ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzsplit2 GIF version

Theorem fzsplit2 9069
Description: Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
fzsplit2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))

Proof of Theorem fzsplit2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9045 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ ℤ)
2 eluzel2 8624 . . . . . . 7 (𝑁 ∈ (ℤ𝐾) → 𝐾 ∈ ℤ)
32adantl 271 . . . . . 6 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝐾 ∈ ℤ)
4 zlelttric 8396 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑥𝐾𝐾 < 𝑥))
51, 3, 4syl2anr 284 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥𝐾𝐾 < 𝑥))
6 elfzuz 9041 . . . . . . 7 (𝑥 ∈ (𝑀...𝑁) → 𝑥 ∈ (ℤ𝑀))
7 elfz5 9037 . . . . . . 7 ((𝑥 ∈ (ℤ𝑀) ∧ 𝐾 ∈ ℤ) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
86, 3, 7syl2anr 284 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ↔ 𝑥𝐾))
9 simpl 107 . . . . . . . . 9 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ (ℤ𝑀))
10 eluzelz 8628 . . . . . . . . 9 ((𝐾 + 1) ∈ (ℤ𝑀) → (𝐾 + 1) ∈ ℤ)
119, 10syl 14 . . . . . . . 8 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝐾 + 1) ∈ ℤ)
12 eluz 8632 . . . . . . . 8 (((𝐾 + 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
1311, 1, 12syl2an 283 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (ℤ‘(𝐾 + 1)) ↔ (𝐾 + 1) ≤ 𝑥))
14 elfzuz3 9042 . . . . . . . . 9 (𝑥 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑥))
1514adantl 271 . . . . . . . 8 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → 𝑁 ∈ (ℤ𝑥))
16 elfzuzb 9039 . . . . . . . . 9 (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ (𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ 𝑁 ∈ (ℤ𝑥)))
1716rbaib 863 . . . . . . . 8 (𝑁 ∈ (ℤ𝑥) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
1815, 17syl 14 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝑥 ∈ (ℤ‘(𝐾 + 1))))
19 zltp1le 8405 . . . . . . . 8 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
203, 1, 19syl2an 283 . . . . . . 7 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝐾 < 𝑥 ↔ (𝐾 + 1) ≤ 𝑥))
2113, 18, 203bitr4d 218 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ ((𝐾 + 1)...𝑁) ↔ 𝐾 < 𝑥))
228, 21orbi12d 739 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → ((𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)) ↔ (𝑥𝐾𝐾 < 𝑥)))
235, 22mpbird 165 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝑁)) → (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
24 elfzuz 9041 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝑥 ∈ (ℤ𝑀))
2524adantl 271 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (ℤ𝑀))
26 simpr 108 . . . . . . 7 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → 𝑁 ∈ (ℤ𝐾))
27 elfzuz3 9042 . . . . . . 7 (𝑥 ∈ (𝑀...𝐾) → 𝐾 ∈ (ℤ𝑥))
28 uztrn 8635 . . . . . . 7 ((𝑁 ∈ (ℤ𝐾) ∧ 𝐾 ∈ (ℤ𝑥)) → 𝑁 ∈ (ℤ𝑥))
2926, 27, 28syl2an 283 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑁 ∈ (ℤ𝑥))
30 elfzuzb 9039 . . . . . 6 (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝑥)))
3125, 29, 30sylanbrc 408 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ (𝑀...𝐾)) → 𝑥 ∈ (𝑀...𝑁))
32 elfzuz 9041 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑥 ∈ (ℤ‘(𝐾 + 1)))
33 uztrn 8635 . . . . . . 7 ((𝑥 ∈ (ℤ‘(𝐾 + 1)) ∧ (𝐾 + 1) ∈ (ℤ𝑀)) → 𝑥 ∈ (ℤ𝑀))
3432, 9, 33syl2anr 284 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (ℤ𝑀))
35 elfzuz3 9042 . . . . . . 7 (𝑥 ∈ ((𝐾 + 1)...𝑁) → 𝑁 ∈ (ℤ𝑥))
3635adantl 271 . . . . . 6 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑁 ∈ (ℤ𝑥))
3734, 36, 30sylanbrc 408 . . . . 5 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ 𝑥 ∈ ((𝐾 + 1)...𝑁)) → 𝑥 ∈ (𝑀...𝑁))
3831, 37jaodan 743 . . . 4 ((((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) ∧ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))) → 𝑥 ∈ (𝑀...𝑁))
3923, 38impbida 560 . . 3 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁))))
40 elun 3113 . . 3 (𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)) ↔ (𝑥 ∈ (𝑀...𝐾) ∨ 𝑥 ∈ ((𝐾 + 1)...𝑁)))
4139, 40syl6bbr 196 . 2 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑥 ∈ (𝑀...𝑁) ↔ 𝑥 ∈ ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁))))
4241eqrdv 2079 1 (((𝐾 + 1) ∈ (ℤ𝑀) ∧ 𝑁 ∈ (ℤ𝐾)) → (𝑀...𝑁) = ((𝑀...𝐾) ∪ ((𝐾 + 1)...𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433  cun 2971   class class class wbr 3785  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984   < clt 7153  cle 7154  cz 8351  cuz 8619  ...cfz 9029
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-br 3786  df-opab 3840  df-mpt 3841  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030
This theorem is referenced by:  fzsplit  9070  fzpred  9087
  Copyright terms: Public domain W3C validator