ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgprprlemloccalc GIF version

Theorem caucvgprprlemloccalc 6874
Description: Lemma for caucvgprpr 6902. Rearranging some expressions for caucvgprprlemloc 6893. (Contributed by Jim Kingdon, 8-Feb-2021.)
Hypotheses
Ref Expression
caucvgprprlemloccalc.st (𝜑𝑆 <Q 𝑇)
caucvgprprlemloccalc.y (𝜑𝑌Q)
caucvgprprlemloccalc.syt (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
caucvgprprlemloccalc.x (𝜑𝑋Q)
caucvgprprlemloccalc.xxy (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
caucvgprprlemloccalc.m (𝜑𝑀N)
caucvgprprlemloccalc.mx (𝜑 → (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋)
Assertion
Ref Expression
caucvgprprlemloccalc (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Distinct variable groups:   𝑀,𝑙,𝑢   𝑆,𝑙,𝑢   𝑇,𝑙,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑙)   𝑋(𝑢,𝑙)   𝑌(𝑢,𝑙)

Proof of Theorem caucvgprprlemloccalc
StepHypRef Expression
1 caucvgprprlemloccalc.st . . . . . 6 (𝜑𝑆 <Q 𝑇)
2 ltrelnq 6555 . . . . . . 7 <Q ⊆ (Q × Q)
32brel 4410 . . . . . 6 (𝑆 <Q 𝑇 → (𝑆Q𝑇Q))
41, 3syl 14 . . . . 5 (𝜑 → (𝑆Q𝑇Q))
54simpld 110 . . . 4 (𝜑𝑆Q)
6 caucvgprprlemloccalc.m . . . . 5 (𝜑𝑀N)
7 nnnq 6612 . . . . 5 (𝑀N → [⟨𝑀, 1𝑜⟩] ~QQ)
8 recclnq 6582 . . . . 5 ([⟨𝑀, 1𝑜⟩] ~QQ → (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q)
96, 7, 83syl 17 . . . 4 (𝜑 → (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q)
10 addclnq 6565 . . . 4 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q) → (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) ∈ Q)
115, 9, 10syl2anc 403 . . 3 (𝜑 → (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) ∈ Q)
12 addnqpr 6751 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) ∈ Q ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q) → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))
1311, 9, 12syl2anc 403 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ = (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑢}⟩))
14 addassnqg 6572 . . . . 5 ((𝑆Q ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q) → ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))))
155, 9, 9, 14syl3anc 1169 . . . 4 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) = (𝑆 +Q ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))))
16 caucvgprprlemloccalc.mx . . . . . . . 8 (𝜑 → (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋)
17 caucvgprprlemloccalc.x . . . . . . . . 9 (𝜑𝑋Q)
18 lt2addnq 6594 . . . . . . . . 9 ((((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q𝑋Q) ∧ ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) ∈ Q𝑋Q)) → (((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
199, 17, 9, 17, 18syl22anc 1170 . . . . . . . 8 (𝜑 → (((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋 ∧ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑋) → ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q (𝑋 +Q 𝑋)))
2016, 16, 19mp2and 423 . . . . . . 7 (𝜑 → ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q (𝑋 +Q 𝑋))
21 caucvgprprlemloccalc.xxy . . . . . . 7 (𝜑 → (𝑋 +Q 𝑋) <Q 𝑌)
22 ltsonq 6588 . . . . . . . 8 <Q Or Q
2322, 2sotri 4740 . . . . . . 7 ((((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q (𝑋 +Q 𝑋) ∧ (𝑋 +Q 𝑋) <Q 𝑌) → ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑌)
2420, 21, 23syl2anc 403 . . . . . 6 (𝜑 → ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑌)
25 ltanqi 6592 . . . . . 6 ((((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑌𝑆Q) → (𝑆 +Q ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
2624, 5, 25syl2anc 403 . . . . 5 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))) <Q (𝑆 +Q 𝑌))
27 caucvgprprlemloccalc.syt . . . . 5 (𝜑 → (𝑆 +Q 𝑌) = 𝑇)
2826, 27breqtrd 3809 . . . 4 (𝜑 → (𝑆 +Q ((*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))) <Q 𝑇)
2915, 28eqbrtrd 3805 . . 3 (𝜑 → ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑇)
30 ltnqpri 6784 . . 3 (((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑇 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3129, 30syl 14 . 2 (𝜑 → ⟨{𝑙𝑙 <Q ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ ((𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
3213, 31eqbrtrrd 3807 1 (𝜑 → (⟨{𝑙𝑙 <Q (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ))}, {𝑢 ∣ (𝑆 +Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )) <Q 𝑢}⟩ +P ⟨{𝑙𝑙 <Q (*Q‘[⟨𝑀, 1𝑜⟩] ~Q )}, {𝑢 ∣ (*Q‘[⟨𝑀, 1𝑜⟩] ~Q ) <Q 𝑢}⟩)<P ⟨{𝑙𝑙 <Q 𝑇}, {𝑢𝑇 <Q 𝑢}⟩)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  {cab 2067  cop 3401   class class class wbr 3785  cfv 4922  (class class class)co 5532  1𝑜c1o 6017  [cec 6127  Ncnpi 6462   ~Q ceq 6469  Qcnq 6470   +Q cplq 6472  *Qcrq 6474   <Q cltq 6475   +P cpp 6483  <P cltp 6485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-eprel 4044  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-irdg 5980  df-1o 6024  df-2o 6025  df-oadd 6028  df-omul 6029  df-er 6129  df-ec 6131  df-qs 6135  df-ni 6494  df-pli 6495  df-mi 6496  df-lti 6497  df-plpq 6534  df-mpq 6535  df-enq 6537  df-nqqs 6538  df-plqqs 6539  df-mqqs 6540  df-1nqqs 6541  df-rq 6542  df-ltnqqs 6543  df-enq0 6614  df-nq0 6615  df-0nq0 6616  df-plq0 6617  df-mq0 6618  df-inp 6656  df-iplp 6658  df-iltp 6660
This theorem is referenced by:  caucvgprprlemloc  6893
  Copyright terms: Public domain W3C validator