ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqcaopr2 GIF version

Theorem iseqcaopr2 9461
Description: The sum of two infinite series (generalized to an arbitrary commutative and associative operation). (Contributed by Mario Carneiro, 30-May-2014.)
Hypotheses
Ref Expression
iseqcaopr2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqcaopr2.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
iseqcaopr2.3 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
iseqcaopr2.4 (𝜑𝑁 ∈ (ℤ𝑀))
iseqcaopr2.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
iseqcaopr2.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
iseqcaopr2.7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
iseqcaopr2.s (𝜑𝑆𝑉)
Assertion
Ref Expression
iseqcaopr2 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Distinct variable groups:   𝑤, + ,𝑥,𝑦,𝑧   𝑘,𝐹,𝑤,𝑥,𝑦,𝑧   𝑘,𝐺,𝑤,𝑥,𝑦,𝑧   𝑘,𝐻,𝑥,𝑦,𝑧   𝑘,𝑀,𝑤,𝑥,𝑦,𝑧   𝑘,𝑁,𝑥,𝑦,𝑧   𝑄,𝑘,𝑤,𝑥,𝑦,𝑧   𝑆,𝑘,𝑤,𝑥,𝑦,𝑧   𝜑,𝑘,𝑤,𝑥,𝑦,𝑧
Allowed substitution hints:   + (𝑘)   𝐻(𝑤)   𝑁(𝑤)   𝑉(𝑥,𝑦,𝑧,𝑤,𝑘)

Proof of Theorem iseqcaopr2
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 iseqcaopr2.1 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
2 iseqcaopr2.2 . 2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
3 iseqcaopr2.4 . 2 (𝜑𝑁 ∈ (ℤ𝑀))
4 iseqcaopr2.5 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
5 iseqcaopr2.6 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
6 iseqcaopr2.7 . 2 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
7 elfzouz 9161 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
87adantl 271 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
9 iseqcaopr2.s . . . . 5 (𝜑𝑆𝑉)
109adantr 270 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑆𝑉)
115ralrimiva 2434 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
1211adantr 270 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
13 fveq2 5198 . . . . . . 7 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
1413eleq1d 2147 . . . . . 6 (𝑘 = 𝑥 → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
1514rspccva 2700 . . . . 5 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
1612, 15sylan 277 . . . 4 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
171adantlr 460 . . . 4 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
188, 10, 16, 17iseqcl 9443 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺, 𝑆)‘𝑛) ∈ 𝑆)
19 fzssuz 9083 . . . . 5 (𝑀...𝑁) ⊆ (ℤ𝑀)
20 fzofzp1 9236 . . . . 5 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
2119, 20sseldi 2997 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (ℤ𝑀))
22 fveq2 5198 . . . . . 6 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
2322eleq1d 2147 . . . . 5 (𝑘 = (𝑛 + 1) → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆))
2423rspccva 2700 . . . 4 ((∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
2511, 21, 24syl2an 283 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆)
264ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆)
27 fveq2 5198 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2827eleq1d 2147 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
2928rspccva 2700 . . . . . . 7 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3026, 29sylan 277 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
3130adantlr 460 . . . . 5 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
328, 10, 31, 17iseqcl 9443 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆)
33 fveq2 5198 . . . . . . 7 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
3433eleq1d 2147 . . . . . 6 (𝑘 = (𝑛 + 1) → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆))
3534rspccva 2700 . . . . 5 ((∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈ (ℤ𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
3626, 21, 35syl2an 283 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆)
37 iseqcaopr2.3 . . . . . . . 8 ((𝜑 ∧ ((𝑥𝑆𝑦𝑆) ∧ (𝑧𝑆𝑤𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
3837anassrs 392 . . . . . . 7 (((𝜑 ∧ (𝑥𝑆𝑦𝑆)) ∧ (𝑧𝑆𝑤𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
3938ralrimivva 2443 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → ∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4039ralrimivva 2443 . . . . 5 (𝜑 → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
4140adantr 270 . . . 4 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)))
42 oveq1 5539 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧))
4342oveq1d 5547 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)))
44 oveq1 5539 . . . . . . . 8 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦))
4544oveq1d 5547 . . . . . . 7 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))
4643, 45eqeq12d 2095 . . . . . 6 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
47462ralbidv 2390 . . . . 5 (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (∀𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))))
48 oveq1 5539 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤))
4948oveq2d 5548 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
50 oveq2 5540 . . . . . . . 8 (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
5150oveq1d 5547 . . . . . . 7 (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5249, 51eqeq12d 2095 . . . . . 6 (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
53522ralbidv 2390 . . . . 5 (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))))
5447, 53rspc2va 2714 . . . 4 ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥𝑆𝑦𝑆𝑧𝑆𝑤𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
5532, 36, 41, 54syl21anc 1168 . . 3 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))
56 oveq2 5540 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)))
5756oveq1d 5547 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)))
58 oveq1 5539 . . . . . 6 (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤))
5958oveq2d 5548 . . . . 5 (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)))
6057, 59eqeq12d 2095 . . . 4 (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤))))
61 oveq2 5540 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
6261oveq2d 5548 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
63 oveq2 5540 . . . . . 6 (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))
6463oveq2d 5548 . . . . 5 (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6562, 64eqeq12d 2095 . . . 4 (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))))
6660, 65rspc2va 2714 . . 3 ((((seq𝑀( + , 𝐺, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧𝑆𝑤𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
6718, 25, 55, 66syl21anc 1168 . 2 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
681, 2, 3, 4, 5, 6, 67, 9iseqcaopr3 9460 1 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cuz 8619  ...cfz 9029  ..^cfzo 9152  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153  df-iseq 9432
This theorem is referenced by:  iseqcaopr  9462  isersub  9464
  Copyright terms: Public domain W3C validator