 + ((𝑛 − 𝑚) + 1))) |
| 34 | | breq1 3788 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝑦 < 𝐴 ↔ 𝑚 < 𝐴)) |
| 35 | | oveq1 5539 |
. . . . . . . . 9
⊢ (𝑦 = 𝑚 → (𝑦 + ((𝑛 − 𝑚) + 1)) = (𝑚 + ((𝑛 − 𝑚) + 1))) |
| 36 | 35 | breq2d 3797 |
. . . . . . . 8
⊢ (𝑦 = 𝑚 → (𝐴 < (𝑦 + ((𝑛 − 𝑚) + 1)) ↔ 𝐴 < (𝑚 + ((𝑛 − 𝑚) + 1)))) |
| 37 | 34, 36 | anbi12d 456 |
. . . . . . 7
⊢ (𝑦 = 𝑚 → ((𝑦 < 𝐴 ∧ 𝐴 < (𝑦 + ((𝑛 − 𝑚) + 1))) ↔ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + ((𝑛 − 𝑚) + 1))))) |
| 38 | 37 | rspcev 2701 |
. . . . . 6
⊢ ((𝑚 ∈ ℤ ∧ (𝑚 < 𝐴 ∧ 𝐴 < (𝑚 + ((𝑛 − 𝑚) + 1)))) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴 ∧ 𝐴 < (𝑦 + ((𝑛 − 𝑚) + 1)))) |
| 39 | 5, 9, 33, 38 | syl12anc 1167 |
. . . . 5
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → ∃𝑦 ∈ ℤ (𝑦 < 𝐴 ∧ 𝐴 < (𝑦 + ((𝑛 − 𝑚) + 1)))) |
| 40 | | rebtwn2zlemshrink 9262 |
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ ((𝑛 − 𝑚) + 1) ∈
(ℤ≥‘2) ∧ ∃𝑦 ∈ ℤ (𝑦 < 𝐴 ∧ 𝐴 < (𝑦 + ((𝑛 − 𝑚) + 1)))) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |
| 41 | 4, 21, 39, 40 | syl3anc 1169 |
. . . 4
⊢ (((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) ∧ (𝑚 < 𝐴 ∧ 𝐴 < 𝑛)) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |
| 42 | 41 | ex 113 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ (𝑚 ∈ ℤ ∧ 𝑛 ∈ ℤ)) → ((𝑚 < 𝐴 ∧ 𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2)))) |
| 43 | 42 | rexlimdvva 2484 |
. 2
⊢ (𝐴 ∈ ℝ →
(∃𝑚 ∈ ℤ
∃𝑛 ∈ ℤ
(𝑚 < 𝐴 ∧ 𝐴 < 𝑛) → ∃𝑥 ∈ ℤ (𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2)))) |
| 44 | 3, 43 | mpd 13 |
1
⊢ (𝐴 ∈ ℝ →
∃𝑥 ∈ ℤ
(𝑥 < 𝐴 ∧ 𝐴 < (𝑥 + 2))) |