| Step | Hyp | Ref
| Expression |
| 1 | | iseqcaopr2.1 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 2 | | iseqcaopr2.2 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆) |
| 3 | | iseqcaopr2.4 |
. 2
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| 4 | | iseqcaopr2.5 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) ∈ 𝑆) |
| 5 | | iseqcaopr2.6 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑘) ∈ 𝑆) |
| 6 | | iseqcaopr2.7 |
. 2
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐻‘𝑘) = ((𝐹‘𝑘)𝑄(𝐺‘𝑘))) |
| 7 | | elfzouz 9161 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 8 | 7 | adantl 271 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ≥‘𝑀)) |
| 9 | | iseqcaopr2.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 10 | 9 | adantr 270 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → 𝑆 ∈ 𝑉) |
| 11 | 5 | ralrimiva 2434 |
. . . . . 6
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆) |
| 12 | 11 | adantr 270 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆) |
| 13 | | fveq2 5198 |
. . . . . . 7
⊢ (𝑘 = 𝑥 → (𝐺‘𝑘) = (𝐺‘𝑥)) |
| 14 | 13 | eleq1d 2147 |
. . . . . 6
⊢ (𝑘 = 𝑥 → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘𝑥) ∈ 𝑆)) |
| 15 | 14 | rspccva 2700 |
. . . . 5
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 16 | 12, 15 | sylan 277 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐺‘𝑥) ∈ 𝑆) |
| 17 | 1 | adantlr 460 |
. . . 4
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
| 18 | 8, 10, 16, 17 | iseqcl 9443 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺, 𝑆)‘𝑛) ∈ 𝑆) |
| 19 | | fzssuz 9083 |
. . . . 5
⊢ (𝑀...𝑁) ⊆
(ℤ≥‘𝑀) |
| 20 | | fzofzp1 9236 |
. . . . 5
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁)) |
| 21 | 19, 20 | sseldi 2997 |
. . . 4
⊢ (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈
(ℤ≥‘𝑀)) |
| 22 | | fveq2 5198 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → (𝐺‘𝑘) = (𝐺‘(𝑛 + 1))) |
| 23 | 22 | eleq1d 2147 |
. . . . 5
⊢ (𝑘 = (𝑛 + 1) → ((𝐺‘𝑘) ∈ 𝑆 ↔ (𝐺‘(𝑛 + 1)) ∈ 𝑆)) |
| 24 | 23 | rspccva 2700 |
. . . 4
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐺‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈
(ℤ≥‘𝑀)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
| 25 | 11, 21, 24 | syl2an 283 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐺‘(𝑛 + 1)) ∈ 𝑆) |
| 26 | 4 | ralrimiva 2434 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆) |
| 27 | | fveq2 5198 |
. . . . . . . . 9
⊢ (𝑘 = 𝑥 → (𝐹‘𝑘) = (𝐹‘𝑥)) |
| 28 | 27 | eleq1d 2147 |
. . . . . . . 8
⊢ (𝑘 = 𝑥 → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘𝑥) ∈ 𝑆)) |
| 29 | 28 | rspccva 2700 |
. . . . . . 7
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 30 | 26, 29 | sylan 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 31 | 30 | adantlr 460 |
. . . . 5
⊢ (((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
| 32 | 8, 10, 31, 17 | iseqcl 9443 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆) |
| 33 | | fveq2 5198 |
. . . . . . 7
⊢ (𝑘 = (𝑛 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑛 + 1))) |
| 34 | 33 | eleq1d 2147 |
. . . . . 6
⊢ (𝑘 = (𝑛 + 1) → ((𝐹‘𝑘) ∈ 𝑆 ↔ (𝐹‘(𝑛 + 1)) ∈ 𝑆)) |
| 35 | 34 | rspccva 2700 |
. . . . 5
⊢
((∀𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ 𝑆 ∧ (𝑛 + 1) ∈
(ℤ≥‘𝑀)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 36 | 26, 21, 35 | syl2an 283 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (𝐹‘(𝑛 + 1)) ∈ 𝑆) |
| 37 | | iseqcaopr2.3 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆))) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 38 | 37 | anassrs 392 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) ∧ (𝑧 ∈ 𝑆 ∧ 𝑤 ∈ 𝑆)) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 39 | 38 | ralrimivva 2443 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 40 | 39 | ralrimivva 2443 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 41 | 40 | adantr 270 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) |
| 42 | | oveq1 5539 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥𝑄𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧)) |
| 43 | 42 | oveq1d 5547 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤))) |
| 44 | | oveq1 5539 |
. . . . . . . 8
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (𝑥 + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)) |
| 45 | 44 | oveq1d 5547 |
. . . . . . 7
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤))) |
| 46 | 43, 45 | eqeq12d 2095 |
. . . . . 6
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
| 47 | 46 | 2ralbidv 2390 |
. . . . 5
⊢ (𝑥 = (seq𝑀( + , 𝐹, 𝑆)‘𝑛) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)))) |
| 48 | | oveq1 5539 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (𝑦𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄𝑤)) |
| 49 | 48 | oveq2d 5548 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
| 50 | | oveq2 5540 |
. . . . . . . 8
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))) |
| 51 | 50 | oveq1d 5547 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 52 | 49, 51 | eqeq12d 2095 |
. . . . . 6
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
| 53 | 52 | 2ralbidv 2390 |
. . . . 5
⊢ (𝑦 = (𝐹‘(𝑛 + 1)) → (∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + (𝑦𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + 𝑦)𝑄(𝑧 + 𝑤)) ↔ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)))) |
| 54 | 47, 53 | rspc2va 2714 |
. . . 4
⊢
((((seq𝑀( + , 𝐹, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐹‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 ((𝑥𝑄𝑧) + (𝑦𝑄𝑤)) = ((𝑥 + 𝑦)𝑄(𝑧 + 𝑤))) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 55 | 32, 36, 41, 54 | syl21anc 1168 |
. . 3
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) |
| 56 | | oveq2 5540 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛))) |
| 57 | 56 | oveq1d 5547 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤))) |
| 58 | | oveq1 5539 |
. . . . . 6
⊢ (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (𝑧 + 𝑤) = ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)) |
| 59 | 58 | oveq2d 5548 |
. . . . 5
⊢ (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤))) |
| 60 | 57, 59 | eqeq12d 2095 |
. . . 4
⊢ (𝑧 = (seq𝑀( + , 𝐺, 𝑆)‘𝑛) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)))) |
| 61 | | oveq2 5540 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((𝐹‘(𝑛 + 1))𝑄𝑤) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) |
| 62 | 61 | oveq2d 5548 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))) |
| 63 | | oveq2 5540 |
. . . . . 6
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤) = ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))) |
| 64 | 63 | oveq2d 5548 |
. . . . 5
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 65 | 62, 64 | eqeq12d 2095 |
. . . 4
⊢ (𝑤 = (𝐺‘(𝑛 + 1)) → ((((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + 𝑤)) ↔ (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))) |
| 66 | 60, 65 | rspc2va 2714 |
. . 3
⊢
((((seq𝑀( + , 𝐺, 𝑆)‘𝑛) ∈ 𝑆 ∧ (𝐺‘(𝑛 + 1)) ∈ 𝑆) ∧ ∀𝑧 ∈ 𝑆 ∀𝑤 ∈ 𝑆 (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄𝑧) + ((𝐹‘(𝑛 + 1))𝑄𝑤)) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄(𝑧 + 𝑤))) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 67 | 18, 25, 55, 66 | syl21anc 1168 |
. 2
⊢ ((𝜑 ∧ 𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))) |
| 68 | 1, 2, 3, 4, 5, 6, 67, 9 | iseqcaopr3 9460 |
1
⊢ (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁))) |