ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip GIF version

Theorem dvdsflip 10251
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsflip.f 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
Assertion
Ref Expression
dvdsflip (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem dvdsflip
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
2 dvdsflip.a . . . . 5 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
32eleq2i 2145 . . . 4 (𝑦𝐴𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4 dvdsdivcl 10250 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
53, 4sylan2b 281 . . 3 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
65, 2syl6eleqr 2172 . 2 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ 𝐴)
72eleq2i 2145 . . . 4 (𝑧𝐴𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 10250 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
97, 8sylan2b 281 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
109, 2syl6eleqr 2172 . 2 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ 𝐴)
11 ssrab2 3079 . . . . . . 7 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
122, 11eqsstri 3029 . . . . . 6 𝐴 ⊆ ℕ
1312sseli 2995 . . . . 5 (𝑦𝐴𝑦 ∈ ℕ)
1412sseli 2995 . . . . 5 (𝑧𝐴𝑧 ∈ ℕ)
1513, 14anim12i 331 . . . 4 ((𝑦𝐴𝑧𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
16 nncn 8047 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1716adantr 270 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ)
18 nncn 8047 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1918ad2antrl 473 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ)
20 nncn 8047 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
2120ad2antll 474 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ)
22 simprr 498 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ)
2322nnap0d 8084 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0)
2417, 19, 21, 23divmulap3d 7911 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦𝑁 = (𝑦 · 𝑧)))
25 simprl 497 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ)
2625nnap0d 8084 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0)
2717, 21, 19, 26divmulap2d 7910 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧𝑁 = (𝑦 · 𝑧)))
2824, 27bitr4d 189 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
2915, 28sylan2 280 . . 3 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
30 eqcom 2083 . . 3 (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦)
31 eqcom 2083 . . 3 (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧)
3229, 30, 313bitr4g 221 . 2 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦)))
331, 6, 10, 32f1o2d 5725 1 (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1284  wcel 1433  {crab 2352   class class class wbr 3785  cmpt 3839  1-1-ontowf1o 4921  (class class class)co 5532  cc 6979   · cmul 6986   / cdiv 7760  cn 8039  cdvds 10195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-po 4051  df-iso 4052  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-n0 8289  df-z 8352  df-dvds 10196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator