ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqcaopr3 GIF version

Theorem iseqcaopr3 9460
Description: Lemma for iseqcaopr2 . (Contributed by Jim Kingdon, 16-Aug-2021.)
Hypotheses
Ref Expression
iseqcaopr3.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
iseqcaopr3.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
iseqcaopr3.3 (𝜑𝑁 ∈ (ℤ𝑀))
iseqcaopr3.4 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
iseqcaopr3.5 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
iseqcaopr3.6 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
iseqcaopr3.7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
iseqcaopr3.s (𝜑𝑆𝑉)
Assertion
Ref Expression
iseqcaopr3 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Distinct variable groups:   + ,𝑛,𝑥,𝑦   𝑘,𝐹,𝑛,𝑥,𝑦   𝑘,𝐺,𝑛,𝑥,𝑦   𝑘,𝐻,𝑛,𝑥,𝑦   𝑘,𝑀,𝑛,𝑥,𝑦   𝑘,𝑁,𝑛,𝑥,𝑦   𝑄,𝑘,𝑛,𝑥,𝑦   𝑆,𝑘,𝑛,𝑥,𝑦   𝜑,𝑘,𝑛,𝑥,𝑦
Allowed substitution hints:   + (𝑘)   𝑉(𝑥,𝑦,𝑘,𝑛)

Proof of Theorem iseqcaopr3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iseqcaopr3.3 . . 3 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzfz2 9051 . . 3 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ (𝑀...𝑁))
31, 2syl 14 . 2 (𝜑𝑁 ∈ (𝑀...𝑁))
4 fveq2 5198 . . . . 5 (𝑧 = 𝑀 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = (seq𝑀( + , 𝐻, 𝑆)‘𝑀))
5 fveq2 5198 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑀))
6 fveq2 5198 . . . . . 6 (𝑧 = 𝑀 → (seq𝑀( + , 𝐺, 𝑆)‘𝑧) = (seq𝑀( + , 𝐺, 𝑆)‘𝑀))
75, 6oveq12d 5550 . . . . 5 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀)))
84, 7eqeq12d 2095 . . . 4 (𝑧 = 𝑀 → ((seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) ↔ (seq𝑀( + , 𝐻, 𝑆)‘𝑀) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀))))
98imbi2d 228 . . 3 (𝑧 = 𝑀 → ((𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑀) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀)))))
10 fveq2 5198 . . . . 5 (𝑧 = 𝑛 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = (seq𝑀( + , 𝐻, 𝑆)‘𝑛))
11 fveq2 5198 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑛))
12 fveq2 5198 . . . . . 6 (𝑧 = 𝑛 → (seq𝑀( + , 𝐺, 𝑆)‘𝑧) = (seq𝑀( + , 𝐺, 𝑆)‘𝑛))
1311, 12oveq12d 5550 . . . . 5 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)))
1410, 13eqeq12d 2095 . . . 4 (𝑧 = 𝑛 → ((seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) ↔ (seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛))))
1514imbi2d 228 . . 3 (𝑧 = 𝑛 → ((𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)))))
16 fveq2 5198 . . . . 5 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)))
17 fveq2 5198 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)))
18 fveq2 5198 . . . . . 6 (𝑧 = (𝑛 + 1) → (seq𝑀( + , 𝐺, 𝑆)‘𝑧) = (seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1)))
1917, 18oveq12d 5550 . . . . 5 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))))
2016, 19eqeq12d 2095 . . . 4 (𝑧 = (𝑛 + 1) → ((seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) ↔ (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1)))))
2120imbi2d 228 . . 3 (𝑧 = (𝑛 + 1) → ((𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))))))
22 fveq2 5198 . . . . 5 (𝑧 = 𝑁 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = (seq𝑀( + , 𝐻, 𝑆)‘𝑁))
23 fveq2 5198 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐹, 𝑆)‘𝑧) = (seq𝑀( + , 𝐹, 𝑆)‘𝑁))
24 fveq2 5198 . . . . . 6 (𝑧 = 𝑁 → (seq𝑀( + , 𝐺, 𝑆)‘𝑧) = (seq𝑀( + , 𝐺, 𝑆)‘𝑁))
2523, 24oveq12d 5550 . . . . 5 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
2622, 25eqeq12d 2095 . . . 4 (𝑧 = 𝑁 → ((seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧)) ↔ (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁))))
2726imbi2d 228 . . 3 (𝑧 = 𝑁 → ((𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑧) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑧)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑧))) ↔ (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))))
28 eluzel2 8624 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
291, 28syl 14 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
30 uzid 8633 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
3129, 30syl 14 . . . . . 6 (𝜑𝑀 ∈ (ℤ𝑀))
32 iseqcaopr3.6 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
3332ralrimiva 2434 . . . . . 6 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
34 fveq2 5198 . . . . . . . 8 (𝑘 = 𝑀 → (𝐻𝑘) = (𝐻𝑀))
35 fveq2 5198 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
36 fveq2 5198 . . . . . . . . 9 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
3735, 36oveq12d 5550 . . . . . . . 8 (𝑘 = 𝑀 → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
3834, 37eqeq12d 2095 . . . . . . 7 (𝑘 = 𝑀 → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀))))
3938rspcv 2697 . . . . . 6 (𝑀 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) → (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀))))
4031, 33, 39sylc 61 . . . . 5 (𝜑 → (𝐻𝑀) = ((𝐹𝑀)𝑄(𝐺𝑀)))
41 iseqcaopr3.s . . . . . 6 (𝜑𝑆𝑉)
42 iseqcaopr3.2 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥𝑄𝑦) ∈ 𝑆)
4342ralrimivva 2443 . . . . . . . . . . 11 (𝜑 → ∀𝑥𝑆𝑦𝑆 (𝑥𝑄𝑦) ∈ 𝑆)
4443adantr 270 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → ∀𝑥𝑆𝑦𝑆 (𝑥𝑄𝑦) ∈ 𝑆)
45 iseqcaopr3.4 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) ∈ 𝑆)
46 iseqcaopr3.5 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐺𝑘) ∈ 𝑆)
47 oveq1 5539 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑘) → (𝑥𝑄𝑦) = ((𝐹𝑘)𝑄𝑦))
4847eleq1d 2147 . . . . . . . . . . . 12 (𝑥 = (𝐹𝑘) → ((𝑥𝑄𝑦) ∈ 𝑆 ↔ ((𝐹𝑘)𝑄𝑦) ∈ 𝑆))
49 oveq2 5540 . . . . . . . . . . . . 13 (𝑦 = (𝐺𝑘) → ((𝐹𝑘)𝑄𝑦) = ((𝐹𝑘)𝑄(𝐺𝑘)))
5049eleq1d 2147 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑘) → (((𝐹𝑘)𝑄𝑦) ∈ 𝑆 ↔ ((𝐹𝑘)𝑄(𝐺𝑘)) ∈ 𝑆))
5148, 50rspc2v 2713 . . . . . . . . . . 11 (((𝐹𝑘) ∈ 𝑆 ∧ (𝐺𝑘) ∈ 𝑆) → (∀𝑥𝑆𝑦𝑆 (𝑥𝑄𝑦) ∈ 𝑆 → ((𝐹𝑘)𝑄(𝐺𝑘)) ∈ 𝑆))
5245, 46, 51syl2anc 403 . . . . . . . . . 10 ((𝜑𝑘 ∈ (ℤ𝑀)) → (∀𝑥𝑆𝑦𝑆 (𝑥𝑄𝑦) ∈ 𝑆 → ((𝐹𝑘)𝑄(𝐺𝑘)) ∈ 𝑆))
5344, 52mpd 13 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝐹𝑘)𝑄(𝐺𝑘)) ∈ 𝑆)
5432, 53eqeltrd 2155 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐻𝑘) ∈ 𝑆)
5554ralrimiva 2434 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) ∈ 𝑆)
56 fveq2 5198 . . . . . . . . 9 (𝑘 = 𝑥 → (𝐻𝑘) = (𝐻𝑥))
5756eleq1d 2147 . . . . . . . 8 (𝑘 = 𝑥 → ((𝐻𝑘) ∈ 𝑆 ↔ (𝐻𝑥) ∈ 𝑆))
5857rspcv 2697 . . . . . . 7 (𝑥 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) ∈ 𝑆 → (𝐻𝑥) ∈ 𝑆))
5955, 58mpan9 275 . . . . . 6 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
60 iseqcaopr3.1 . . . . . 6 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
6129, 41, 59, 60iseq1 9442 . . . . 5 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑀) = (𝐻𝑀))
6245ralrimiva 2434 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆)
63 fveq2 5198 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
6463eleq1d 2147 . . . . . . . . 9 (𝑘 = 𝑥 → ((𝐹𝑘) ∈ 𝑆 ↔ (𝐹𝑥) ∈ 𝑆))
6564rspcv 2697 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) ∈ 𝑆 → (𝐹𝑥) ∈ 𝑆))
6662, 65mpan9 275 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
6729, 41, 66, 60iseq1 9442 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐹, 𝑆)‘𝑀) = (𝐹𝑀))
6846ralrimiva 2434 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆)
69 fveq2 5198 . . . . . . . . . 10 (𝑘 = 𝑥 → (𝐺𝑘) = (𝐺𝑥))
7069eleq1d 2147 . . . . . . . . 9 (𝑘 = 𝑥 → ((𝐺𝑘) ∈ 𝑆 ↔ (𝐺𝑥) ∈ 𝑆))
7170rspcv 2697 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐺𝑘) ∈ 𝑆 → (𝐺𝑥) ∈ 𝑆))
7268, 71mpan9 275 . . . . . . 7 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
7329, 41, 72, 60iseq1 9442 . . . . . 6 (𝜑 → (seq𝑀( + , 𝐺, 𝑆)‘𝑀) = (𝐺𝑀))
7467, 73oveq12d 5550 . . . . 5 (𝜑 → ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀)) = ((𝐹𝑀)𝑄(𝐺𝑀)))
7540, 61, 743eqtr4d 2123 . . . 4 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑀) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀)))
7675a1i 9 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑀) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑀)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑀))))
77 oveq1 5539 . . . . . 6 ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) → ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + (𝐻‘(𝑛 + 1))))
78 elfzouz 9161 . . . . . . . . 9 (𝑛 ∈ (𝑀..^𝑁) → 𝑛 ∈ (ℤ𝑀))
7978adantl 271 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑛 ∈ (ℤ𝑀))
8041adantr 270 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → 𝑆𝑉)
8159adantlr 460 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐻𝑥) ∈ 𝑆)
8260adantlr 460 . . . . . . . 8 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8379, 80, 81, 82iseqp1 9445 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) + (𝐻‘(𝑛 + 1))))
84 iseqcaopr3.7 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
85 fzofzp1 9236 . . . . . . . . . . . 12 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (𝑀...𝑁))
86 elfzuz 9041 . . . . . . . . . . . 12 ((𝑛 + 1) ∈ (𝑀...𝑁) → (𝑛 + 1) ∈ (ℤ𝑀))
8785, 86syl 14 . . . . . . . . . . 11 (𝑛 ∈ (𝑀..^𝑁) → (𝑛 + 1) ∈ (ℤ𝑀))
8887adantl 271 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝑛 + 1) ∈ (ℤ𝑀))
8933adantr 270 . . . . . . . . . 10 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)))
90 fveq2 5198 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → (𝐻𝑘) = (𝐻‘(𝑛 + 1)))
91 fveq2 5198 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐹𝑘) = (𝐹‘(𝑛 + 1)))
92 fveq2 5198 . . . . . . . . . . . . 13 (𝑘 = (𝑛 + 1) → (𝐺𝑘) = (𝐺‘(𝑛 + 1)))
9391, 92oveq12d 5550 . . . . . . . . . . . 12 (𝑘 = (𝑛 + 1) → ((𝐹𝑘)𝑄(𝐺𝑘)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
9490, 93eqeq12d 2095 . . . . . . . . . . 11 (𝑘 = (𝑛 + 1) → ((𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) ↔ (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
9594rspcv 2697 . . . . . . . . . 10 ((𝑛 + 1) ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐻𝑘) = ((𝐹𝑘)𝑄(𝐺𝑘)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
9688, 89, 95sylc 61 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (𝐻‘(𝑛 + 1)) = ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1))))
9796oveq2d 5548 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + ((𝐹‘(𝑛 + 1))𝑄(𝐺‘(𝑛 + 1)))))
9866adantlr 460 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
9979, 80, 98, 82iseqp1 9445 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1))))
10072adantlr 460 . . . . . . . . . 10 (((𝜑𝑛 ∈ (𝑀..^𝑁)) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝐺𝑥) ∈ 𝑆)
10179, 80, 100, 82iseqp1 9445 . . . . . . . . 9 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → (seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1))))
10299, 101oveq12d 5550 . . . . . . . 8 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛) + (𝐹‘(𝑛 + 1)))𝑄((seq𝑀( + , 𝐺, 𝑆)‘𝑛) + (𝐺‘(𝑛 + 1)))))
10384, 97, 1023eqtr4rd 2124 . . . . . . 7 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + (𝐻‘(𝑛 + 1))))
10483, 103eqeq12d 2095 . . . . . 6 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))) ↔ ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) + (𝐻‘(𝑛 + 1))) = (((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) + (𝐻‘(𝑛 + 1)))))
10577, 104syl5ibr 154 . . . . 5 ((𝜑𝑛 ∈ (𝑀..^𝑁)) → ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) → (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1)))))
106105expcom 114 . . . 4 (𝑛 ∈ (𝑀..^𝑁) → (𝜑 → ((seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛)) → (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))))))
107106a2d 26 . . 3 (𝑛 ∈ (𝑀..^𝑁) → ((𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑛) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑛)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑛))) → (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘(𝑛 + 1)) = ((seq𝑀( + , 𝐹, 𝑆)‘(𝑛 + 1))𝑄(seq𝑀( + , 𝐺, 𝑆)‘(𝑛 + 1))))))
1089, 15, 21, 27, 76, 107fzind2 9248 . 2 (𝑁 ∈ (𝑀...𝑁) → (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁))))
1093, 108mpcom 36 1 (𝜑 → (seq𝑀( + , 𝐻, 𝑆)‘𝑁) = ((seq𝑀( + , 𝐹, 𝑆)‘𝑁)𝑄(seq𝑀( + , 𝐺, 𝑆)‘𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1284  wcel 1433  wral 2348  cfv 4922  (class class class)co 5532  1c1 6982   + caddc 6984  cz 8351  cuz 8619  ...cfz 9029  ..^cfzo 9152  seqcseq 9431
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-addcom 7076  ax-addass 7078  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-0id 7084  ax-rnegex 7085  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-ltadd 7092
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-inn 8040  df-n0 8289  df-z 8352  df-uz 8620  df-fz 9030  df-fzo 9153  df-iseq 9432
This theorem is referenced by:  iseqcaopr2  9461
  Copyright terms: Public domain W3C validator